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IMPROVE CONCENTRATION OF FREQUENCY AND TIME (CONCEFT) BY
NOVEL COMPLEX SPHERICAL DESIGNS

MATT SOURISSEAU, YU GUANG WANG, ROBERT S. WOMERSLEY, HAU-TIENG WU,
AND WEI-HSUAN YU

ABSTRACT. Concentration of frequency and time (ConceFT) is a generalized multitaper
algorithm introduced to analyze complicated non-stationary time series. To avoid the ran-
domness in the original ConceFT algorithm, we apply the novel complex spherical design
technique to standardize ConceFT, which we coin CQU-ConceFT. The proposed CQU-
ConceFT is applied to visualize the spindle structure in the electroencephalogram signal
during the N2 sleep stage and other physiological time series.

Keywords: ConceFT; multitaper; quasi-uniform spherical design; synchrosqueezing trans-
form; time-frequency analysis.

1. INTRODUCTION

Quantifying oscillatory time series has attracted much attention recently, particularly
those having multiple deterministic oscillatory signals with time-varying frequencies and
amplitudes and contaminated by noise; for example, peripheral venous pressure (PVP)
signal [13]], photoplethysmogram [L1] and many others. This kind of problem is a gen-
eralization of the widely considered seasonality problem [1] in statistical society. There
have been extensive studies in the time-frequency (TF) analysis community aiming for this
kind of time series [7]]. In this report, we propose to combine the recently developed novel
complex spherical designs and a nonlinear-type TF analysis to stably analyze a noisy time
series. We focus on the STFT-based synchrosqueezing transform (SST) as an example of
nonlinear-type TF analysis to illustrate the idea, although we can consider other nonlinear-
type TF analyses [7]. It is shown in [2] that SST is robust to different types of noise,
such as non-stationary and heteroscedastic noises. However, when the signal-to-noise ra-
tio (SNR, defined as 20 log(%), where SD means the standard deviation) is low
(e.g., below 1 dB), SST may fail. A natural idea to handle time series with a low SNR
is taking the multi-tapering (MT) technique into account [[10, [17]. However, due to the
Nyquist rate limitation in the TF representation (TFR) [3]], in practice we can only find
limited orthonormal windows (i.e. 6 to 10) that have reasonably concentrated supports in
the TF domain. Hence, the noise suppression effect by the MT scheme is usually limited.
In 2016, driven by the demand to analyze physiological signals with a low SNR, a gen-
eralized MT was proposed in [4] as a new algorithm, called concentration of frequency
and time (ConceFT). The basic idea beyond ConceFT is a marriage of the nonlinearity
of the chosen nonlinear-type TF analysis and MT. In the generalized MT, we consider .JJ
orthonormal windows, hq,...,hy, where J € N, and randomly linearly combine them
into a new normalized window. By viewing the coefficients of a linear combination of
J orthonormal windows as a point on the (J — 1)-dim real sphere S/~!, one can obtain
as many windows as possible by randomly sampling points  := (x1,...,2;) € S/~1
uniformly. In other words, for each «, we have a new window plel = Zz]=1 x;h;. Finally,
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we average all TFR’s by SST with those windows. While the ConceFT has been applied
to a variety of medical signal processing problems [9} 15, [16], for the clinical application
purpose, there is still a gap. In fact, due the step of random samples from S’~1, the anal-
ysis result varies from one experiment to another and leads to an un-reproducibility issue
unless a large number of sampling points are considered. However, this might significantly
increase computational complexity. Second, the performance of ConceFT is affected by
the approximation quality of numerical integration over the chosen spherical point set. A
natural question is then to find a deterministic set of points that distributed on S7~1 as
“uniformly” as possible, and meanwhile have an excellent performance for numerical inte-
gration. Below, we consider a novel spherical design (SD) [6] scheme on complex spheres
[12]] to the generalized multitaper scheme to resolve the above two issues.

2. CONCENTRATION OF FREQUENCY AND TIME — OLD AND NEW

For a properly defined function f, e.g., a tempered distribution, and a proper window h,
denote SST of f to be s(h)(t, v), where t € R is the time, v € R is the frequency. Fix

N € N. Take Qs n = {(wg, xx)}_, to be a quadrature rule for numerical integration on
S7=1 or complex sphere 7 with N pairs of weights w; € R and nodes x;, € S’/~! or
Xk € 07,

Definition 2.1. For ¢ > 0, the ConceFT for the g-normed SST associated with @) ;i for a
given proper function f is
1/q
q)

(1) O(QJ N) — <Z Wy ’ (h xk)
g 1/q
] )

where t € R and v > 0. We also define the ideal ConceFT as

it s

In [4]], ¢ = 1 and Q j,n is chosen so that {xx} is the set of N random uniform (RU)
points from S’ landwy, =1 /N. We call this approach the RU-ConceFT. Note that in [4],
the RU-ConceFT is defined only on real spheres. However, in practice we can take the set
of N RU points from Q”, and we call the resulting algorithm CRU-ConceFT. In the report,
we propose to take {x;} to be the nodes of a quasi-uniform spherical ¢ design (QU-t-SD)
on a real sphere to replace the random sample scheme in [4]]. The new algorithm is called
QU-ConceFT. If we consider a recently proposed quasi-uniform spherical (k,) design
(QU-kI-SD) on a complex sphere [12], the algorithm is called CQU-ConceFT. When the
quadrature rule in Deﬁnitionis a SD, the weights wy, are equal weights 1/N. Note that
by high precision for numerical integration of QU-t-SD or QU-kI-SD, (C)QU-ConceFT
better approximates the ideal ConceFT than (C)RU-ConceFT proposed in [4]. See Appen-
dix for quantitative results on simulated signals, which shows the benefit of CQU-ConceFT
and its improvement.

3. NUMERICAL EXPERIMENTS

In this section, we show numerical experiments of analyzing simulated signals with
noise.
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3.1. Simulated signals with noise. We use the smoothened Brownian motion as the true
signal. This is the model considered in [4] to quantitatively evaluate different algorithms.
The signal takes the form

2 f(t) = Ai(t) cos(2m¢1(t))X(5,16) (t) + A2(t) cos(2mh2(t))x[0,10] (£),

where t € [0,16] and A (t), Aa(t), 1(t) and ¢2(t) are constructed from the same proce-
dure shown in [4, Section 4a].
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FIGURE 1. A realization of the stochastic signal Y (). In

the left column, the first and second subplots are fi(t) =
Ai(t) cos(2m1(t)) x(5,16)(t) and f2(t) = Aa(t) cos(2mg2(t))X0,10] (¢)
in (2) with A;(¢) and A5 (t) superimposed as black curves, and the third
subplot shows a realization of the Gaussian noise £(¢). In the right col-
umn, the first subplot shows ¢ (¢) and ¢4(t), the second subplot shows
the clean signal f(t), and the third subplot is the noisy signal Y (¢) that
is the superposition of f(¢) and £(¢).

Specifically, if W is the standard Brownian motion defined on [0, 00), the smoothened
Brownian motion with bandwidth B > 01is ®p := W x Kp, where K p is the Gaussian
function with the standard deviation (SD) B > 0 and x denotes the convolution operator.
Given T' > 0 and parameters (i,...,(s > 0, define the following family of random
processes on [0, T'):

P, (t  P(s)
3 Uie o) =G+ Gt + 7" / e
(G Gol ||(I)C4HL°° 0.7 ||‘1><G||Loo OT]

For the amplitudes A; (t) and A3(t), we set (2 = (5 = 0 and they are independent realiza-
tions of W3 ¢.1,200,0,0] (t). To simulate phase functions ¢ () and ¢ (t), weset {; = (3 =0
and Wig ¢, 0.0,¢5,¢5](t) is then a monotonically increasing process. In the examples be-
low, we take ¢1(t) as a realization of Wy 10,0,0,6,400](t), and ¢2(t) as a realization of
Wio,27,0,0,2,300] (t). The noisy signal is the superposition Y (t) = f(t) + £(t), where the
noise £(t) is a white mean-zero Gaussian random process with the variance o%. The SNR

for Y is 201og,, %((g, where std(f) is the standard deviation of f. We set the SNR to
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be 0.11 dB, and realize the stochastic signal Y (¢) for t € [1/wq, 16] with the sampling rate
wo = 100 (Hz). Figure[|shows a realization of the clean signal f(t), Gaussian noise &(t),
and their superposition Y (¢).

3.2. Time-frequency representation. Figure[2]shows MT-SST, QU-ConceFT, CQU-ConceFT
[14ﬂ RU-ConceFT and CRU-ConceFT for the realization of Y in Figure|l} For MT-SST,

we take the first 6 Hermite windows that are the most concentrated in the TF domain
among others [3]]; that is, we take J = 6 tapers. For QU-t-SD, we take a 7-design with

32 nodes on S2. For QU-kI-SD, we take a triangle complex 4-design with 40 nodes on Q3
coming from a real sphere 4-design on S°. For RU and CRU sets, they are 32 points on S?

and 3 respectively. In other words, for RU-ConceFT, QU-ConceFT, CRU-ConceFT and
CQU-ConceFT, we take J = 3 orthonormal windows. Again, we take the first 3 Hermite
windows due to its concentration property in the TF domain. We take ¢ = 1 for all cases.

SST, N =32 RU, N =32 t-SD, N = 32 CRU, N = 32 kl-SD, N = 40

20

Freq (Hz) Freq (Hz)

Freq (Hz)

Time (sec) Time (sec) Time (sec) Time (sec) Time (sec)

FIGURE 2. TFR’s by SST, MT-SST and various ConceFT’s for clean
signal f(¢) and noisy signal Y (¢) over ¢t € [1/wp, 16], where the sam-
pling rate is wy = 100 (Hz) and the SNR is 0.11 dB. In the first column,
from top to bottom shows the TFR’s of the clean signal f(t) analyzed by
SST, the noisy signal Y (¢) analyzed by SST, and the noisy signal Y (¢)
analyzed by MT-SST. From columns 2 to 5, we show TFR’s of the clean
and noisy signals analyzed by RU-ConceFT , QU-ConceFT, the CRU-
ConceFT, and CQU-ConceFT respectively. The first row is for the clean
signal f(t), the second row is for the noisy signal Y (¢), and the third row
is for the noisy signal with the ground truth superimposed. For RU and
CRU, we take 32 random points on S? and 3. For QU-t-SD, we take
the 7-design with 32 nodes on S2. For QU-kI-SD, we take the triangle
complex 4-design with 40 nodes on 3.

In Figure |Z|, it is observed that the information of interest, the two curves represent-
ing the instantaneous frequencies ¢ (t) and ¢5(¢), can be easily identified in the TFR of

1https://web.maths.unsw.edu.au/“rsw/Sphere/EffSphDes/


https://web.maths.unsw.edu.au/~rsw/Sphere/EffSphDes/
https://doi.org/10.1101/2020.11.23.394007
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.23.394007; this version posted November 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

CONCEFT IMPROVEMENT BY COMPLEX SPHERICAL DESIGN 5
95
— — t-SD
ol — — kI-SD |
—— RU
a5l CRU d
ol 1
2 TSE o ~ 7
5 bL—=——-—= N
T \\\.:::__\*_\\./'\‘/."“*\.”\-“m-ﬁ
o S S = (o o (i s
6.5 1
6F T T et e
55 1
5 ! '
10! 10?

Number of points N

FIGURE 3. OTD’s of TFR’s of QU-ConceFT, CQU-ConceFT , RU-
ConceFT and CRU-ConceFT for 100 stochastic signals Y'(¢) with the
white Gaussian noise () and ¢ = 1, where ¢t € [1/wp, 16], the sam-
pling rate is wg = 100 (Hz) and the SNR is around 0.11 dB. The regions
of light red, light maroon, light blue and light cyan show the variances
for QU-t-SD, QU-kI-SD, RU, and CRU cases respectively. For the real
cases, like QU-t-SD and RU, we take points on S?. For the complex
cases, like QU-kI-SD and CRU, we take points on Q3.

f(t) determined by SST. However, the TFR of Y (¢) determined by SST is not suitable
to identify the information of interest since the two curves representing instantaneous fre-
quencies ¢} (t) and ¢4(t) are buried in the background noise. The TFR determined by
MT-SST provides more identifiable curves, but they are widened and blurred. This blur-
ring is due to taking 6 Hermite windows, since the more the Hermite windows we take, the
more spreading the Hermite windows is in the TF domain [3]]. Visually, the various Con-
ceFT’s all enhance the contrast of the information of interest and the curves are sharpened.
Specifically, both CRU-ConceFT and QU-ConceFT provide the sharpest curves. These
results indicate that CQU-ConceFT performs almost equally compared with RU-ConceFT.
In the next subsection, we provide a quantification of this visual finding to compare the
performance of variations of ConceFT.

3.3. Performance measurement. To evaluate the performance of ConceFT’s with var-
ious designs, we follow the evaluation scheme proposed in [4, Section 4b], where the
optimal-transport distance (OTD) between the ideal TFR of the clean signal and the TFR
of the noisy signal is used to measure how accurate an algorithm can approximate the clean
signal. The ideal TFR of f in (2) is defined as

2
4) Pf(t,(d) = ZAi(t) 6@%(0 (w)

Let Py (t,w) be the TFR determined by ConceFT for a stochastic signal. As Py (t,-)
might not have integral 1 for time ¢, we normalize them such that [ Py (¢, w)dw = 1. To
simplify the notation, we use the same symbol for the normalized Py (¢, -). Then evaluate
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FIGURE 4. Illustration of the relationship between OTD and SNR for
various TF analysis tools, including QU-ConceFT, CQU-ConceFT, RU-
ConceFT and CRU-ConceFT. We take ¢ = 1 in all ConceFT’s. In the
plot, the y-axis is the ratio of OTD’s determined by different TF analysis
tools divided by that determined by RU-ConceFT. The smaller the ratio
OTD is, the more improvement is achieved. The stochastic signal Y (¢)
is sampled at wy = 100 Hz from ¢ € [1/wo, 16]. We take a 7-design
with 32 nodes on S? for the QU-t-SD and a triangle complex 4-designs
with 40 nodes on Q3 for the QU-kI-SD. For the RU and CRU, we take
32 randomly uniform points on S? and O respectively.

the OTD between Py (¢, -) and P ¢(t, -), and average all the OTD’s over all sampling times
to illustrate the quality of the estimator Py for P ¥

Figure |3| shows the OTD for TFR’s of QU-ConceFT and CQU-ConceFT, and RU-
ConceFT and CRU-ConceFT on 100 realizations of Y (t). Here we generate stochastic
signal Y (¢) for ¢ € [1/wy, 16] with the sampling rate wy = 100 (Hz) and the SNR is around
0.11 dB. Asin Section the QU-t-SD and RU are on S? and QU-kI-SD and CRU are on
Q3. For RU-ConceFT and CRU-ConceFT, we realize up to 240 RU and CRU points on S?
and Q3 for 100 times and evaluate the mean and standard deviation of OTD’s, as indicated
by the red and maroon in the figure. For QU-t-SD, we use up to the 21-design with nodes
N < 243. For QU-kI-SD, we use up to the 7-design with nodes N < 254. We again use
q = 1 for all cases. In the real case, the mean and SD of the OTD’s for QU-ConceFT are
both smaller than RU-ConceFT. In the complex case, CQU-ConceFT has a smaller mean
than that of CRU-ConceFT while their standard deviations are almost the same. Moreover,
the complex cases have a better performance than the real cases, which is consistent with
the results of Section These results support that the proposed (C)QU-ConceFT has
a stable and better or at least equivalently good performance in approximating the ideal
TFR of the clean signal compared with the RU-ConceFT with random points. We men-
tion that the performance of different designs can be partially explained by the numerical
integration approximation quality of the designs for the ideal ConceFT.

Figure 4| shows the relation between the SNR and OTD for various QU-ConceFT’s.
The realization of Y (¢) is sampled at wy = 100 Hz from ¢ € [1/wp, 16]. The SNR ranges
from —7 to 7. As above, the QU-t-SD uses the 7-design with 32 nodes on S? and the
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QU-kI-SD uses the triangle complex 4-design with 40 nodes on 23. On the other hand,
the RU and CRU use 32 random points on S? and Q? respectively. The behavior of the
four cases are similar, that is, the OTD increases as the SNR increases. In the real case,
QU-ConceFT and RU-ConceFT have almost equal OTD at each SNR value, while in the
high SNR region, RU-ConceFT outperforms QU-ConceFT. In the complex case, CQU-
ConceFT has a smaller OTD compared with CRU-ConceFT, while in the high SNR region,
CRU-ConceFT outperforms CQU-ConceFT. In general, the real cases have higher OTD
than the complex cases.

4. DISCUSSION AND CONCLUSION

We introduce a novel generalized multitaper algorithm by combining a novel SD scheme
and the nonlinear-type TF analysis that standardizes the RU-ConceFT. Its potential can be
seen from an EEG signal analysis. For the practical purpose, we can apply CQU-ConceFT
to study the EEG signal during the N2 sleep stage. One specific future mission is devel-
oping an automatic system to identify spindles based on CQU-ConceFT. The developed
system will distinguish among different types of spindles by reading its TFR, and show
how it is related to the sleep dynamics. We will report these clinical studies in future work.

5. APPLICATION TO EEG SIGNALS

We apply QU-ConceFT to analyze the EEG signal during the N2 sleep stage and com-
pare the results with SST and RU-ConceFT. We focus on the C3A2 EEG channel that was
recorded at the sampling rate of 200Hz. The signal was recorded from a normal subject
without sleep apnea by Alice 5 data acquisition system (Philips Respironics, Murrysville,
PA) in the sleep center at Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan. The
overnight sleep stages for all 30 seconds epochs, including Awake, REM, N1, N2, and N3,
are provided by the consensus of two sleep experts. A typical feature of the EEG signal
during the N2 stage is the spindle. Sleep spindles are brain activity bursts that oscillate
at a frequency range of 11 to 16 Hz with a duration of 0.5 seconds or greater [S]. The
nomination “spindle” comes from the fact that the “shape” of a sleep spindle is often like
that of a yarn spindle. In Figure [5] we show a typical EEG epoch of 30 seconds long
during the N2 sleep stage. The red arrows indicate the spindle events labeled by the sleep
experts. We also show CQU-ConceFT, RU-ConceFT, and SST for the signal. It is clear
that the labelled spindles oscillate at about 14 Hz, but with time-varying frequency. More-
over, three events, indicated by the blue arrows, look like a superposition of a spindle and
a slow wave. This kind of pattern, in general, is not considered a spindle according to the
American Academy of Sleep Medicine criteria [8]]. However, the results well suggest that
they are spindles; for example, see the dashed arrows in the second subplot. This “hidden”
spindle structure is less discussed in the sleep literature, which might be due to the lack of
proper analysis tools, while it might contain useful physiological information. However, a
full exploration of this topic is out of the scope of this paper. Overall, CQU-ConceFT per-
forms at least equally well compared with RU-ConceFT from the visualization perspective,
while the windows are standardized via SD without any randomness. Moreover, compared
with SST, both ConceFT’s have fewer “artifacts” indicated by the orange arrows.
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FIGURE 5. From top to bottom: an EEG epoch during the N2 stage,
CQU-ConceFT, RU-ConceFT, and SST. We observe an annotated spin-
dle around the 25th second, which we can visualize in all TFRs. How-
ever, it is visually clear that both ConceFT’s provide TFR’s with less
“speckles” (indicated by orange arrows) compared with that generated
by SST. Also, it is apparent that CQU-ConceFT performs at least equally
well compared with RU-ConceFT.
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