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One sentence summary: 8

Dynamical inference of the current context controls the creation, expression and updating of motor 9

memories 10

Humans spend a lifetime learning, storing and refining a repertoire of motor memories. 11

However, it is unknown what principle underlies the way our continuous stream of sensori- 12

motor experience is segmented into separate memories and how we adapt and use this 13

growing repertoire. Here we develop a principled theory of motor learning based on the 14

key insight that memory creation, updating, and expression are all controlled by a single 15

computation – contextual inference. Unlike dominant theories of single-context learning, 16

our repertoire-learning model accounts for key features of motor learning that had no uni- 17

fied explanation and predicts novel phenomena, which we confirm experimentally. These 18

results suggest that contextual inference is the key principle underlying how a diverse set 19

of experiences is reflected in motor behavior. 20

Throughout our lives, we experience different contexts, in which the environment exhibits distinct 21

dynamical properties, such as when manipulating different objects or walking on different surfaces. 22

Although it has been recognized that the brain maintains multiple motor memories appropriate for 23

these contexts1,2, classical theories of motor learning have focused on how the brain adapts to a 24

single type of environmental dynamics3–5. However, with multiple memories come new computa- 25

tional challenges: the brain must decide when to create new memories, and how much to express 26

and update them for each movement we make. The principles underlying these operations are 27

poorly understood, and therefore it is unclear what aspects of motor learning are fundamentally 28

determined by them. Here, we propose a unifying principle – contextual inference – that specifies 29

how sensory cues and movement feedback affect memory creation, expression and learning. We 30

show that contextual inference is the core feature that underlies a range of fundamental aspects of 31

motor learning that previously could only be explained by proposing a number of distinct and often 32

heuristic processes. 33

COIN model: the three contributions of contextual inference 34

We developed the COIN (COntextual INference) model, a principled Bayesian model of learning 35

a motor repertoire in which separate memories are stored for different contexts (see Suppl. Mat. 36

& Fig. S1). Each memory stores information learned about the dynamical and sensory proper- 37

ties of the environment associated with the corresponding context. Crucially, neither contexts nor 38

their transitions come labeled as such, and thus a major challenge for the learner is to contin- 39

ually infer which context they are in, based on a continuous stream of experience (Fig. 1a). In 40

the COIN model, contextual inference fuses information from multiple sources: prior expectations 41
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Fig. 1 | Contributions of contextual inference to motor learning in the COIN model. a, An example of experience
(state feedback and sensory cues) when handling a series of visually-identical cups of different weights followed by a
sugar bowl. The state feedback is noisy observations (purple dots) of the true weight (black line) shown on an arbitrary
scale. Background color indicates different sensory cues (visual appearance of cups vs. sugar bowl). (b-f) The COIN
model applied to the observations in a (see also Fig. S2). b, Probability that a novel context generated the observations.
The colored circles shows memory creation events. When transitioning to and from cup 2 the novel context probability
increases (green arrows) but is insufficient to generate a new memory. c, Predicted state distributions of the three
contexts inferred by the model. Grey shows the prior distribution for a novel context. d, Predicted probability (before
state feedback is observed) of each instantiated context as well as a novel context (grey). e, Predicted state distribu-
tion (purple), which is a mixture of the individual contexts’ predicted state distributions (c), weighted by their predicted
probabilities (d). The motor output is the mean of the predicted state distribution (cyan line). f, Responsibility (context
probability after observing state feedback) of each instantiated context as well as a novel context (grey). Parameters
for the COIN model simulation are shown in Table S1 and validation of the COIN model inference in Figs. S3 and S4.
See text for explanation of arrows in panels c-f.

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.23.394320doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394320
http://creativecommons.org/licenses/by-nc-nd/4.0/


about which context the learner is in, based on the history of contexts inferred so far (the over- 42

all occurrence probability of each context as well as the transition probabilities between them); 43

and the probability that current state feedback (the sensory consequences of motor commands; 44

Fig. 1a, purple) and sensory cues (sensory input that does not depend on action, such as the 45

visual appearance of an object; Fig. 1a, green and yellow) are generated by each context. The 46

result of contextual inference is a posterior distribution expressing the probability with which each 47

known context, or a yet-unknown novel context, is active at that time. In turn, contextual inference 48

determines memory creation, expression and updating. A new memory is created whenever the 49

probability of a novel context becomes high (Fig. 1b). For determining the current motor command 50

(Fig. 1e), rather than selecting a single memory to be expressed2,6, the state associated with each 51

memory (Fig. 1c) is expressed commensurate with the probability of the corresponding context un- 52

der the posterior computed before experiencing state feedback (its “predicted probability”; Fig. 1d). 53

Therefore, unlike in traditional models of motor learning, slow adaptation to a sudden change of 54

environmental dynamics (Fig. 1e, red arrow) may not arise from a slow updating of the state of any 55

individual memory (Fig. 1c, all are relatively constant during this period) but from the slow updating 56

of the inferred context probabilities (Fig. 1d, red arrow), which determine the extent to which the 57

inferred states are expressed in the motor output. Once a movement has been executed, each 58

memory is updated according to the probability of the corresponding context under the posterior 59

given the state feedback received (its “responsibilty”; Fig. 1f; numbered arrows 1 and 2 respectively 60

show how high and low responsibility for the red context speeds up and slows down the updating of 61

its state, Fig. 1c). Therefore, the COIN model, unlike traditional models, proposes that contextual 62

inference is core to motor learning. 63

Memory creation and expression accounts for spontaneous and evoked recovery 64

As an ideal litmus test of the first two contributions of contextual inference to learning a motor 65

repertoire, memory creation and expression (Fig. 1b and d), we revisited a widely-used sponta- 66

neous recovery paradigm. In this paradigm (Fig. 2b, top left), participants learn a perturbation 67

P+ (Fig. 2a) applied by a robotic interface while reaching to a target, which is followed by brief 68

exposure to the opposite perturbation P−, bringing performance back to baseline. Adaptation is 69

measured during learning using occasional channel trials, P c, in which the robot constrains the 70

movement so as to produce no error (Fig. 2a, see Methods for details). After the P− phase, adap- 71

tation is assessed during a long and continuous series of channel trials. As in previous studies, 72

our participants showed the intriguing feature of spontaneous recovery in this phase (Fig. 2c): a 73

transient re-expression of P+ adaptation, rather than a simple decay towards baseline. 74

Although there are no explicit sensory cues in this paradigm, according to our theory, contextual 75

inference continues to play an important role even in the absence of such cues. We simulated the 76

COIN model for the spontaneous recovery paradigm (Fig. 2b, using parameters in Table S1, see 77

Methods). Starting with a memory appropriate for moving in the absence of a perturbation (P 0, blue 78

Fig. 2b, bottom left), new memories were created for the P+ (red) and P− (orange) perturbations. 79

Spontaneous recovery arises in the COIN model due to the dynamics of contextual inference. As 80

P+ has been experienced for a longer time overall, it is quickly inferred to be active with a much 81

higher probability during the P c phase (Fig. 2b, top right). Therefore, while P+ is inferred to be 82

active but its state has not yet decayed (Fig. 2b bottom left), the memory of P+ is transiently 83

expressed in the subject’s motor command (Fig. 2b bottom right). Our mathematical analysis also 84
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Fig. 2 | Memory creation and expression accounts for spontaneous and evoked recovery. a, Participants made
reaching movements (dashed arrow) to a target (circle) while holding the handle of a vBOT robotic manipulandum 7

that could generate forces (black arrows) at the hand. The vBOT could either be passive (null field, P 0) or generate
a velocity-dependent force field that acted to the left (P+) or right (P−) of the current movement direction. Channel
trials (P c) were used to assess adaptation by constraining the hand (with a stiff one-dimensional spring) to a straight-
line channel (grey lines) to the target and measuring the forces generated by the participant into the channel walls.
b, Simulation of the spontaneous recovery paradigm with the COIN model. Top left: ground-truth perturbation (black
line) and noisy state feedback observations (purple), as in Fig. 1a, with grey parallel lines showing channel phase.
Bottom left: predicted state distributions of inferred contexts as in Fig. 1c. Top right: predicted probability of inferred
contexts as in Fig. 1d. Inset shows magnification of beginning of channel phase (trials 194-203). Bottom right: predicted
state distribution (purple) and mean predicted state (cyan), as in Fig. 1e. c, Mean adaptation (black, ± s.e.m. across
participants) on the channel trials of the spontaneous recovery paradigm. The cyan and green lines show model fits
(mean of individual participant fits) of the COIN and dual-rate models, respectively. Inset shows ∆BIC for individual
participants, positive favors the COIN model. d-e, As in (b-c) for the evoked recovery paradigm in which the 3rd and 4th
trials in the channel phase were replaced by P+ trials (black arrow). For COIN model parameter and model recovery
(COIN vs. dual-rate) see Suppl. Mat. and Figs. S9 and S10.

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.23.394320doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394320
http://creativecommons.org/licenses/by-nc-nd/4.0/


confirmed that spontaneous recovery was a robust property of the COIN model (Suppl. Text and 85

Fig. S5). 86

Importantly, the mechanism of spontaneous recovery is fundamentally different in the COIN model 87

from that proposed by classical, single-context models of motor learning such as the dual-rate 88

model3. Critically, in those models, motor output is determined by a combination of individually 89

updating memories whose expression does not change over time. Thus, the dynamics of adap- 90

tation is solely determined by the dynamics of memory updating. In contrast, in the COIN model, 91

changes in motor output can occur without updating any individual memory, simply due to the re- 92

expression of a memory if sensory-motor evidence indicates sufficiently strongly that a change in 93

context has occurred. Therefore, we designed a novel “evoked recovery” paradigm in which two 94

early trials in the channel trial phase of the spontaneous recovery paradigm were replaced with P+ 95

(‘evoker’) trials (Fig. 2d, top left, akin to trigger trials in visuomotor learning2). In this case, the COIN 96

model predicts a strong and long-lasting recovery of P+-adapted behavior (Fig. 2d, bottom right), 97

primarily due to the almost instantaneous inference that the P+ context is now active (Fig. 2d, top 98

right, red) and the gradual decay of the P+ state over subsequent channel trials (Fig. 2d, bottom 99

left, red). Our mathematical analysis suggested that this was also a robust prediction of the COIN 100

model (Suppl. Text and Fig. S5). In contrast, the dual-rate model only predicts a transient recovery 101

that rapidly decays due to the same underlying adaptation process with fast dynamics govern- 102

ing both recovery and decay (Fig. S7). In line with the predictions of the COIN model, participants 103

showed a strong evoked recovery in response to the P+ trials (Fig. 2e). This recovery lasted for the 104

duration of the experiment, defying models that predict a simple exponential decay to baseline2,8,9 105

(Fig. S6 and Table S3). We fit both the COIN and dual-rate models to individual participants’ data in 106

the spontaneous recovery and evoked recovery groups (Fig. 2c & e; Tables S1 and S2). The COIN 107

model was able to fit the data accurately, but the dual-rate model (and its multi-rate extensions, 108

Fig. S7) showed a qualitative mismatch in the time course of decay of evoked recovery (Fig. 2e). 109

Formal model comparison with BIC10 (insets in Fig. 2c & e) also provided strong support for the 110

COIN model overall (∆ group-level BIC of 302.6 and 394.1 for the spontaneous and evoked re- 111

covery groups, respectively) and for the majority of participants individually (6 out of 8 for each 112

experiment; individual fits shown in Fig. S8). 113

Memory updating depends on contextual inference 114

According to the COIN model, the third contribution of contextual inference to learning a motor 115

repertoire is controlling how each existing memory is updated following experience based on their 116

respective inferred responsibilities (Fig. 1f), which depend on sensory cues and state feedback. 117

In order to test this prediction, we conducted an experiment in which participants experienced a 118

training phase in which two arbitrary sensory cues (the appearance of a visually defined target; 119

Fig. 3a) were consistently paired with two perturbations (i.e. P+
1 and P−

2 trials, subscript specifies 120

sensory cue; Fig. 3b). In a subsequent test phase using triplet trials9,12 (Fig. 3c), we measured 121

how the memory associated with cue 1 was updated based on exposure to a single trial with a 122

cue-perturbation combination that was either consistent (P+
1 , P

−
2 ) or inconsistent (P

+
2 , P

−
1 ) with 123

those experienced during training. We fit the COIN model to the data of individual participants 124

(Table S1). Under such conditions, in the COIN model, the responsibility of each context c for the 125

perturbation experienced on the exposure trial is a product of two terms. The first term is the 126

prior, i.e. the predicted probability with which the context was expected before experiencing the 127

perturbation (as in Fig. 1d) – which is already conditioned on the cue visible from the outset of 128
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Fig. 3 | Memory updating depends on contextual inference. a, Experimental paradigm: sensory cues are defined by
the location of a target (circle) to which participants had to move the corresponding control point (gray disks) on a virtual
bar (horizontal rectangle) 11. b, Training: sensory cues (indicated by background color) are consistently matched to
perturbations (black line) randomly selected on each trial. c, Triplets used to examine single-trial learning: two channel
trials (both with cue 1, P c

1 ) bracket an ‘exposure’ trial (one of the four combinations of sensory cue and perturbation).
d-e, Single-trial learning, measured as the difference in adaptation expressed between the two channel trials of a triplet,
for the four cue-perturbation combinations before (d) and after (e) the training phase. Experimental data shows mean
± s.e.m. across participants (left). Examining the differences in single-trial learning across the four cue-perturbations
combinations (repeated-measures ANOVA) showed no significance before training (F3,69 = 1.87, P = 0.142) but a
significant difference after training (F3,69 = 15.24, P = 1 × 10−7). The COIN model was fit to each participant and
model predictions are shown as mean ± s.e.m. across participants (center-left). A positive value indicates a change in
adaptation consistent with the perturbation experienced on the exposure trial (an increase following P+ and a decrease
following P−). The model prior (center-right) and (normalized) likelihood (right) are also shown for the context that
was predominantly expressed on the final channel trial of the triplet (c∗, which is the context associated with P 0 before
training, and P+ after training). The combination of the prior and likelihood produce the posterior (responsibilities). Using
an analytic approximation, it is possible to show that the posterior is proportional to single-trial learning (see Suppl. Text
and Fig. S11). Between the two inconsistent conditions post-training, the model accounts for the greater single-trial
learning seen in P+

2 compared to P−
1 by developing an internal model that believes state feedback (determining the

likelihood) is more strongly associated with contexts (force fields) than the sensory cues (determining the prior).
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the trial, P(c|q). The second term expresses the likelihood of the state feedback in that context, 129

P(y|c). This simple principle explains the intricate pattern of single-trial learning exhibited by our 130

participants: relatively uniform updating across conditions before learning (Fig. 3d) and graded 131

updating after learning, with maximal (minimal) updating in the P+
1 -direction for consistent P+

1 132

(inconsistent P−
2 ) trials (Fig. 3e) – as well as how this pattern changed during the training phase 133

(Fig. S12). 134

Contextual inference underlies apparent changes in learning rates 135

Finally, we revisited classical results about apparent changes in learning rates under a variety of 136

conditions, each of which required different explanations. What is common in all these cases is 137

that the empirical finding of temporal (trial-to-trial) changes in adaptation has been interpreted as 138

learning, i.e. changes to any existing memories (states), and thus differences between the magni- 139

tudes of these changes have been interpreted as differences in learning rates. The COIN model 140

suggested that changes in adaptation can occur without learning, simply by changes in the way 141

existing memories are expressed. Therefore, apparent changes in learning rates may be due to 142

changes in memory expression rather than the memories themselves. To test this hypothesis, 143

we used the parameters we had obtained by fitting each of the 40 participants in the experiments 144

described above (Table S1 and Fig. S13), and thus the simulations provide parameter-free predic- 145

tions. Fig. 4 shows three classical paradigms (column 1) with representative extant experimental 146

data (column 2) and COIN model predictions (column 3), as well as the key internal components 147

of the COIN model, state (column 4) and contextual inferences (column 5). 148

The COIN model showed savings (Fig. 4a): learning the same perturbation a second time (even 149

after washout) is faster than the first time (e.g. Refs. 3,13,15,16). In contrast, linear time-invariant 150

state space models (such as the dual-rate model) cannot explain savings after washout17. Sav- 151

ings in the COIN model is a natural consequence of the dynamics of contextual inference: P+ is 152

expected with higher probability during the second exposure after having experienced it during the 153

first exposure (Fig. 4a, contextual inference, compare pink and green). Conversely, the Kalman 154

gain, i.e. the learning rate for the state (see Suppl. Mat.), remained unchanged between the two 155

exposures (Fig. 4a, state inference, top panel, pink and green overlapping). 156

The COIN model also shows anterograde interference (Fig. 4b) in which learning a perturbation 157

(P−) is slower if an opposite perturbation (P+) has been previously learned (e.g. Refs. 14,18), with 158

the amount of interference increasing with the length of experience of the first perturbation (Fig. 4b, 159

data). Critically, this slowness is not due to simply starting from an oppositely adapted state, as it 160

persists even if the speed of adaptation is measured only from the point when adaptation passes 161

through zero (Fig. 4b, data, inset). The COIN model reproduces the interference (Fig. 4b, model) 162

because more extended experience with P+ makes it less probable that a transition to any other 163

inferred context, including c− (the context associated with P−), might happen (Fig. 4b, contextual 164

inference), thereby decreasing the expression of the state of c−, and thus slowing apparent adap- 165

tation to P−. Again, state inference alone did not predict a difference between conditions (Fig. 4b, 166

state inference). 167

The persistence of the environment has also been shown to affect single-trial learning (Fig. 4c, 168

paradigm and data)9,12. More consistent environments (Fig. 4c, pink) lead to an increase in single- 169

trial learning compared to more variable environments (Fig. 4c, blue). Again, in contrast to classi- 170
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Fig. 4 | Contextual inference underlies apparent changes in the learning rate. The COIN model applied to three
phenomena: savings (a), anterograde interference (b) and the effect of environmental consistency (c). Column 1:
experimental paradigms (lines as in previous figures, colors highlight key comparisons). Column 2: experimental data
replotted from Ref. 13 (a), Ref. 14 (b) and Ref. 9 (c). Column 3: output of COIN model averaged over 40 parameter
sets obtained from fits to individual participants in the experiments shown in previous figures. Error bars show s.e.m.
based on the number of participants in the original experiments. Columns 4-5: internal inferences in the COIN model
with regard to the context (c∗) that is most relevant to the perturbation to which adaptation is measured. Specifically, c∗
is the context with the highest responsibility on the given trial (that associated with P+ in a and P− in b) or, as in Fig. 3d
(also single-trial learning), the context with the highest predicted probability on the second channel trial of a triplet (that
associated with P+, c). Column 4: Kalman gain (top) and mean predicted state (bottom) for the relevant context c∗.
Column 5: Predicted probability of the relevant context c∗. Insets in b (columns 2-3) show data aligned at the point at
which adaptation crosses zero during the P− phase for ease of comparison. Black lines in b represent initial adaptation
to P+ and have been sign inverted in columns 2-3 and the bottom panel of column 4. Data in c shows averages within
blocks, with the bottom panel in column 4 showing separate averages for exposure and subsequent channel trials.
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cal interpretations that are based on the learning rate of the state being modified by environmental 171

consistency9, the COIN model reproduces these results (Fig. 4c, model) without changes in the 172

Kalman gain (Fig. 4c, state inference, top). Specifically, the extent of memory updating is indepen- 173

dent of consistency (Fig. 4c, state inference, bottom), and instead it is the expression of memories 174

that differs across conditions: more (less) consistent perturbations lead to higher (lower) probabil- 175

ities with which the model predicts contexts to persist from one trial to the next (Fig. 4c, contextual 176

inference). The COINmodel was also able to explain changes in single-trial learning across a num- 177

ber of different experimental paradigms that varied environmental consistency in Gonzalez Castro 178

et al. 12 (Fig. S14). 179

Importantly, these results together with those presented in Fig. 3 and Fig. S11 suggest that what 180

is typically considered as “single-trial learning” is in fact a mixture of two processes (see Suppl. 181

Text): the updating of memories on the exposure trial, which can be considered genuine learning 182

as it involves a change in inferred state(s), and the expression of those states in the subsequent 183

trial (based on contextual inference). 184

Cognitive processes underlying contextual inference 185

In addition to providing a comprehensive account of the phenomenology of motor learning, the 186

COIN model also suggests how specific cognitive mechanisms contribute to the underlying com- 187

putations. For example, associating workingmemory with themaintenance and updating of context 188

probabilities explains why and how a working memory task can effectively lead to evoked recov- 189

ery in a modified version of the spontaneous recovery paradigm19 (see Suppl. Text and Fig. S15). 190

Furthermore, identifying explicit and implicit forms of learning with state and specific parameter 191

inferences in the model, respectively, explains the complex time courses of explicit and implicit 192

components of visuomotor learning20–22 (see Suppl. Text and Fig. S16). 193

Discussion 194

In summary, the COIN model puts the problem of learning a repertoire of memories, rather than 195

individual memories, center stage. Once this more general problem is considered, contextual 196

inference becomes a key computation that unifies seemingly disparate data sets, such as sponta- 197

neous and evoked recovery, the interplay of sensory cues and state feedback in memory updating, 198

savings, anterograde interference and apparent changes in learning rate with environmental con- 199

sistency. In comparison, previous models either lack a notion of multiple contexts altogether3,9, or 200

contextual inference and its effects on memory creation, updating or expression remain partially 201

heuristic, lacking the principles of the COIN model2,6,8,23. As a consequence, these models can 202

only account for a subset of these results (Table S3), which they were often hand-tailored to ad- 203

dress. Specifically, models postulating multiple, simultaneous learning processes with different, 204

but fixed rates can explain spontaneous, but not evoked recovery, the effects of environmental 205

consistency, or our memory updating experiment3,8. Conversely, previous models that include 206

the possibility of multiple contexts (or modules) fail to account for both spontaneous and evoked 207

recovery1,2,6. Models assuming a single process (in a single context) with dynamically changing 208

rates do not account for either spontaneous / evoked recovery or memory updating9. 209
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While creating new memories in the COIN model is essential for learning a motor repertoire, reor- 210

ganization of memories may also be necessary24. In contrast to the online processes we studied 211

here (memory creation, updating, and expression), the COIN model could be extended, for exam- 212

ple, by the offline pruning or merging of existing memories, during sleep or periods of inactivity. 213

Previous work exploring humans’ complex and hierarchical internal models have typically studied 214

higher-level (e.g. conceptual25,26 or causal27) forms of cognition and characterized learning either 215

on a developmental time scale25, or just through its end result26,27. Crucially, our results demon- 216

strate that the motor system provides an ideal opportunity to track the dynamical emergence of 217

such internal models over the course of learning, even within a single session, by performing de- 218

tailed subject-by-subject and trial-by-trial analyses under controlled perturbations. We suggest that 219

these results will be relevant to all forms of learning in which experience can be usefully broken 220

down into discrete contexts – in the motor system and beyond. 221
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Materials and Methods 349

Participants 350

A total of 40 neurologically-healthy participants (18 males and 22 females; age 27.7± 5.6 yr, mean 351

± s.d.) were recruited to participate in two experiments, which had been approved by the Cam- 352

bridge Psychology Research Ethics Committee and the Columbia University IRB (AAAR9148). All 353

participants provided written informed consent and were right-handed according to the Edinburgh 354

handedness inventory28. To provide sufficient power, sample sizes were chosen on the basis of the 355

typical between-participant variability observed in similar motor adaptation studies (e.g. 3,9,11,21). 356

Note that our analyses were performed both at a single participant level as well as a group level. 357

Experimental apparatus 358

All experiments were performed using a vBOT planar robotic manipulandum with virtual-reality 359

system and air table7. The vBOT is a modular, general-purpose, two-dimensional planar manip- 360

ulandum optimized for dynamic learning paradigms. The vBOT’s handle position was measured 361

using optical encoders sampled at 1 kHz and torque motors allowed forces to be generated at the 362

handle and updated at the same rate. Participants grasped the handle of the manipulandum with 363

their right hand while their forearm was supported on an air sled, which constrained arm move- 364

ments to the horizontal plane and reduced friction. A monitor mounted horizontally face-down 365

above the vBOT projected images via a horizontal mirror so that visual feedback was overlaid in 366

the plane of movement. In the spontaneous/evoked recovery experiment, the mirror prevented 367

direct vision of the hand and forearm. In the memory updating experiment, a semi-silvered mirror 368

was used and a lamp illuminated the hand from below the mirror with the illumination adjusted so 369

that both the vBOT, hand, arm and virtual images were clearly visible. This was done to ensure 370

that participants had an accurate estimate of the state of their hand and arm (as in Ref 11). 371

On each trial, the vBOT could either generate no forces (P 0, null field), a velocity-dependent curl 372

force field (P+ or P− perturbation depending on the direction of the field) or a force channel (P c, 373

channel trials). For the curl force field, the force generated on the hand was given by 374

(
Fx
Fy

)
= g

(
0 −1
1 0

)(
ẋ
ẏ

)
, (1)
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where Fx, Fy, ẋ and ẏ are the forces and velocities at the handle in the x (transverse) and y 375

(sagittal) directions respectively. The gain g was set to ±15 Ns·m−1, where the sign of g specified 376

the direction of the curl field (counterclockwise or clockwise which were assigned to P+ and P−, 377

counterbalanced across participants). On channel trials, the hand was constrained to move along a 378

straight line from the home position to the target. This was achieved by simulating forces associated 379

with a stiff spring and damper, with the forces acting perpendicular to the long axis of the channel. 380

A spring constant of 3,000 N·m−1 and a damping coefficient of 140 Ns·m−1 were used. Channel 381

trials clamped the kinematic error close to zero and were used to measure the participant’s level 382

of adaptation to the P+ and P− perturbations based on the forces they generated into the channel 383

walls29,30. 384

Experiment 1: Spontaneous and evoked recovery 385

Sixteen participants either performed a spontaneous or an evoked recovery condition. In both 386

conditions participants made repeated movements of a cursor, always aligned with the center of 387

the handle, from a home position to a target. On each trial participants first aligned the cursor (blue 388

0.4 cm radius disc) with a home position (0.5 cm radius circle) situated in the midline approximately 389

30 cm in front of the participant’s chest. The trial started when the cursor was within 0.5 cm of the 390

home position and had remained below a speed of 0.5 cm·s−1 for 0.1 s. After a 0.3 s delay, a target 391

(0.5 cm radius circle) appeared 12 cm in front of the home position (distally in the y direction) and 392

a tone indicated that the participants should initiate a reaching movement to the target. The trial 393

ended when the cursor had remained within 0.5 cm of the target and below a speed of 0.5 cm·s−1 394

for 0.1 s. If the peak speed of the movement was less than 50 cm·s−1 or more than 70 cm·s−1, 395

a low-pitch tone sounded and a ‘too slow’ or ‘too fast’ message was displayed, respectively. At 396

the end of each trial the participant relaxed and the vBOT actively returned the hand to the home 397

position. 398

Spontaneous recovery condition 399

In the spontaneous recovery condition, participants (n = 8) performed a version of the standard 400

spontaneous recovery paradigm3. The paradigm consisted of a pre-exposure phase (5 blocks/50 401

trials) with a null field (P 0). This was followed by an exposure phase (12 blocks/120 trials, with 402

an additional 5 exposure trials after the 45 s rest break given after block 6) with P+ (the direction 403

of the force field assigned to P+ was counterbalanced across participants). In the pre-exposure 404

and exposure phases, to assess adaptation each block of 10 trials had one channel trial (P c) in 405

a random location (not the first). After the exposure phase, participants were rapidly de-adapted 406

in a counter-exposure phase by applying 15 trials with the opposite perturbation (P−). This was 407

followed by a long series of 150 channel trials (P c). 408

Evoked recovery condition 409

Participants (n = 8) in the evoked recovery condition performed a modified version of the spon- 410

taneous recovery paradigm which differed in that the 3rd and 4th trials of the channel phase were 411

replaced with P+ trials (Fig. 2d). 412

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.23.394320doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394320
http://creativecommons.org/licenses/by-nc-nd/4.0/


Experiment 2: Memory updating 413

This experiment is based on a paradigm in which sensory cues allow multiple memories to be 414

simultaneously learned11. Participants (n = 24) grasped the handle of the vBOT and a virtual 415

object (solid green rectangle, 16 × 3 cm) was displayed centred on the hand and translated with 416

hand movements Fig. 3a). The object had two potential control points (blue 0.4 cm radius discs) 417

± 7 cm lateral to the centre of the object. On each trial, participants first aligned the centre of 418

the object (indicted by a yellow cross) with the home position (0.5 cm radius circle) situated in the 419

midline approximately 30 cm in front of the participant’s chest. 420

The trial started after the center of the object was within 0.5 cm of the home position and had 421

remained below a speed of 0.5 cm·s−1 for 0.1 s. After a 0.3 s delay, a target (a circle with a radius 422

of 0.5 cm) appeared 12 cm away (distally along the y axis) in front of either the left or right control 423

point. A tone indicated that the participants should initiate a reaching movement to the target. 424

Participants were instructed to move the corresponding control point to the target. That is, if the 425

target was aligned with the left control point, they should move the left control point to the target, 426

and conversely for the target aligned with the right control point. Crucially, because each target was 427

aligned with its respective control point, the hand had to move to the same location to attain either 428

target. The different targets and control points provide different sensory cues for the trial. The trial 429

ended when the control point had remained within 0.5 cm of the target for 0.1 s below a speed of 430

0.5 cm·s−1. If the peak speed of the movement was less than 50 cm·s−1 or more than 70 cm·s−1, 431

a low-pitch tone sounded and a ‘too slow’ or ‘too fast’ message was displayed, respectively. At the 432

end of each trial, the vBOT actively returned the hand to the home position 433

Each trial could be made in a null field (P 0), in one of the two perturbations (P+ or P−) or in a 434

channel (P c) and with either the left or right sensory cue (target-control point). We indicate the 435

sensory cue used on a trial by a subscript (e.g. P+
1 and P+

2 for the P+ perturbation with the left and 436

right sensory cue, respectively). The experiment consisted of three phases: pre-training, training 437

and post-training. 438

The training phase (see details below) consisted or exposure to two cue-perturbation pairs (P+
1 439

and P−
2 ) so that participants could be expected to associate each cue with its corresponding per- 440

turbation. 441

In the pre-training and post-training phases (Fig. 3c) participants performed blocks of trials which 442

consisted of 8, 10 or 12 P 0 trials with an equal number of each sensory cue in a pseudorandom 443

order (for post-exposure phase the number of P 0 trials was reduced to 2, 4 or 6). These trials 444

were used to bring adaptation close to baseline so that we could assess single-trial learning in the 445

triplet of trials that followed the P 0 trials. The first and third trial in the triple were always channel 446

trials with sensory cue 1 (P c
1 ) and the middle trial of the triplet (‘exposure’ trial) was one of the four 447

possible combinations of perturbation (force-field direction) and sensory cue (control point): P+
1 , 448

P−
2 , P

+
2 and P−

1 . Therefore the first two exposure trial types (P
+
1 and P−

2 ) were the same as those 449

experienced in the training phase and we refer to them as ‘consistent’ and the latter two (P+
2 and 450

P−
1 ) are ‘inconsistent’ with the training as they match a cue with a perturbation not experienced 451

during training. Within each sequence of 4 blocks, each of these combinations was experienced 452

once and the four blocks were repeated 4 times in pre-exposure and 8 times in post-exposure. 453

Importantly, there was no consistent relationship between sensory cues and perturbations in the 454

pre-training phase, as each triplet type was presented an equal number of times. 455
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In the training phase (Fig. 3b), each sensory cue was consistently and repeatedly associated with 456

one perturbation (P+
1 and P−

2 ) and single-trial learning was occasionally assessed using consistent 457

exposure trials only. To do this participants performed 24 blocks of trials consisting of: 458

• 2 channel trials (one P c
1 and P c

2 order counterbalanced across consecutive blocks) 459

• 32 force-field trials (equal number of P+
1 and P−

2 within each 8 trials in a pseudorandom 460

order) 461

• 2 channel trials (one P c
1 and P c

2 ) order reversed from first two channel trials to assess adap- 462

tation after learning 463

• 14, 16 or 18 washout trials with (equal number of P 0
1 and P 0

2 in a pseudorandom order) 464

• 1 triplet (with exposure either P+
1 or P−

2 with order counterbalanced across consecutive 465

blocks) 466

• 6, 8 or 10 washout-field trials (sampled without replacement) 467

• 1 triplet (exposure of P+
1 or P−

2 that was not experienced on the previous triplet). 468

When the number of null-field trials could vary we sampled without replacement from the options 469

and replenished whenever they emptied. The order in which each triplet type was presented in a 470

block was counterbalanced across blocks. A 60 s rest break was given after every 3 blocks during 471

the training phase. After each rest break, 8 null-field trials were performed in which the sensory 472

cues were presented in a pseudorandom order. 473

The control point assigned to sensory cue 1 (used on all triplet channel trials) and sensory cue 2 474

was counterbalanced across participants as was the direction of force field assigned to P+ and 475

P−. 476

Prior to the experiment participants performed a familiarization phase of 80 trials consisting of 477

null-field trials and channel trials for each contextual cue in a pseudorandom order. 478

Data analysis 479

On channel trials, we calculated adaptation as the proportion of the force field that was compen- 480

sated for. This was taken as the slope of the regression (with zero offset) of the time series of 481

actual (signed) force generated into the channel walls against the time series of forces (based 482

on the hand velocity in the channel) that would fully compensate for the perturbation had it been 483

present3. For this analysis, we used the portion of the movement where the hand velocity was 484

greater than 1 cm·s−1. Single-trial learning was calculated as the change in adaptation between 485

the first and second channel trial of a triplet. 486

To identify changes in single-trial learning between triplets, repeated-measures ANOVAs were per- 487

formed. All statistical tests were two-sided with significance set to P < 0.05. Data analysis was 488

performed using MATLAB R2020a. 489
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COIN Model 490

Generative model 491

Fig. S1 shows the graphical model for the generative model. At each time step t = 1, . . . , T there 492

is a discrete latent variable (the context) ct ∈ {1, . . . ,∞} that evolves according to Markovian 493

dynamics: 494

ct | ct−1, {πj}∞j=1 ∼ πct−1 (2) 495

where {πj}∞j=1 is the context transition probability matrix and πj is its jth row containing the prob- 496

abilities of transitioning from context j to all contexts (including itself). In principle, there are an 497

infinite number of rows and columns in this matrix. However, in practice, generation and inference 498

can both be accomplished using finite-sized matrices by placing an appropriate prior on the matrix 499

(see below). 500

Each context j is associated with a continuous (scalar) latent variable x
(j)
t (the state, e.g. the 501

strength of a force field or the magnitude of a visuomotor rotation) that evolves according to its 502

own linear-Gaussian dynamics independently of all other states: 503

x
(j)
t = a(j) x

(j)
t−1 + d(j) + w

(j)
t , w

(j)
t ∼ N (0, σ2

q) (3) 504

where a(j) is the state retention factor, d(j) is the state drift and σ2
q is the variance of the process 505

noise (shared across contexts). Each state is assumed to have existed for long enough for its prior 506

to be its stationary distribution: x(j)1 ∼ N (d(j)/(1− a(j)), σ2
q/(1− a(j)2)). 507

At each time step, a continuous (scalar) observation yt (the state feedback) is emitted from the 508

state associated with the current context: 509

yt = x
(ct)
t + vt, vt ∼ N (0, σ2

r ) (4) 510

where σ2
r is the variance of the measurement noise (also shared across contexts). 511

In addition to the state feedback, a discrete observation (the sensory cue) qt ∈ {1, . . . ,∞} is also 512

emitted. The distribution of sensory cues depends on the current context: 513

qt | ct,
{
ϕj

}∞
j=1
∼ ϕct (5) 514

where
{
ϕj

}∞
j=1

is the cue emission probability matrix (which, in principle, is also doubly infinite 515

in size but can be treated as finite in practice) and ϕj is its jth row containing the probabilities of 516

emitting all cues from context j. 517

In order to make this infinite-dimensional switching state-space model well-defined, we place hier-
archical Dirichlet process31 priors on the context transition and cue emission probability matrices.
The context transition probability matrix is generated in two steps. First, a set of global transition
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probabilities β = {βj}∞j=1 are generated via a recursive, stochastic ‘stick-breaking’ construction:

βj = β′
j

j−1∏
i=1

(1− β′
i) β′

j | γ ∼ Beta(1, γ). (6)

We denote the distribution of the global transition probabilities byβ ∼ GEM(γ). Note that 0 ≤ βj ≤ 1 518

and
∑∞

j=1 βj = 1, as required for a set of probabilities. The hyperparameter γ determines the effec- 519

tive number of contexts: large γ implies a large number of small-probability contexts, while small 520

γ implies a smaller number of relatively large-probability contexts. 521

Each row of the context transition matrix is then generated using a ‘sticky’ variant32 of the Dirichlet 522

process: 523

πj | α,β, κ ∼ DP

(
α+ κ,

αβ + κ δj
α+ κ

)
. (7) 524

where δj is a one-hot vector with the jth element set to 1 and all other elements set to 0. The 525

concentration (inverse variance) parameter α + κ controls the variability of transition probabilities 526

around the base (mean) distribution (αβ+ κ δj)/(α+ κ), with large α+ κ reducing this variability. 527

The self-transition bias (stickiness) hyperparameter κ increases the probability of a self-transition 528

(ct = ct−1 = j) and expresses the fact that a context often persists for several time steps before 529

switching, such as when an object is manipulated for an extended period of time or a surface is 530

walked on. Note that the rows of the context transition matrix are dependent as their expected 531

values (the base distributions of the corresponding Dirichlet processes) contain a shared term, the 532

global transition distribution. This dependency captures the intuitive notion that contexts that are 533

more common in general will be transitioned to more frequently from all contexts. In the limit of 534

α, κ → ∞, the rows become identical except for the location of the self-transition bias term (i.e. 535

πj = β̄ + κ̄ δj , where β̄ = α
α+κ β and κ̄ = κ

α+κ ), and the generative model implied by the Dirichlet 536

process Kalman filter6 is recovered as a special case. 537

The cue emission probability matrix
{
ϕj

}∞
j=1

is generated using an analogous (non-sticky) hierar- 538

chical construction: 539

βe | γe ∼ GEM(γe) ϕj | αe,βe ∼ DP(αe,βe). (8) 540

where γe determines the distribution of the global cue emission probabilities βe, and αe determines 541

the across-context variability of local cue emission probabilities around the global cue emission 542

probabilities. 543

In order to allow full Bayesian inference over the model parameters, we also placed a prior on 544

the parameters governing the state dynamics (f (j) =
[
a(j) d(j)

]T) that was a bivariate normal 545

distribution (truncated between 0 and 1 for a(j)): 546

f (j) | µ,Σ ∼ T N (µ,Σ) , (9) 547

where µ = [µa µd]
⊺ and Σ = diag(σ2

a, σ
2
d) is a diagonal covariance matrix. Under the assumption 548

that positive and negative drifts are equally probable, we set µd to zero. 549
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The Chinese restaurant franchise 550

Here we present an alternative representation of the hierarchical Dirichlet process that provides a 551

mechanism for generating sequences of contexts and sensory cues in the COINmodel as well as a 552

framework for inference. In addition, this representation provides intuitions for how the generative 553

process works as trials are experienced. 554

In the Chinese restaurant franchise31, there are an infinite number of restaurants each with an 555

infinite number of tables. Each table serves only one dish from an infinite global menu shared 556

by all the restaurants (hence the franchise). The same dish can be served on multiple tables in 557

the same restaurant as well as in multiple restaurants. Each customer enters a restaurant and is 558

seated at a table where a dish is served. 559

In the COIN model, customers correspond to trials and will arrive in the same temporal order as 560

the trials. For both the context transitions and the cue emissions, the restaurant that the cus- 561

tomer enters corresponds to the current context (i.e. if the current context is j, the customer enters 562

restaurant j). For the context transitions, the dish served at the table at which the customer sits 563

corresponds to the next context (i.e. if dish c is served, a transition to context c occurs). For cue 564

emissions, the dish served at the table corresponds to the sensory cue emitted on that trial (i.e. if 565

dish q is served, cue q is emitted). Note that separate Chinese restaurant franchises are used for 566

context transitions and cue emissions. 567

Although there an infinite number of restaurants, tables and dishes in the franchise, to generate a 568

finite amount of data, we only need to consider the finitely many occupied tables and the dishes 569

served at those tables (i.e. the contexts and sensory cues already experienced), as well as one 570

empty table in each occupied restaurant and one novel dish (allowing for a novel context or sensory 571

cue). 572

Table assignment and dish selection 573

Upon entering a restaurant, each customer sits at an occupied table with probability proportional 574

to the number of people already sitting at that table or a new table with probability proportional to 575

α. This has the effect that tables with many customers attract even more customers, and since the 576

table determines the next context (or sensory cue), this makes commonly experienced transitions 577

(or cues) increasingly likely in the future. 578

The first customer to sit at a new table chooses the dish for that table. The customer chooses a 579

previously-served dish with probability proportional to the number of other tables in the franchise 580

serving that dish or a new dish with probability proportional to γ. 581

The hyperparameter α controls how the number of tables grows as a function of the number of 582

customers. With small α, there will be few tables, and so the distribution of dishes served at those 583

tables will depend strongly on the restaurant (i.e. context transitions and cue emissions will depend 584

strongly on the current context). With large α, there will be many tables, leading to a more similar 585

distribution of dishes across the restaurants (i.e. context transitions and cue emissions will be less 586

dependent on the current context). 587

The hyperparameter γ controls how the number of dishes grows as a function of the number of 588

tables. With small γ, most tables will have the same dish, and so the number of dishes (i.e. contexts 589
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and cues) will grow slowly over trials. With large γ, most tables will have different dishes, and so 590

the number of dishes (i.e. contexts and cues) will grow rapidly over trials. 591

Loyal customers 592

For the context transitions, the process we have described so far has no self-transition bias. To 593

include such a bias (as in the COIN model), the Chinese restaurant franchise can be extended to 594

include loyal customers32. 595

Each restaurant now has a specialty dish whose index is the same as that of the restaurant (e.g. 596

dish j is the specialty dish of restaurant j). The specialty dish is available in all restaurants, but is 597

more popular in the dish’s namesake restaurant. As we shall see, this leads to family loyalty to a 598

restaurant. Consider contexts ct−1, ct and ct+1, which we shall refer to as the grandparent, parent 599

and child, respectively. The parent enters restaurant j, determined by the grandparent ct−1 = j, 600

and sits at table τ that serves dish kjτ . The dish the parent eats determines the restaurant that the 601

child eats at, that is kjτ = ct. The increased popularity of the specialty dish means that children 602

are more likely to eat at the same restaurant as their parent. Hence, multiple generations often eat 603

at the same restaurant. 604

To simplify inference in the Chinese restaurant franchise with loyal customers, a distinction is made
between a considered dish and a served dish. The first customer to sit at a table chooses a dish
for the table without acknowledging the increased popularity of the specialty dish of the restau-
rant. However, with some probability, this considered dish is overridden (perhaps by a waiter’s
suggestion) and the specialty dish is served instead. This process is described as follows:

k̄jτ | β ∼ β

wjτ | ρ ∼ Bernoulli (ρ)

kjτ =

{
k̄jτ if wjτ = 0

j if wjτ = 1,

(10)

where k̄jτ is the considered dish, wjτ is an override variable, ρ = κ/(α + κ) and kjτ is the served 605

dish. When κ = 0, the served dish (which is always the same as the considered dish, as wjτ = 0 606

with probability one) is distributed as kjτ | β ∼ β, where β represents the overall popularity or 607

ratings of the dishes. When κ ̸= 0, the increased popularity of the specialty dish leads to the 608

following modified dish ratings: 609

kjτ | α, κ,β ∼
αβ + κδj
α+ κ

. (11) 610

Inference with particle learning 611

The goal of inference is to estimate a joint posterior distribution over the context, the state in each 612

context and the parameters governing the state transitions, the context transitions and the sensory 613

cue emissions at each point in time based on the state feedback and sensory cues observed so 614

far. To perform posterior inference in an online (i.e. recursive) manner, we use a sequential Monte 615

Carlo (simulation-based) method known as particle learning33,34. 616
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Particle learning extends standard particle filteringmethods by incorporating the estimation of static 617

parameters via a fully-adapted filter that utilizes conditional sufficient statistics for the posterior of 618

the parameters. To sequentially compute a particle approximation to the joint posterior distribution 619

of states, contexts and conditional sufficient statistics for the parameters, an essential state vector 620

is constructed and is used together with a predictive distribution and propagation rule to build a 621

resampling-sampling framework. 622

Central to particle learning is the essential state vector, zt, which contains samples and/or sufficient
statistics of the states, context and parameters. Online state filtering and parameter learning is
equivalent to sequential filtering of the essential state vector:

p(zt|D1:t) =

∫
p(zt|zt−1,Dt)p(zt−1|D1:t)dzt−1, (12)

where D1:t = {D1, . . . ,Dt} is the sequence of observations up to time t. 623

Particle methods use a system of P particles to form a discrete approximation to p(zt|D1:t) via

p̂(zt|D1:t) =
1

P

P∑
i=1

δ(zt − z
(i)
t ), (13)

where δ(·) is a Dirac delta function. A recursive formula for obtaining p̂(zt|D1:t) from p̂(zt−1|D1:t−1)
is suggested by the following decomposition of Eq. 12:

p(zt|D1:t) ∝
∫

p(zt|zt−1,Dt)︸ ︷︷ ︸
propagate

p(Dt|zt−1)︸ ︷︷ ︸
resample

p(zt−1|D1:t−1)dzt−1. (14)

First, in a resample step, particles are sampled with replacement from a multinomial distribution 624

with weights proportional to the predictive distribution p(Dt|zt−1). This produces a particle approx- 625

imation to the smoothed distribution p(zt−1|D1:t) by replicating/discarding particles based on how 626

well they predicted the observations at time t Then, in a propagate step, the resampled particles 627

are propagated via the evolution equation p(zt|zt−1,Dt). A final sample step can also be per- 628

formed in which the parameters, θ, are sampled from their posterior distribution conditioned on 629

the propagated essential state vectors. Although this last step is optional, without it the diversity 630

of parameters would reduce with each resampling step until all particles shared the same param- 631

eters, a problem known as degeneracy. A single time step of particle learning is summarized in 632

Algorithm 1. 633

In the COIN model, the essential state vector zt = (ct, s
x
t , s

θ
t , θ) contains the context, the sufficient 634

statistics (mean and variance) for the states (sxt ), the sufficient statistics for the parameters (sθt ) 635

and the parameters (θ). Following the direct assignment algorithm of Teh et al. 31 , we do not 636

instantiate the context transition and cue emission probability matrices. Instead, we instantiate 637

(sample) the global transition and emission distributions and integrate out the context transition 638

and cue emission probability matrices (i.e. compute their expected values) conditioned on these 639

instantiated global distributions. Hence, in the COIN model, θ = (β,βe, {f j}Jj=1). The propagate 640

step in Algorithm 1 can be decomposed into three separate steps: 641

p(zt|zt−1, yt, qt) = p(sθt |sxt , ct, zt−1, yt, qt)︸ ︷︷ ︸
propagate sθt−1

p(sxt |ct, zt−1, yt)︸ ︷︷ ︸
propagate sxt−1

p(ct|zt−1, yt, qt)︸ ︷︷ ︸
propagate ct−1

.
(15) 642
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1: Resample Draw an index ζ(i) ∼ Mult(w(1)
t , . . . , w

(P )
t ), where

w
(i)
t ∝ p(Dt|z(i)t−1)

2: Propagate
z
(i)
t ∼ p(zt|z(ζ

(i))
t−1 ,Dt)

3: Sample
θ(i) ∼ p(θ|z(i)t )

Algorithm 1: The general particle learning algorithm.

First, the context is propagated; then the sufficient statistics for the states are propagated condi- 643

tioned on the context and the state feedback; and then the sufficient statistics for the parameters 644

are propagated conditioned on the context, the sufficient statistics for the states, the state feedback 645

and the sensory cue. 646

We now describe the resample, propagate and sample steps for the COIN model in detail. 647

Resample 648

Given the particle approximation p̂(zt−1|y1:t−1, q1:t−1), the updated smoothed approximation 649

p̂(zt−1|y1:t, q1:t) is obtained by resampling particles with weights wt proportional to the predictive 650

distribution: 651

wt ∝ p(yt, qt|zt−1)

=

C+1∑
ct=1

p(yt, qt, ct|zt−1)

=
C+1∑
ct=1

p(yt|ct, zt−1)p(qt|ct, zt−1)p(ct|zt−1),

(16) 652

where C is the number of contexts instantiated up to t − 1. Note that the sum over contexts is to 653

C + 1 to include the possibility that the latest observations were generated by a new context, the 654

(C + 1)th context. The context transition term of the predictive distribution is given by 655

p(ct|zt−1) =
αβct + κδ(ct−1, ct) + nct−1ct

α+ κ+ nct−1.
, (17) 656

where nct−1ct denotes the number of transitions from context ct−1 to context ct up to time t−1. Dots 657

represents marginal counts. For example, nct−1. =
∑C

ct
nct−1ct is the number of transitions out of 658

context ct−1 up to time t−1. Note that the probability of transitioning to context ct (from any context 659

ct−1) depends on the global transition probability βct . Thus, when the global transition distribution 660
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is updated (see below), the inferred transition probabilities from all contexts are also updated. An 661

important consequence of this is that transition probabilities learned in one context will generalize 662

to all contexts. 663

The cue emission term has a similar formulation to the context transition term: 664

p(qt|ct, zt−1) =
αeβeqt + nectqt
αe + nect.

, (18) 665

where nectqt denotes the number of emissions of cue qt in context ct up to time t−1, nect. =
∑Q

qt
nectqt 666

is the number of cues emitted in context ct up to time t − 1 and Q is the number of cues emitted 667

up to time t− 1. 668

The state feedback term depends on the estimate of the state in each context and is given by 669

p(yt|ct, zt−1) = N (ŷ
(ct)
t , p

(ct)
t ), (19) 670

where ŷctt and pctt are the mean and variance of the predicted state feedback for context ct given 671

by the time update equations of the Kalman filter (Algorithm 2). 672

for j ∈ {1, . . . , C + 1} do
if j ≤ C then
x̂
(j)
t|t−1 = a(j)x̂

(j)
t−1|t−1 + d(j)

v
(j)
t|t−1 = a(j)v

(j)
t−1|t−1a

(j) + σ2
q

else if j = C + 1 then
x̂
(j)
t|t−1 = d(j)/(1− a(j))

v
(j)
t|t−1 = σ2

q/(1− a(j)2)

end if
ŷ
(j)
t = x̂

(j)
t|t−1

p
(j)
t = v

(j)
t|t−1 + σ2

r

end for
Algorithm 2: State and state feedback prediction for instantiated contexts and a novel context.
For a novel context, the mean and variance of the predicted state are the moments of the
stationary distribution conditioned on state retention and drift parameters sampled from the
prior.

Propagate the context and the state 673

The particles of the smoothed approximation p̂(zt−1|y1:t, q1:t) are propagated via the three steps 674

outlined in Eq. 15. 675
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Propagate the context 676

The context is propagated by sampling ct ∈ {1, . . . , C + 1} from the filtering distribution: 677

p(ct|yt, qt, zt−1) ∝ p(yt, ct, qt|zt−1), (20) 678

where p(yt, ct, qt|zt−1) is given in Eq. 16. These filtered probabilities are the so-called ‘responsibil- 679

ities’. 680

If ct = C + 1 (i.e. the context is new), C is incremented and β is transformed by sampling b ∼ 681

Beta(1, γ) and assigning βC ← bβc̃ and βc̃ ← (1 − b)βc̃, where βc̃ =
∑∞

j=C+1 βj . Similarly, if 682

qt = Q + 1 (i.e. the sensory cue is new), Q is incremented and βe is transformed by sampling 683

be ∼ Beta(1, γe) and assigning βeQ ← beβeq̃ and βeq̃ ← (1− be)βeq̃ , where βeq̃ =
∑∞

k=Q+1 β
e
k . 684

Propagate the sufficient statistics for the states 685

Conditioned on the sampled context variable, the sufficient statistics (mean and variance) for the 686

state of each instantiated context are propagated via the measurement update equations of the 687

Kalman filter (Algorithm 3). 688

for j ∈ {1, . . . , C} do
if j = ct then

e
(j)
t = yt − ŷ

(j)
t

k
(j)
t = v

(j)
t|t−1p

(j)
t

x̂
(j)
t|t = x̂

(j)
t|t−1 + k

(j)
t e

(j)
t

v
(j)
t|t = (1− k

(j)
t )v

(j)
t|t−1

else
x̂
(j)
t|t = x̂

(j)
t|t−1

v
(j)
t|t = v

(j)
t|t−1

end if
end for

Algorithm 3: State filtering. The difference between the actual and predicted state feedback
(i.e. the prediction error) is used to update the predicted state for the active context (i.e. the
context responsible for generating the state feedback). The prediction error is scaled by the
Kalman gain, which is close to 0 when σ2

r ≫ v
(j)
t|t−1 and close to 1 when σ2

r ≪ v
(j)
t|t−1.
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Propagate the sufficient statistics for the parameters 689

Propagate the sufficient statistics for the state retention and drift parameters 690

For each j ∈ {1, . . . , C}, a pair of states (x
(j)
t−1, x

(j)
t ) are sampled from 691

p(x
(j)
t−1, x

(j)
t |ct, zt−1, yt) = p(x

(j)
t−1|ct, zt−1, yt)p(x

(j)
t |x

(j)
t−1, ct, zt−1, yt)

= N (x̂
(j)
t−1|t, v

(j)
t−1|t)N (x̃

(j)
t|t , ṽ

(j)
t|t ),

(21) 692

where x̂
(j)
t−1|t = x̂

(j)
t−1|t−1+ g(x̂

(j)
t|t − x̂

(j)
t|t−1), g = a(j)v

(j)
t−1|t−1/v

(j)
t|t−1, v

(j)
t−1|t = v

(j)
t−1|t−1+ g2(v

(j)
t|t − v

(j)
t|t−1), 693

x̃
(j)
t|t = ṽ

(j)
t|t [(a

(j)x
(j)
t−1 + d(j))/σ2

q + 1(j = ct)yt/σ
2
r ] and ṽ

(j)
t|t = 1/(1/σ2

q + 1(ct = j)/σ2
r ). Here the 694

indicator function 1(ct = j) is equal to 1 if the sampled value of ct = j and 0 otherwise. The 695

sufficient statistics for the state retention and drift parameters are then propagated as follows: 696

s
(j)
1 ← s

(j)
1 + x

(j)
t x̄

(j)
t−1

s
(j)
2 ← s

(j)
2 + x̄

(j)
t−1x̄

(j)⊺
t−1 ,

(22) 697

where x̄
(j)
t−1 = [x

(j)
t−1 1]

⊺. 698

Propagate the sufficient statistics for the context transition and cue emission parameters 699

The context transition counts and the cue emission counts are propagated by incrementing nct−1ct 700

and nectqt , respectively. 701

Sample the parameters 702

Sample the state retention and drift parameters 703

For each j ∈ {1, . . . , C}, the hyperparameters of the posterior distribution of the state retention
and drift parameters are computed:

µ(j) = Σ(j)(Σ−1µ+ s
(j)
1 /σ2

q) (23)

Σ(j) = (Σ−1 + s
(j)
2 /σ2

q)
−1, (24)

and a new set of state retention and drift parameters are sampled from

f (j) | µ(j),Σ(j) ∼ T N (µ(j),Σ(j)). (25)
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Sample the global emission distribution parameters 704

To sample βe, a Chinese restaurant process is first simulated to sample each me
jk (the number 705

of tables in restaurant j serving dish k). For each j ∈ {1, . . . , C} and k ∈ {1, . . . , Q}, me
jk and n 706

are initialized to 0. Then, for i = 1, . . . , nejk (i.e. for each customer in restaurant j eating dish k), a 707

sample is drawn from 708

x ∼ Bernoulli
(

αeβek
n+ αeβek

)
, (26) 709

n is incremented, and if x = 1, me
jk is incremented. 710

Conditioned on me
.k (the total number of tables serving dish k), the global emission distribution is 711

sampled from 712

(βe1 , . . . , β
e
Q, β

e
q̃ ) ∼ Dirichlet(me

.1, . . . ,m
e
.Q, γ

e). (27) 713

Sample the global transition distribution parameters 714

To sample β, a Chinese restaurant process is first simulated to sample each mij (the number of 715

tables in restaurant i serving dish j). For each (i, j) ∈ {1, . . . , C}2, mij and n are initialized to 0. 716

Then, for i = 1, . . . , nij (i.e. for each customer in restaurant i eating dish j), a sample is drawn from 717

718

x ∼ Bernoulli
(

αβj + κδ(i, j)

n+ αβj + κδ(i, j)

)
, (28) 719

n is incremented, and if x = 1, mij is incremented. 720

To obtain m̄ij (the number of tables in restaurant i considering dish j), wi. (the number of override 721

variables in restaurant i) is sampled from 722

wi. ∼ Binomial
(
mii,

ρ

ρ+ βi(1− ρ)

)
, (29) 723

and subtracted from mii: 724

m̄ij =

{
mii − wi. if i = j

mij otherwise.
(30) 725

Conditioned on m̄.j (the total number of tables considering dish j), the global transition distribution 726

is sampled from 727

(β1, . . . , βC , βc̃) ∼ Dirichlet(m̄.1, . . . , m̄.C , γ). (31) 728

COIN model implementation 729

We applied the above inference algorithm to a sequence of noisy state feedback observations and 730

sensory cues (if present, numbered according to the order they were presented in the experiment). 731

On each trial, the state feedback was assigned a value of 0 (null-field trials), +1 (P+ force-field tri- 732
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als) or −1 (P− force-field trials) plus i.i.d. zero-mean Gaussian observation noise with variance 733

σ2
r . Because both motor noise and sensory noise influence observed movement kinematics (state 734

feedback), we set σ2
r to σ2

m + σ2
s under the assumption that motor and sensory noise are i.i.d. 735

Gaussian variables (with variances σ2
m and σ2

s , respectively) that sum to produce the final obser- 736

vation noise. We assumed that sensory noise is typically no more than around one tenth of the 737

perturbation magnitude, and hence we set σs to 0.03 to reduce the number of free parameters in 738

the model. 739

The algorithm was initialized with C = 0, Q = 0, β1 = 1, βe1 = 1 and the sufficient statistics for the 740

parameters set to 0. 741

On channel trials (P c), the state (e.g. the magnitude of a force field or visuomotor rotation) is not 742

observed. Therefore, we omitted state feedback on these trials. This was achieved by modifying 743

the general inference algorithm of the model in the following ways: 744

1. The state feedback likelihood term (Eq. 19) did not contribute to the weights used to resample 745

particles (Eq. 16) or the probabilities used to propagate the context (Eq. 20). 746

2. The measurement update steps were omitted when updating the state estimate (Algorithm 747

3); that is for all j ∈ {1, . . . , C}, x̂(j)t|t = x̂
(j)
t|t−1 and v

(j)
t|t = v

(j)
t|t−1. Hence, on channel trials, each 748

state estimate is updated based only on the inferred dynamics (retention and drift) ascribed 749

to that context and there is no error-based learning. 750

3. To propagate the sufficient statistics for the retention and drift parameters, a pair of states 751

(x
(j)
t−1, x

(j)
t ) are sampled from a distribution that is equivalent to Eq. 21 but that does not 752

condition on yt (and hence does not condition on ct either): 753

p(x
(j)
t−1, x

(j)
t |zt−1) = p(x

(j)
t−1|zt−1)p(x

(j)
t |x

(j)
t−1, zt−1)

= N (x̂
(j)
t−1|t−1, v

(j)
t−1|t−1)N (x̃

(j)
t|t−1, ṽ

(j)
t|t−1),

(32) 754

where x̃
(j)
t|t−1 = a(j)x

(j)
t−1 + d(j) and ṽ

(j)
t|t−1 = σ2

q. 755

To reduce the number of free parameters in the model, we set γ = γe = 0.1. The only exception 756

to this was model validation in which we set γ = γe = 0.3 to generate distributions of contexts and 757

cues that are typical of motor learning experiments. 758

To place a finite limit on the maximum number of contexts that the COIN model can instantiate, we 759

truncated the stick-breaking process of the GEM. We chose a truncation level of 10 as this number 760

was greater than the true number of contexts in any of the experiments we modeled (typically 2-3). 761

As an exception, in the ntext setting of model validation, the truncation level was set to 1 (see 762

Validation of the COIN model). Note that when the truncation level is set to 1, the nonparametric 763

switching state-space model reduces to a ntext (i.e. non-switching) state-space model. Moreover, 764

if the parameters of the state transition dynamics are also known (i.e. not learned online), the 765

Kalman filter is recovered as a special case of the COIN model. 766

Adaptation (at) on trial t was modeled as the net predicted state (ut) plus Gaussian motor noise: 767

at = ut + ϵt, ϵt ∼ N (0, σ2
m). (33) 768
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The net predicted state was obtained by summing the predicted states for each instantiated context
and a novel context (weighted by their predicted probabilities) and averaging across particles. The
predicted probabilities are given by

p(ct|qt, zt−1) ∝ p(qt, ct|zt−1)

= p(qt|ct, zt−1)p(ct|zt−1),
(34)

where p(qt|ct, zt−1) and p(ct|zt−1) are defined in Eqs. 17 and 18. 769

Modeling visuomotor rotation experiments in the COIN model 770

In visuomotor rotation experiments, the cursor moves in a different direction to the hand (which is 771

occluded from vision). This introduces a discrepancy between the location of the hand as perceived 772

by vision and proprioception. To model this discrepancy, we included a bias parameter in the state 773

feedback (equation 4): 774

yt = x
(ct)
t + b(ct) + vt, vt ∼ N (0, σ2

r ). (35) 775

To support Bayesian inference, we placed a normal distribution prior over this parameter: 776

b(j) | µb, σb ∼ N (µb, σ
2
b), (36) 777

where µb was set to zero as positive and negative biases are equally likely, and σb was set to 70−1 778

by hand to match the empirical data in Fig. S16a. 779

The inference algorithm was correspondingly modified and extended in the following ways: 780

1. The predicted state feedback (Algorithm 2) became ŷ
(j)
t = x̂

(j)
t|t−1 + b(j). 781

2. The sufficient statistics for the bias parameter are propagated as follows: 782

s
(j)
3 ← s

(j)
3 + 1(ct = j)(yt − x

(j)
t )

s
(j)
4 ← s

(j)
4 + 1(ct = j),

(37) 783

where x
(j)
t is sampled from p(x

(j)
t |ct, zt−1, yt) = N (x̂

(j)
t|t , v

(j)
t|t ). Note that this step is omitted 784

on channel trials as there is no state feedback. 785

3. The hyperparameters of the posterior distribution of the bias parameter are 786

µ
(j)
b = σ

(j)2
b (µb/σ

2
b + s

(j)
3 /σ2

r )

σ
(j)2
b = (1/σ2

b + s
(j)
4 /σ2

r )
−1.

(38) 787

4. A new bias parameter is sampled from the updated posterior at the end of each trial: 788

b(j) | µ(j)
b , σ

(j)
b ∼ N (µ

(j)
b , σ

(j)2
b ). (39) 789
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Simulating existing data sets 790

The paradigms in Fig. 4 and Fig. S14 were simulated using the 40 sets of parameters fit to individual 791

participants’ data in both experiments. One hundred simulations (each conditioned on a different 792

noisy state feedback sequence) were performed for each parameter set. The results shown are 793

based on the average of all of these simulations. 794

The paradigms in Fig. S16 and Fig. S15 were variations of the standard spontaneous recovery 795

paradigm. Therefore, we simulated these paradigms using the parameters fit to the average spon- 796

taneous and evoked recovery data sets (Table S1). One hundred simulations (each conditioned 797

on a different noisy state feedback sequence) were performed. The results shown are based on 798

the average of these simulations. 799

Savings paradigm 800

We used the paradigm described in Coltman et al. 13 to simulate savings in the COIN model 801

(Fig. 4a). Participants completed two force-field learning sessions that were separated by a 5- 802

minute break. Each session consisted of a pre-exposure phase (60 trials) with a null field (P 0). 803

This was followed by an exposure phase (125 trials) with a velocity-dependent curl field (P+). After 804

the exposure phase, participants performed a counter-exposure phase (15 trials) with the opposite 805

curl field (P−). This was followed by a series of 50 channel trials (P c). In addition, channel trials 806

were randomly interspersed throughout the exposure phase (approximately 1 in every 10 trials). 807

Anterograde interference paradigm 808

We used the paradigm described in Sing and Smith 14 to simulate anterograde interference in the 809

COIN model (Fig. 4b). The paradigm consisted of a pre-exposure phase (160 trials) with a null 810

field (P 0). This was followed by an exposure phase of variable length (13, 41, 112, 230, or 369 811

trials) with a velocity-dependent curl field (P+). After the exposure phase, participants performed a 812

counter-exposure phase (115 trials) with the opposite curl field (P−). Channel trials were randomly 813

interspersed throughout the exposure and counter-exposure phases (approximately 1 in every 7 814

trials). 815

Environmental consistency paradigms 816

We used the paradigm described in Experiment 1 in Herzfeld et al. 9 to simulate the effect of envi- 817

ronmental consistency on single-trial learning in the COINmodel (Fig. 4c). The paradigm consisted 818

of a pre-training phase (156 trials) with a null field (P 0) interspersed with triplets (1 in every 13 tri- 819

als). This was followed by a training phase composed of 25 blocks (45 trials each). Each block of 820

the training phase consisted of a sequence of 30 perturbation trials, 2 channel trials, 10 washout 821

trials, and 1 triplet. During the perturbation trials, either P+ or P− was presented. Across trials, 822

the perturbation either switched with probability p(switch) or remained the same with probability 823

p(stay) = 1 − p(switch). Three groups performed the experiment with p(stay) set to 0.9, 0.5 and 824
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0.1 for the groups who experienced the slowly, medium and rapidly switching environment, respec- 825

tively. 826

As an additional demonstration of the effect of environmental consistency on single-trial learning in 827

the COINmodel (Fig. S14), we simulated the P1N1, P1, P7, and P20 environments of the force-field 828

adaptation task described in Gonzalez Castro et al. 12 . The paradigm consisted of a pre-exposure 829

phase (200 trials) with a null field (P 0). In the anti-consistent environment (P1N1), participants 830

experienced 50 cycles each with a single P+ trial, followed by a single P− trial, followed by 11–13 831

P 0 trials. In the inconsistent environment (P1), participants experienced 45 cycles with a single 832

P+ trial, followed by 10-12 P 0 trials. In the moderately consistent environment (P7), participants 833

experienced 27 cycles with seven P+ trials, followed by 15–18 P 0 trials. In the highly consistent 834

environment (P20), participants experienced 27 cycles with 20 P+ trials, followed by 28–32 P 0 835

trials. To assess single-trial learning during exposure to the environments, channel trials were 836

randomly interspersed before and after the first P+ trial in a subset of the force-field cycles. 837

Working memory and evoked recovery 838

We investigated the effect of a working memory task on contextual inference in the COIN model 839

(Fig. S15) by simulating a force-field adaptation task (Experiment 1) in Keisler and Shadmehr 19 . 840

The paradigm consisted of a pre-exposure phase (192 trials) with a null field (P 0). This was fol- 841

lowed by an exposure phase (384 trials) with a velocity-dependent curl field (P+). After the expo- 842

sure phase, participants performed a counter-exposure phase (20 trials) with the opposite curl field 843

(P−). Participants then completed either a memory task (memory group) or a non-memory task 844

(non-memory group). This was followed by a series of 192 channel trials (P c). Channel trials were 845

randomly interspersed throughout the pre-exposure and exposure phases (1 in every 8 trials). 846

In the memory task, participants were shown 12 word pairs (e.g., “COMFORT-ATOM”, “LEGEND- 847

BLANK”). Immediately after viewing the words, participants were then shown one word from each 848

pair and instructed to say the corresponding word aloud. In the non-memory task, participants were 849

shown strings of letters (e.g., “kdinedlr”) and were instructed to say aloud the number of vowels in 850

each string. 851

We hypothesized that context probabilities, which are updated recursively in the COIN model, are 852

maintained and updated in working memory. The effect of the working memory task is to erase 853

these estimated probabilities from memory so that participants instead infer the context based on 854

the stationary distribution, which represents the expected frequency of each context. Therefore, on 855

the first trial of the channel phase (i.e. directly after the working memory task), we set the predicted 856

probabilities to their values under the stationary distribution (calculated from the expected value 857

of the context transition matrix under the Dirichlet posterior). For the non-memory task, the COIN 858

model was simulated as for a standard spontaneous recovery paradigm. 859

Explicit and implicit visuomotor learning 860

We investigated explicit and implicit learning in the COINmodel (Fig. S16) by simulating a visuomo- 861

tor rotation task (Report condition of Experiment 2) described in McDougle et al. 21 . The paradigm 862

consisted of a pre-exposure phase (100 trials) in which cursor feedback was veridical (P 0). This 863
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was followed by an exposure phase (200 trials) in which the cursor was rotated by 45◦ in the clock- 864

wise direction (P+, note we use this to represent a positive rotation in this visuomotor paradigm). 865

After the exposure phase, participants performed a counter-exposure phase (20 trials) in which the 866

cursor was rotated by 45◦ in the counterclockwise direction (P−). This was followed by a series of 867

100 visual error clamp trials (P c) in which the cursor moved straight to the target regardless of the 868

participant’s hand trajectory. During the pre-exposure, exposure and counter-exposure phases, 869

the target was flanked by a 360◦ ring of numbered visual landmarks spaced 5.625◦ apart. Starting 870

at trial 91 of the pre-exposure phase, participants were instructed to report verbally before each 871

reach the landmark that they planned to push the manipulandum toward to make the cursor hit the 872

target. These reported aiming directions were interpreted as the explicit component of learning. 873

Implicit learning was quantified by subtracting the explicit component from the actual movement 874

direction on each trial. After the end of the counter-exposure phase, participants were told to stop 875

using any aiming strategy that they had developed and reach directly for the target during the re- 876

maining visual error clamp phase. A control group performed the identical paradigm but without 877

any reporting of aim direction. 878

To simulate learning in a visuomotor rotation experiment in the COIN model, we included an ad- 879

ditional parameter to reflect measurement bias (the difference between hand location perceived 880

by proprioception and vision), which was inferred online (see Modeling visuomotor rotation exper- 881

iments in the COIN model). 882

Deterministic state-space models 883

Wealso fit a class of n-rate deterministic state-spacemodels to the data in the spontaneous/evoked 884

recovery experiment. These models frame motor adaptation as sequential estimation of a task 885

perturbation (e.g., the magnitude of a force field) using n separate adaptive states, each of which 886

has its own own retention factor and learning rate. For the two-state (dual-rate) model n = 2, and 887

for the three-state model n = 3. The individual states can be arranged into a state vector: 888

xt =
[
x
(1)
t . . . x

(n)
t

]⊺
∈ Rn. (40) 889

The motor output on trial t is the sum of the elements in the state vector: 890

ut =

n∑
i=1

x
(i)
t . (41) 891

The error on trial t is the difference between the motor output and the task perturbation: 892

et = ft − ut. (42) 893

The task perturbation, f , was zero for null-field trials, +1 for P+ field trials and−1 for P− field trials. 894

The state vector is updated across trials: 895

xt+1 = a⊙ xt + bet, (43) 896

where a =
[
a(1) . . . a(n)

]⊺ ∈ Rn is a retention vector that governs trial-by-trial decay, b = 897[
b(1) . . . b(n)

]⊺ ∈ Rn is a learning-rate vector that governs error-dependent adaptation and ⊙ 898
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denotes element-wise multiplication. For a task perturbation of +1, equation 43 can be rewritten 899

as 900

xt+1 = Axt + b

= (Ia−B)xt + b,
(44) 901

where I ∈ Rn×n is the identity matrix and each column of B ∈ Rn×n is equal to b. We used this 902

reparameterization to ensure that fitted parameters lead to stable learning as assessed through 903

the eigenvalues of A (see below). 904

Model fitting 905

In both experiments, we fit the COIN model to the data of individual participants by fitting the set
of parameters ϑ so as to maximize the data log likelihood. In the spontaneous/evoked recovery
experiment, ϑ = {σq, µa, σa, σd, α, ρ, σm}, and in the memory updating experiment, which included
sensory cues, an additional parameter was fit so that ϑ = {σq, µa, σa, σd, α, ρ, σm, α

e}. The likeli-
hood is given by

p(a|x⋆, q, ϑ) =

∫∫
p(a|u, ϑ)p(u|η,x⋆, q, ϑ)p(η|ϑ) du dη. (45)

Here a = {at | t ∈ T } is the noisy motor output (adaptation) of the participant on the subset T of
trials that were channel trials, u = {ut | t ∈ T } is the noiseless motor output of the model on the
same subset of trials, x⋆ = {x⋆1, . . . , x⋆T } and q = {q1, . . . , qT } are, respectively, the perturbations
and sensory cues (if applicable) presented to the participant and η = {η1, . . . , ηT } is the observation
noise. The actual observation noise that the participant perceived is unknown to us and so is
marginalized out (equation 45). We approximated the likelihood using Monte Carlo integration:

p(a|x⋆, q, ϑ) ≈ 1

N

N∑
i=1

p(a|u(i), ϑ) (46)

=
1

N

N∑
i=1

∏
t∈T
N (at|u(i)t , σ2

m), (47)

where each u(i) ∼ p(u|η(i),x⋆, q, ϑ) was obtained by running the COIN model inference algorithm 906

conditioned on an observation noise sequence η(i) sampled from p(η|ϑ) =
∏T

t=1N (ηt|0, σ2
r ). Note 907

that this objective is stochastic because we sample observation noise. Consequently, to fit the 908

COIN model, we used Bayesian adaptive direct search (BADS)35, a Bayesian optimization algo- 909

rithm that alternates between a series of fast, local Bayesian optimization steps and a systematic, 910

slower exploration of a mesh grid. Optimization was performed from 30 random initial parameter 911

settings with P = 100 particles andN = 100 observation noise sequences. Once each optimization 912

was complete, we re-calculated the log likelihood using P = 1000 particles andN = 1000 observa- 913

tion noise sequences to obtain a lower-variance estimate of the log likelihood. This estimate was 914

used to choose the best fit out of 30 for each participant. 915
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To fit the COIN model to group average data (spontaneous/evoked recovery experiment), we de-
fined the likelihood as

p(ā|x⋆, ϑ) ≈ 1

N

N∑
i=1

p(ā|ū(i), ϑ) (48)

=
1

N

N∑
i=1

n∏
j=1

N (āj |ū(i)j , σ2
m/S), (49)

where ā is the average adaptation data across participants, ū is the average noiselessmotor output 916

across participants and S is the number of participants in the group. Note that each element of ā 917

and ū is indexed by the channel trial number (1, . . . , n) as opposed to the specific trial on which 918

the channel trial occurred, as the latter was randomized across participants. The noiseless motor 919

output for each participant was obtained, as above, by running the COINmodel inference algorithm 920

for each participant conditioned on an observation noise sequence sampled from p(η|ϑ). To fit the 921

model to the average spontaneous recovery group data and the average evoked recovery group 922

data using the same set of parameters, we optimized the sum of the log likelihoods of these groups. 923

To fit the deterministic state-space models, we minimized the mean squared error between the 924

model data (equation 41) and the adaptation data measured on channel trials. Under the assump- 925

tion that the adaptation data is the model data plus i.i.d. Gaussian noise, this is equivalent to 926

maximizing the likelihood p(a|x⋆, ϑ) =
∏

t∈T N (at|ut, σ2
m), where σ2

m is the mean squared error. 927

To ensure stable solutions, we constrained the eigenvalues of the matrix A in equation 44 to be 928

between 0 and 1. Optimization was performed from 30 random initial parameter settings using 929

both MATLAB’s fmincon and BADS. We report the best solution found by either optimizer. 930

Model comparison 931

To perform model comparison for individual participants, we calculated the Bayesian information
criterion:

BIC = −2 log p(a|x⋆, ϑ̂) + k log(n), (50)

where ϑ̂ is the maximum likelihood estimate of the parameters, k is the number of parameters and 932

n is the number of data points (channel trials). The first term in the BIC penalizes underfitting, 933

whereas the second term penalizes model complexity, as measured by the number of free param- 934

eters in the model. Taking the difference in BIC values for two competing models approximates 935

twice the log of the Bayes factor36. A BIC difference of greater than 4.6 (a Bayes factor of greater 936

than 10) is considered to provide strong evidence in favor of the model with the lower BIC value37. 937

Note that the BIC penalizes model complexity more heavily than the Akaike information criterion 938

(AIC) and corrected AIC (AICc), and hence, relative to AIC and AICc, BIC handicaps the COIN 939

model as it has more parameters than the dual-rate model. 940

To perform model comparison at the group level, we calculated the group-level BIC, which is the 941

sum of BICs over individuals38. 942
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Inferring internal representations of the COIN model fit to adaptation data 943

To examine the internal representations of the COIN model fit to adaptation data, we inferred the 944

sequence of beliefs about the context, states and parameters, as encapsulated in the essential 945

state vector z1:T . For each participant, this inference was conditioned on their observed adapta- 946

tion data a1:T , their maximum likelihood COIN model parameters ϑ and the sequences of pertur- 947

bations x⋆1:T and sensory cues q1:T presented to them. Thus we inferred the posterior distribution 948

p(z1:T |a1:T , x⋆1:T , q1:T , ϑ). This inference can be performed recursively in time using particle filter- 949

ing methods, in which beliefs are first sampled from the prior (by running the COIN model, which 950

does not condition on the adaptation data) and then weighted by the likelihood (the probability of 951

adaptation data given the sampled beliefs). Note that this involves a two-level hierarchy of particle 952

methods: at the bottom level of the hierarchy particle learning is used to simulate inference from 953

the perspective of the participant conditioned on state feedback and sensory cues, while at the 954

top level of the hierarchy particle filtering is used to simulate inference from the perspective of the 955

experimenter conditioned on the participant’s adaptation data. 956

Our assumptions about how adaptation data are generated are as follows. The beliefs of a partic- 957

ipant evolve as a hidden Markov process with initial distribution p(z1|ϑ), conditional transition dis- 958

tribution p(zt|zt−1, yt, qt, ϑ) and observation distribution p(at|zt, ϑ) = N (at|ut, σ2
m). The conditional 959

transition distribution denotes one update of the COIN model from trial t− 1 to time t conditioned 960

on the state feedback and sensory cue observations at trial t. 961

A recursive formula for obtaining p(z1:t|a1:t, x⋆1:t, q1:t, ϑ) from p(z1:t−1|a1:t−1, x
⋆
1:t−1, q1:t−1, ϑ) is

p(z1:t|a1:t, x⋆1:t, q1:t, ϑ) =
p(at|zt, ϑ)p(zt|zt−1, x

⋆
t , qt, ϑ)

p(at|a1:t−1, x⋆1:t, q1:t, ϑ)
p(z1:t−1|a1:t−1, x

⋆
1:t−1, q1:t−1, ϑ). (51)

The marginal transition distribution in the numerator is obtained by integrating out the state feed-
back, which is unknown to us, from the conditional transition distribution:

p(zt|zt−1, x
⋆
t , qt, ϑ) =

∫
p(zt|zt−1, yt, qt, ϑ)p(yt|x⋆t , ϑ)dyt. (52)

This integral can be approximated using Monte Carlo integration:∑
i

p(zt|zt−1, y
(i)
t , qt, ϑ), y

(i)
t ∼ p(yt|x⋆t , ϑ). (53)

The recursive update in equation 51 is analytically intractable, and hence we use particle filter-
ing methods. The importance distribution from which we draw samples of z1:t has the following
recursive form:

π(z1:t|x⋆1:t, q1:t, ϑ) = π(zt|z1:t−1, x
⋆
1:t, q1:t, ϑ)π(z1:t−1|x⋆1:t−1, q1:t−1, ϑ). (54)

Note that this importance distribution does not condition on the adaptation data and so is termed
the prior importance distribution. We define the importance function π(zt|z1:t−1, x

⋆
1:t, q1:t, ϑ) to be

the marginal transition distribution p(zt|zt−1, x
⋆
t , qt, ϑ), as this is straightforward to sample from. To

correct for the use of an importance distribution, samples of z1:t drawn from π(z1:t|x⋆1:t, q1:t, ϑ) are
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assigned importance weights given by

wt ∝
p(z1:t|a1:t, x⋆1:t, q1:t, ϑ)
π(z1:t|x⋆1:t, q1:t, ϑ)

. (55)

This yields a set of N weighted particles that approximates the target posterior:

p(z1:t|a1:t, x⋆1:t, q1:t, ϑ) ≈
N∑
i=1

w
(i)
t δ(z1:t − z

(i)
1:t). (56)

The recursive nature of equations 51 and 54 allows the weights in turn to be computed in a recursive
manner:

wt ∝
p(at|zt, ϑ)p(zt|zt−1, x

⋆
t , qt, ϑ)

π(zt|z1:t−1, x⋆1:t, q1:t, ϑ)
wt−1

= p(at|zt, ϑ)wt−1.

(57)

This weight update rule demonstrates that samples that place higher probability on the adaptation
observations are assigned greater weight. Note that if trial t is not a channel trial, there is no
adaptation observation for this trial and so wt ∝ wt−1. The computation of the importance weights
involves multiplying incremental weights. Over many trials, this results in only a few particles
having significant weight, a problem known as degeneracy. To avoid degeneracy, whenever the
effective sample size (ESS) falls below a predefined threshold (half the total number of particles),
we resample particles with probabilities proportional to their weights. The ESS is a standard metric
based on the normalised weights and is typically defined as

ESS =

( N∑
i=1

(
w

(i)
t

)2
)−1

. (58)

When all particles have equal weight, ESS = N , and when only one particle has nonzero weight, 962

ESS = 1. The particle filtering algorithm is summarized in Algorithm 4 for a single trial. 963

The estimate of the posterior expectation of z1:T is

Ep(z1:T |a1:T ,x⋆
1:T ,q1:T ,ϑ)[z1:T ] ≈

N∑
i=1

w
(i)
T z

(i)
1:T . (59)

This method was used to generate the model data plotted in Fig. 2c,e and Fig. 3 and Figs. S8 964

and S11 to S12. 965

COIN model analysis 966

Particle methods present a challenge when it comes to COIN model analysis as contexts sampled 967

by different particles cannot be directly mapped onto one another. This is because each particle 968

samples its own context sequence, and this sequence may be different from the sequences sam- 969

pled by other particles and/or the ground-truth context sequence. In addition, different particles 970

can instantiate a different number of contexts, adding further complexity to the problem of finding 971
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1: Propagate
for i ∈ {1, . . . , N} do
sample z

(i)
t ∼ p(zt|z(i)t−1, x

⋆
t , qt, ϑ) and augment trajectory z

(i)
1:t−1 with z

(i)
t

end for
2: Weight

for i ∈ {1, . . . , N} do
if trial t is a channel trial then
w

(i)
t ∝ p(at|z(i)t , ϑ)w

(i)
t−1

else
w

(i)
t ∝ w

(i)
t−1

end if
end for

3: Resample
if ESS < N/2 then
resample particles with probabilities proportional to w

(i)
t and set weights to 1/N

end if
Algorithm 4: Particle filtering to infer a participant’s internal beliefs conditioned on their adap-
tation data.

a correspondence between contexts across particles. Hence, contexts that have the same label 972

(assigned based on the order in which they were instantiated) in different particles do not neces- 973

sarily correspond to the same inferred or ground-truth context. This means that contexts across 974

particles cannot be simply equated based on the order of their instantiation. To address this issue 975

we took two approaches. In some instances (Figs. 3 and 4 and Figs. S11 and S14), we focused 976

our analysis on one specific context (c∗) that could be easily defined in all particles (e.g. the con- 977

text with the largest predicted probability or responsibility). In all other instances, we fit models 978

of reduced complexity to the particle system as a whole to extract simpler representations of the 979

internal workings of the model. We now describe this process in detail. 980

To extract representations of the continuous variables (states and state parameters in e.g. Fig. 1
and Fig. S2), on each trial we first constructed a target density by marginalizing over all contexts,
particles and observation noise sequences. For example, for the predicted state distribution, the
target density is a mixture of Gaussians:

p(xt) =
1

Z

N∑
i=1

w̃(i)
P∑

j=1

Ci,j∑
c=1

N
(
x
(c)
t |x̂

(c,i,j)
t|t−1 , v

(c,i,j)
t|t−1

)
, (60)

where Ci,j , denotes the number of contexts instantiated by particle j conditioned on observation 981

noise sequence i, P is the number of particles, N is the number of observation noise sequences, 982

and Z is a normalization constant. The weight (w̃(i)) assigned to observation noise sequence i is 983

w
(i)
t=T (Eq. 57) for simulations conditioned on adaptation data (see Inferring internal representations 984

of the COIN model fit to adaptation data) or 1/N for simulations not conditioned on adaptation data. 985

We performed component reduction on this mixture by approximating it with another mixture of 986

Gaussians that had far fewer components. The key idea is that each component in the reduced- 987

component mixture represents the distribution of the state in a specific context. The reduced- 988

component mixture was fit by optimizing the parameters (mean and variance) of each component 989
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using expectation-maximization. The number of components (K) in the fitted mixture was set 990

to the maximum number of contexts across all particles in all observation noise sequences—a 991

number that we expect to be at least as great as the number of significant modes in the target 992

density. The weight of component k was set proportional to the number of particles (across all 993

observation noise sequences) that had at least k contexts. Once we fit the mixture, we kept M 994

of the components (where M ≤ K) and discarded the rest. Specifically, we kept component k if 995

the proportion of particles that had at least k contexts was more than 0.5 (a simple majority rule), 996

otherwise it was discarded. The reason we fitted more components than we intended to keep was 997

to avoid the potential for unmodeled modes, however small, distorting the fit of components to 998

the largest modes of the target density. The posterior distributions of the drift, retention and bias 999

parameters were extracted in an analogous way. 1000

Note that these mixture components do not have context labels assigned to them. Context labels 1001

were assigned in a sequential manner across trials. On trial t = 1, only one component existed, 1002
and this component was labeled as context 1. Then on each trial t = 2, . . . , T , each component 1003
was labeled based on its similarity to the components on the previous trial t−1, which were by now 1004

labeled. Specifically, we considered all possible permutations of labels and chose the permutation 1005

that minimized the KL divergence between components of the same label (on trials t − 1 and t), 1006
summed across labels. Whenever the number of components increased from trial t− 1 to t, a new 1007

label was introduced, and this label was assigned to whichever context had not yet been labeled 1008

based on the KL-divergence metric. 1009

To extract the responsibilities (Fig. 1), on each trial we constructed two histograms, one for the 1010

responsibilities of instantiated contexts and one for the responsibility of a novel context. Each 1011

histogram was formed by binning the responsibilities computed by each particle conditioned on 1012

each observation noise sequence, with the counts contributed by observation noise sequence i 1013
weighted by w̃(i). We then considered all valid probability vectors with M + 1 elements (i.e., all 1014
possible combinations of M + 1 bin centers that summed to 1), where M elements were taken 1015

from the histogram for instantiated contexts and 1 element was taken from the histogram for a 1016

novel context. Each valid probability vector was assigned a weight proportional to the product of 1017
the counts in the correspondingM + 1 bins. The weighted average of these vectors was taken as 1018

the responsibilities. Note that these responsibilities do not have context labels assigned to them 1019

(except for the novel context). To assign context labels to them, we considered all possible per- 1020
mutations of labels and chose the permutation that minimized the KL divergence between the true 1021

marginal state distribution (defined here as the sum of the predicted state distributions for each 1022

context weighted by the responsibilities) and the approximate marginal state distribution (defined 1023

here as the sum of the predicted state distributions for each context obtained and labeled as de- 1024
scribed above, weighted by the responsibilities obtained here). The stationary context probabilities 1025

and predicted probabilities were extracted in an analogous way. 1026

To extract the context transition matrix (Fig. S2), on each trial we constructed three histograms 1027

of transition probabilities, one for each type of context transition (transitions from an instantiated 1028

context to itself [inst-self], transitions from an instantiated context to a different instantiated context 1029
[inst-inst] and transitions from an instantiated context to a new context [inst-new]). The bin counts 1030

contributed by observation noise sequence i were weighted by w̃(i). We considered all valid proba- 1031
bility vectors withM+1 elements, whereM−1 elements were taken from the ‘inst-inst’ histogram, 1032
1 element was taken from the ‘inst-self’ histogram and 1 element was taken from the ‘inst-new’ his- 1033
togram. As above, each valid probability vector was assigned a weight proportional to the product 1034
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of the corresponding bin counts. Our goal was to extract M vectors, each of which represents a 1035

row in an M ×M + 1 transition matrix (where context M + 1 is the novel context). Therefore, we 1036

clustered the weighted set of probability vectors intoM components by fitting a mixture of Dirichlet 1037
distributions using maximum likelihood estimation of the parameters of each component in the mix- 1038
ture. The number of components in the mixture and the component weights were determined as 1039

above for the reduced-component mixture of Gaussians. The mean of each fitted component was 1040

used to construct a row of the transition matrix (see below). Note that these transition probabilities 1041

do not have context labels assigned to them (except for the novel context) beyond non-specific 1042

labels such as self-transition and non-self-transition. To label the contexts, we first considered all 1043
permutations of the rows of the matrix along with all permutations of the elements within each row 1044

(with the exception of self-transitions and transitions to a new context, which were placed along the 1045

diagonal and in the last column of the matrix, respectively). We chose the matrix that minimized 1046

the KL divergence between the true marginal state distribution (defined here as the sum of the 1047

predicted state distributions for each context, weighted by the sum of the rows of the transition 1048

matrix, weighted by the responsibilities on the previous trial) and the approximate marginal state 1049

distribution (defined here as the sum of the predicted state distributions for each context obtained 1050

and labeled as described above, weighted by the sum of the rows obtained here, weighted by the 1051

responsibilities on the previous trial obtained and labeled as described above). 1052

To extract the cue emission matrix (Fig. S2), on each trial we constructed Q + 1 histograms of 1053
emission probabilities, one for each of the Q cues observed so far and one for a novel cue. The 1054

bin counts contributed by observation noise sequence i were weighted by w̃(i). For theM rows of 1055
the matrix, we considered all valid probability vectors withQ+1 elements, where each element was 1056

taken from a different histogram. As above, each valid probability vector was assigned a weight 1057
proportional to the product of the corresponding bin counts. Our goal was to extract M vectors, 1058
each of which represents a row in an M × Q + 1 emission matrix (where cue Q + 1 is the novel 1059
cue). Therefore, we clustered the weighted set of probability vectors intoM components by fitting 1060

a mixture of Dirichlet distributions using maximum likelihood estimation of the parameters of each 1061

component in the mixture. The number of components in the mixture and the component weights 1062

were determined as elsewhere. The mean of each fitted component was used as a row of the 1063

emission matrix. Note that these emission probabilities have cue but not context labels assigned 1064

to them. To assign a context label to each row, we considered all possible permutations of the rows 1065

(where row position determines the context label) and chose the permutation that minimized the 1066

KL divergence between the true marginal cue distribution (the sum of the cue distributions for each 1067

context weighted by the predicted probabilities) and the approximate marginal cue distribution (the 1068

sum of the rows obtained here weighted by the predicted probabilities obtained and labeled as 1069

described above). 1070

Validation of the COIN model 1071

We validated our approximate inference algorithm on synthetic data generated under the gener- 1072
ative model. Data was generated in two settings that differed in terms of the upper bound on the 1073

number of possible contexts (determined by the truncation level of the stick-breaking process). In 1074

the single-context setting only one context was possible (truncation level of 1). In the multiple- 1075
context setting, up to 10 contexts were possible (truncation level of 10). For the single-context and 1076

multiple-context settings, we generated 4000 and 2000 synthetic data sets, respectively, of 500 1077

time steps duration each. The parameters and hyperparameters used to generate these data sets 1078
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are shown in Table S1 and were chosen so that the distributions of the numbers of contexts and 1079

cues (Fig. S4) were typical of motor learning experiments. 1080

Each data set had a sequence of time-varying latent variables (contexts and states) and observa-
tions (state feedback and sensory cues) as well as a set of static parameters for the state of each
context (state retention factor and state drift). We applied our inference algorithm to the sequence
of observations and at each time step calculated a posterior predictive p-value for each of the time-
varying latent variables, observations and parameters. For continuous variables (state feedback,
states, parameters), the posterior predictive p-value was calculated by evaluating the cumulative
distribution function (CDF) of the predictive probability distribution at the true value of the variable.
For discrete variables with integer-valued support (contexts, sensory cues), the posterior predictive
p-value was calculated as

p-value = F (x− 1) + uf(x), (61)

where f() is the predicted probability mass function, F () is the associated cumulative mass func- 1081
tion, x is the true value of the variable and u ∼ U(0, 1) is a uniform random variable on (0, 1). 1082
Crucially, if the predictive probability distributions/functions are well calibrated, the distribution of 1083
posterior predictive p-values will be uniformly distributed between 0 and 1, and hence the cumula- 1084
tive probability of posterior predictive p-values will lie on the identity line (Figs. S3 and S4). 1085

Under the Markov exchangeable prior of the COIN model, the distribution of context sequences is 1086

invariant under permutations of the transitions. Hence context labels (defined by the order in which 1087

a context was instantiated/generated) are arbitrary and cannot necessarily be equated between 1088

inferred contexts (i.e. contexts instantiated by the inference algorithm) and ground truth contexts 1089

(i.e. contexts generated by the generative model) or between particles. This ‘label switching prob- 1090
lem’39 complicates model validation with respect to latent variables that depend on the context (i.e. 1091
the state of each context, the parameters for the state of each context and the context itself). We 1092

addressed this issue in several ways. In the single-context setting (Fig. S3), we circumvented the 1093

label switching problem by limiting the number of contexts to 1. However, this precludes validation 1094

of inferences about the context itself. In the multiple-context setting (Fig. S4), we evaluated the 1095

state of the current context (xctt ) and its associated parameters (act and dct) with respect to the 1096

CDF of the marginal predictive distributions (i.e. after integrating out the context with respect to the 1097

predicted context probabilities). To validate inferences about the context itself, inferred contexts 1098

were relabeled by minimizing the Hamming distance (the number of time steps at which context 1099
labels differ) between the relabeled context sequence and the true context sequence. Thus we 1100

mapped the inferred contexts to a set of labels that maximized the overlap with the ground truth 1101

context sequence. This was done using the Kuhn-Munkres (Hungarian) algorithm40 and was per- 1102
formed separately for each particle and at each time step (based on the sequence of contexts up 1103

to and including the current time step). 1104

Parameter and model recovery 1105

We used the parameters from the fits of the COIN and dual-rate models to the data for each 1106

participant in the spontaneous recovery (SR) and evoked recovery (ER) experiments to generate 1107

10 synthetic data sets for each subject from the corresponding paradigm (SR and ER) and model 1108
class (COIN and dual-rate). For a given set of parameters in a given experiment, the only source of 1109
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variability in the dual-rate model across different synthetic data sets was motor noise. In contrast, 1110
for the COIN model, in addition to motor noise, sensory noise also provided a source of variability 1111

across data sets. We then fit each synthetic data set with both the COIN and dual-rate model as 1112

we did with real data (see above). 1113

For model recovery (Fig. S10), we examined the proportion of times the difference in BIC between 1114

the COIN and dual-rate fits favored the true (vs. incorrect) model class that was used to generate 1115

the data. 1116

For parameter recovery (Fig. S9), we compared the COIN model parameters that were used to 1117

generate synthetic data (‘true’ parameters) with the COIN model parameters fit to these synthetic 1118

data sets. 1119

Responsibility-weighted learning rate 1120

A key prediction of the COIN model is that memory updating should depend on contextual infer- 1121
ence (Figs. 1 and 3). This is because the COIN model assumes that only one perturbation—the 1122

perturbation associated with the current context—influences the state feedback. Hence, if the cur- 1123
rent context is known, only the estimate of the perturbation associated with the current context 1124
should be updated after observing the state feedback: 1125

x̂
(j)
t|t (ct) =

{
x̂
(j)
t|t−1 + k

(j)
t e

(j)
t if ct = j

x̂
(j)
t|t−1 if ct ̸= j.

(62) 1126

However, in general, the current context is not known. After integrating out the unknown context,
the expected value of each update is

E[x̂(j)t|t (ct)] =
∑
ct

γ
(ct)
t x̂

(j)
t|t (ct)

= x̂
(j)
t|t−1 + γ

(j)
t k

(j)
t e

(j)
t ,

(63)

where γ
(j)
t denotes the responsibility of context j. The responsibility scales the Kalman gain, 1127

producing an effective learning rate (γ(j)t k
(j)
t ) that lies between k

(j)
t (when γ

(j)
t = 1, i.e. certain that 1128

ct = j) and zero (when γ
(j)
t = 0, i.e. certain that ct ̸= j). Thus contextual inference is key to 1129

Bayes-optimal memory updating (Fig. 1f). 1130

Although the notion that error signals should be scaled by responsibilities is not unique to the COIN 1131

model1,8, in the memory updating experiment, we provide the first experimental evidence of this 1132

computation (Fig. S11), an achievement made possible by the recently-developed triplet assay of 1133
single-trial learning9,12. 1134
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An analytic approximation to single-trial learning in the COIN model 1135

Here we derive a simple and intuitive approximation to single-trial learning in the COIN model so
as to provide insights into the memory updating experiment (Fig. 3). Single-trial learning is defined
as

ut+1 − ut−1 =
∑
j

(x̂
(j)
t+1|tρ

(j)
t+1 − x̂

(j)
t−1|t−2ρ

(j)
t−1), (64)

where ρ
(j)
t+1 is the predicted probability of context j on trial t + 1. To aid the derivation, we make 1136

use of the following set of simplifying assumptions: 1137

(i) There is no decay or drift of state estimates across trials. 1138

(ii) All state estimates are zero on the first channel trial of the triplet, which implies that errors on 1139

the exposure trial are one. 1140

(iii) The Kalman gain is the same for all contexts. 1141

Under these assumptions, single-trial learning can be simplified to

ut+1 − ut−1 =
∑
j

([x̂
(j)
t−1|t−2 + γ

(j)
t k

(j)
t e

(j)
t ]ρ

(j)
t+1 − x̂

(j)
t−1|t−2ρ

(j)
t−1) (65)

=
∑
j

γ
(j)
t k

(j)
t e

(j)
t ρ

(j)
t+1 (66)

∝
∑
j

γ
(j)
t ρ

(j)
t+1 (67)

= γt · ρt+1. (68)

Here γt and ρt+1 are vectors of responsibilities and predicted probabilities, respectively. There- 1142
fore, single-trial learning is approximately proportional to the dot product of the responsibilities 1143

on the exposure trial of the triplet (which determine how much each memory is updated, see 1144

Responsibility-weighted learning rate) and the predicted probabilities on the following channel trial 1145
(which determine how much each updated memory is subsequently expressed). Intuitively, this 1146

dot product is greater when the memories that are updated more are also the ones that are sub- 1147
sequently expressed more. In the memory updating experiment, we confirmed that single-trial 1148
learning is indeed well approximated by this dot product (Fig. S11). Moreover, the presentation of 1149
a sensory cue on the second channel trial of each triplet allowed us to reveal the effects of differ- 1150
ential updating of a single memory by encouraging predicted probabilities to be all-or-none. In this 1151

setting, single-trial learning is proportional to the responsibility of the memory on the exposure trial; 1152
that is, when ρ

(j)
t+1 = 1, ut+1 − ut−1 = γ

(j)
t k

(j)
t . Again, we confirmed that this indeed is the case 1153

(Fig. S11) 1154

The effects of force fields, sensory cues and context transition probabilities on single-trial learning 1155

can be explained in a unified manner using this simple dot-product metric. In the memory updating 1156

experiment (Fig. 3), ρt+1 is constant across the four triplet types, as we present the same sensory 1157

cue on the channel trials of all triplets, but γ⊺
t varies, as we present different combinations of force 1158

42

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.23.394320doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394320
http://creativecommons.org/licenses/by-nc-nd/4.0/


fields and sensory cues on the exposure trials of the triplets. In contrast, in the environmental- 1159
consistency experiments (Fig. 4c and Fig. S14), γ⊺

t is constant, as the same force field is presented 1160

on the exposure trial of the triplets and there are no sensory cues, but ρt+1 varies, as the context 1161
transition probabilities differ across the environments. 1162
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Supplementary Text 1163

Mathematical analysis of spontaneous and evoked recovery in the COIN model 1164

Here we develop a mathematical analysis of how the main features of spontaneous and evoked 1165

recovery emerge in the COIN model. Specifically, the main features we wish to explain are that 1166
spontaneous recovery is 1. non-monotonic, with a smooth but transient increase in adaptation, 1167
followed by decay, 2. which asymptotes (at least within the time scale of the experiment) above 1168

zero, and evoked recovery shows 3. very rapid (almost instantaneous) increase to a higher level 1169
of adaptation than spontaneous recovery, followed by monotonic decay, 4. which also asymptotes 1170

above zero. 1171

In general, state and contextual inference in a switching state-space model, such as the COIN
model, is analytically intractable. However, inference can be performed analytically under the
following assumptions: (i) there are no state feedback observations (as on channel trials); (ii) the
inferred parameters of the state and context transition dynamics are constant; and (iii) the number
of contexts does not change. In this special case, state estimates are updated according to the
state dynamics ascribed to each context:

x̂
(j)
t|t−1 = a(j)x̂

(j)
t−1|t−2 + d(j) (69)

and context probabilities (ρ) are updated (independently of the states) according to the context
transition matrix (Π):

ρt = Π⊺ρt−1, (70)

Assumptions (i)-(iii) are at least approximately true during the channel trial phase of the sponta- 1172
neous and evoked recovery paradigms, i.e. when our main explicanda occur. Specifically, assump- 1173
tion (i) is true as there is no state feedback. Assumption (ii) is approximately true as the inferred 1174

parameters governing the state and context transition dynamics are updated relatively little over 1175
the timescale relevant for spontaneous and evoked recovery late in learning. Assumption (iii) is 1176

approximately true as new contexts tend not to be inferred when state feedback is omitted. 1177

Based on these approximations, we simulated state and contextual inference during the channel
phase of the spontaneous and evoked recovery paradigms (Fig. S5). We ran the simulations with
two contexts using parameters a(1) = a(2) = 0.95, d(1) = −d(2) = 0.0075 and

Π =

[
π11 (1− π11)

(1− π22) π22

]
, (71)

where π11 = 0.999 and π22 = 0.9, reflecting the fact that nearly all transitions in the experiment are 1178

self-transitions, and that the context associated with P+ has been experienced more often than 1179

the context associated with P−. 1180

For spontaneous recovery, on trial 1 (immediately following P−), the state estimates associated 1181

with P+ (context 1, red) and P− (context 2, orange) are equal but opposite (Fig. S5a), and the 1182

context probabilities are equal (Fig. S5b, solid lines). Hence, adaptation is initially at baseline 1183

(Fig. S5c, solid line). Then, based on Eq. 69, the state estimates converge exponentially (at the 1184
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same rate) to their steady-state values, x̂(j)∞ = d(j)/(1 − a(j)). In particular, for context 1, this 1185

means a monotonically decreasing decay towards a non-zero asymptote (Fig. S5a, red) because 1186

experience in P+ is compatible with a positive steady-state (which we incorporated by our choice of 1187
a positive drift rate, d(j), in Eq. 69). At the same time, based on Eq. 70, the predicted probabilities 1188

converge exponentially to their values under the stationary distribution, limt→∞ p(ct = j) (Fig. S5b, 1189
solid lines). Context 1 is more probable than context 2 under the stationary distribution as P+ was 1190

experienced for more trials than P− during the experiment. Hence, the predicted probability of 1191
context 1 monotonically increases (Fig. S5b, solid red). The net result of these updates is that 1192
there is an initial rise in adaptation due to the increasing contribution of the state associated with 1193

context 1, followed by a fall in adaptation toward a non-zero baseline due to the decay of this 1194

state toward a non-zero steady-state (Fig. S5c, solid line). Therefore, the classic non-monotonic 1195

nature of spontaneous recovery arises because the dynamics of contextual inference (responsible 1196

for the initial rise in adaptation) are faster than the dynamics of state inference (responsible for 1197
the subsequent fall in adaptation). Critically, as long as the inferred state dynamics reflect the 1198

statistics of the experiment in which, by design, the true state of each context never changes (the 1199

P+ and P− perturbations are constant), the dynamics of contextual inference are bound to be faster 1200
than the dynamics of state inference, and the steady-state of adaptation (on the time scale of the 1201

experiment) to be above zero. Thus, non-monotonic spontaneous recovery (feature 1) with a decay 1202

that does not reach zero (feature 2), as seen in the experimental data (Fig. 2c), is a robust feature of 1203
the COIN model. Indeed, the simulation of the full model without the approximations we introduced 1204

above for analytical tractability also shows such spontaneous recovery (Fig. 2b, bottom right, and 1205

c; also for individual subjects whose data shows spontaneous recovery, Fig. S8) with all three 1206

main properties that our analysis here suggests are key for obtaining this result. Specifically, (a) 1207
state estimates associated with P+ and P− approximately cancel at the beginning of the P c phase 1208

(when weighted with their corresponding context probabilities) and then monotonically converge 1209

to a positive and negative steady-state, respectively (Fig. 2b, bottom left); (b) the corresponding 1210

context probabilities may be similar initially but then diverge, such that the probability associated 1211

with P+ grows toward a near-one steady-state, while that associated with P− shows the opposite 1212

trend, decaying toward a near-zero baseline (Fig. 2b, top right); (c) the dynamics of contextual 1213
inference are markedly faster than those of state estimation (Fig. 2b, cf. top right and bottom left). 1214

For evoked recovery, we assume the learner is certain they are in context 1 at the end of the second 1215

evoker (P+) trial, and from then on, during the P c trials, their contextual inferences evolve accord- 1216
ing to the same dynamics as in spontaneous recovery. For a direct comparison with spontaneous 1217

recovery, we also kept everything else (parameters, state estimates) identical to the simulation of 1218
spontaneous recovery. (This included ignoring more subtle differences in state inferences between 1219

the two paradigms; cf. Fig. 2b and d, bottom left.) Because context 1 is also much more probable 1220

than context 2 under the stationary context probabilities (see above), the context probabilities did 1221

not change much with updating from their initial values (Eq. 70), and so the probability of context 1 1222

and context 2 respectively remained high and low throughout the simulation (Fig. S5b, dashed; 1223
cf. Fig. 2d, top right). Hence, adaptation largely reflected the dynamics of the state of context 1 1224

(Fig. S5a, red; cf. Fig. 2d, bottom left), decaying exponentially from a level of adaptation that was 1225

necessarily higher than that reached in spontaneous recovery to a non-zero asymptote (Fig. S5c, 1226
dashed). Thus, the model produced a rapid, strong (feature 3), and long-lasting (feature 4) recov- 1227
ery, as seen in both the experimental data (Fig. 2e) and in the full model (Fig. 2d, bottom right, 1228
and e; Fig. S8). In other words, our analysis suggests that evoked recovery can be understood as 1229

a limiting case of spontaneous recovery when – spurred by evoker trials – the dynamics of con- 1230
textual inference converge very rapidly to the stationary context probabilities. As such, the same 1231
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three key properties that underlie spontaneous recovery ensure that the main features of evoked 1232

recovery also robustly emerge in the COIN model. 1233

Working memory in the COIN model 1234

A working memory task performed just before the channel trial phase has been shown to interfere 1235

with spontaneous recovery, and in fact to create an effect that is reminiscent of evoked recovery, 1236
such that P+ adaptation returns immediately to a high level following P−, already on the first P c 1237

trial (Fig. S15a, Ref. 19). In the dual-rate model, this effect has been attributed to a selective di- 1238
minishing of the adaptation of the fast learning process19. We simulated the COIN model with the 1239

parameters obtained from the fit to the average spontaneous and evoked recovery data sets (also 1240

used in Fig. 2b,d). The COIN model reproduces the effect by modeling the working memory task 1241

as selectively abolishing the memory of the context probabilities on the last P− trial (Fig. S15b-d). 1242
This means that on the first P c trial, predicted context probabilities are based on general knowl- 1243
edge of how frequently different contexts are expected to be encountered in the future (stationary 1244

distribution), rather than on which contexts are likely to follow the context specifically encountered 1245

on the last trial (compare colored circles between middle right panels of Fig. S15c and d). Because 1246

P+ has been the most frequent trial type, the probability of its associated context under the sta- 1247
tionary distribution is very high, and hence there is a strong re-expression (evoked recovery) of the 1248

memory for this context. This suggests that the belief over contexts may require working memory 1249

for maintenance. 1250

Explicit versus implicit learning in the COIN model 1251

Recent studies have shown that motor learning has both explicit and implicit components which 1252

exhibit markedly different time-courses20,22. For example, in a paradigmatic example using a vi- 1253
suomotor rotation task, a measure of explicit learning was obtained by asking participants to report 1254
the direction in which they planned to move prior to moving, and implicit learning was then mea- 1255
sured as the difference between the actual direction they moved and this explicit judgement21. In 1256

a spontaneous recovery paradigm, explicit learning showed non-monotonic behavior during the 1257

P+ phase, fast increase followed by slow decay (Fig. S16a). In contrast, implicit learning showed 1258

slower and monotonic increase during the P+ phase. Due to these differences in the form of adap- 1259
tation, explicit and implicit learning have been suggested to correspond respectively to the fast and 1260

slow processes of the dual-rate model20. However, this mapping is unable to account for the rapid 1261

drop and recovery of supposedly slow implicit learning seen during the subsequent P− and P c 1262

phases. 1263

In order to simulate these experiments, we adapted the COIN model to account for a critical differ- 1264
ence between visuomotor and force-field learning: visuomotor but not force-field learning (which is 1265

the primary paradigm we use to test the predictions of the COIN model in the main text) introduces 1266

a discrepancy between the hand’s proprioceptive and visual location. Due to this discrepancy, a 1267

fundamental credit-assignment problem arises8 as to whether the observed cursor deviation is due 1268

to a perturbation on the motor system or a bias (miscalibration) in the sensory system. This was 1269

naturally captured in the COIN model by introducing a bias between the state and sensory feed- 1270
back as another latent parameter in each context, which was learned together with the parameters 1271
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that govern the evolution of the state in that context (Methods). We hypothesized that participants 1272

would have explicit access to the state representing their belief about the visuomotor rotation, but 1273
that they would not have access to their sensory bias which would reflect the implicit component 1274
of learning. 1275

We simulated the COIN model with the parameters obtained from the fit to the average sponta- 1276
neous recovery and evoked data sets (also used in Fig. 2b,d and Fig. S15) plus an additional 1277
parameter representing the standard deviation of the prior on the bias (Methods). Fig. S16c, d & e 1278

show the bias, state and predicted probability for each context. The average bias across contexts 1279

weighted by the predicted probabilities (Fig. S16f) showed a slow monotonic increase during the 1280

P+ phase with a drop and recovery during the P− and P c phase. As hypothesized, the profile is 1281

very similar to that of the implicit component of learning (Fig. S16a-b, light green). However, the 1282

average state across contexts (Fig. S16g) did not show the experimentally observed characteristic 1283

overshoot of the explicit component (Fig. S16a, dark green). Instead, examining the state of the 1284

context with the highest responsibility (Fig. S16d, colored bar in the bottom, and thin black line, 1285
also shown as dark green line in (Fig. S16b) revealed that it had a strikingly similar time course 1286

to the explicit component of learning (Fig. S16a & b dark green). This is because the state and 1287

the bias interact competitively within a context to account for the total state feedback, and hence 1288

as the bias estimate increases, the state estimate decreases, giving rise to the characteristic non- 1289
monotonicity. As the experimental definition of explicit and implicit components guarantees that 1290
they sum to total adaptation (see above), we also defined motor output in the model as the sum of 1291
the explicit (state of the context with the highest responsibility) and implicit components (Fig. S16b, 1292
solid pink). Taken together, this version of the COIN model reproduced the important qualitative 1293

features of explicit, implicit, and total adaptation in the experiment (compare Fig. S16a and b). 1294
(Although there were quantitative differences, e.g. in the overall speed of learning, note that all but 1295
one parameter were fit to rather different force-field learning experiments and so a quantitatively 1296

precise match could not be expected.) In particular, the different time courses of explicit versus 1297

implicit components arose naturally in the model. This is because, in the COIN model, parameters 1298

(i.e. bias) are assumed to be constant over the lifetime of a context, whereas states can change 1299

dynamically, and thus their estimates are updated more slowly (Fig. S16c, f) than those of states 1300

(Fig. S16d, g) – inherently giving rise to multiple time scales of learning. Moreover, the average 1301

bias across contexts in the COIN model (Fig. S16f, cyan, and b, light green) also tracked the rapid 1302

drop and recovery of implicit learning during the P− and P c phase (Fig. S16a, light green) that 1303
the dual-rate model cannot explain. This arises from the same contextual inference-based mecha- 1304
nism that also underlies other aspects of spontaneous recovery (Fig. 2). Specifically, the rapid fall 1305
in the implicit component of learning during the P− phase is due to the increased expression of the 1306

associated context (Fig. S16e, orange) that has a negative bias (Fig. S16c, orange). On entering 1307

the P c phase, there is a re-expression of the context associated with P+ (Fig. S16e, red) that has 1308

a positive bias (Fig. S16c, red). 1309

Interestingly, in order for the COIN model to be consistent with experimental data, our definition 1310

of total adaptation in this experiment (average bias plus the state of just one context, the most 1311
responsible one) needed to be different from what would have been directly consistent with the 1312

way it is originally defined in the model (the net predicted state feedback, here corresponding to 1313

the average bias plus the average state across all contexts). However, this experiment was also 1314

conducted differently from the other experiments we modeled. In particular, in this paradigm, an 1315

explicit judgment was solicited at the beginning of each trial before motor output was required. We 1316

reasoned that the explicit commitment of where they will aim would determine where participants 1317
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eventually aim in their motor output (measured as total adaptation), thus explaining why only the 1318

reported state (corresponding to the explicit judgment in the model) and not the average state is 1319

reflected in motor output. This is in line with previous studies showing that an explicit commitment 1320
affects subsequent decision making41. Moreover, this reasoning made a further prediction: in a 1321

(control) variant of the same visuomotor rotation experiment in which no explicit judgments are 1322

solicited, total adaptation should have a different time course as it now should reflect the average 1323

state not just the explicitly reported state. This did indeed seem to be the case in the data (albeit 1324
slightly, not reaching statistical significance21): learning of P+ was slower and adaptation to P− 1325

was not as completed as in the original version of the task. These differences were qualitatively 1326

reproduced by the COIN model when total adaptation was modeled as usual, using the average 1327

state across contexts (Fig. S16a-b, dashed pink). 1328

Importantly, learning ameasurement bias is equivalent to performing sensory recalibration, which is 1329

known to occur during adaptation to a visuomotor rotation. For example, after learning a visuomotor 1330
rotation with their right hand, a participant can be asked to use their non-adapted left hand to point 1331
to where they sensed their right hand was at the end of a reach42. Consistent with a sensory re- 1332
calibration, participants incorrectly estimate the location of their right hand location, pointing closer 1333
to where the cursor was than to the actual location of their right hand. 1334

In summary, rather than mapping explicit and implicit learning to fast and slow processes, which 1335

only differ quantitatively, the COIN model suggests that they may map to qualitatively different 1336
components of learning: state variables and parameters (in this case, bias), respectively. This 1337

mapping then implies that participants may be explicitly aware of the state (most probable rotation 1338

angle) but not the bias (discrepancy between proprioceptive and visual location of the hand). The 1339

inability to report the average motor state estimate across contexts, and instead report the state 1340

of the most probable context as their explicit judgment, is in line with many studies that examine 1341

motor and perceptual judgments and find clear dissociations (e.g.43,44). 1342

Comparison with other theories of contextual inference 1343

There are deep analogies between the context-dependence of learning in the motor system and 1344

other learning systems, both in terms of their phenomenologies and the computational problems 1345

they are trying to solve. The segmentation of continuous experience into discrete “contexts” or 1346
“events” is a fundamental aspect of a variety of learning systems, such as associative learning45 1347

and episodic memory46. Recently, such context-dependent learning has been successfully for- 1348
malized within the framework of Bayesian non-parametric models6,47–49. However, these insights 1349

have not been brought to bear on the motor system. Instead, theories of motor learning either did 1350

not have a notion of context3,9,50 or used heuristics for how motor learning parses experience into 1351

discrete contexts, and how it expresses and updates the memories laid down for each context2. 1352
In those few cases in which contextual motor learning was considered within a principled proba- 1353
bilistic framework, the generative models underlying learning were not sufficiently rich (e.g. they 1354

lacked state or context transition dynamics) to be able to express fundamental properties of the 1355

environment that are also critical for explaining a number of learning phenomena8,23. 1356

Table S3 summarizes the ability of dominant single-context and multiple-context models to explain 1357

the main data sets we have modeled. The COIN model performs contextual inference in a more 1358

principled and comprehensive way than previous models of contextual learning (both of motor and 1359
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other memories), which was key to explaining the experimental data we and others collected. The 1360

COINmodel is principled because it uses a coherent Bayesian inversion of a well-defined, rich gen- 1361
erative model of the environment to compute context probabilities. Critically, these graded context 1362
probabilities implement a soft assignment of observations to contexts, such that all memories are 1363

partially updated and expressed on each trial, which was crucial in explaining memory expression 1364

in spontaneous recovery (Fig. 2), memory updating in single-trial learning (Fig. 3), savings (Fig. 4a), 1365
anterograde interference (Fig. 4b), changes in apparent learning rates with environmental consis- 1366
tency (Fig. 4c). In contrast, previous models perform hard context assignments such that only one 1367

context is expressed2 or updated2,6 on each trial and thus are unable to account for many of these 1368

phenomena. The COIN model is also comprehensive in that contextual inferences are based on 1369

all relevant information that is available to the brain: sensory cues, state feedback, and the history 1370

of contexts (encoded in context transition probabilities). In contrast, previous models either did not 1371
learn context probabilities at all2, which was crucial for explaining spontaneous recovery, or did not 1372
exploit the Markovian nature of context transitions when learning transition probabilities6,8, which 1373

was crucial for explaining environmental-consistency effects (Fig. 4c & Fig. S14). For example, 1374
the Dirichlet process Kalman filter (DP-KF) model proposed by Gershman et al. 6 learns transition 1375

probabilities by counting the number of times each context has been experienced, rather than the 1376

number of transitions between each pair of contexts (as in the COIN model). Hence, the DP-KF 1377

only learns the overall probabilities of contexts (independent of the previous context). Therefore, 1378
as the three groups in the environmental-consistency study experienced P+ and P− equally of- 1379
ten (and only the transition probabilities varied between the groups, Fig. 4c), this model cannot 1380
account for the differences in single-trial learning seen in the data. Yet other models, namely the 1381

MOSAIC model23, learn context transition probabilities but, unlike the COIN model, they do so 1382

in a non-hierarchical way such that the transition probabilities learned in one context do not gen- 1383
eralize to other contexts (i.e. each row of the context transition matrix is updated independently 1384

of all other rows). This results in this model not being able to capture anterograde interference 1385

(Fig. 4b) as the transition probabilities learned in the P+ context will have no effect once in the P− 1386

context and therefore cannot affect the expression of P−. Finally, models that do not include con- 1387
textual inference at all are not able to explain both spontaneous and evoked recovery correctly3,9 1388

(Fig. 2c,e), and are inherently unable to predict the effect of explicit contextual sensory cues on 1389

memory updating Fig. 3. 1390
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Figure S1 | COIN model. Graphical model of the generative process of the COIN model. A (potentially) infinite number
of discrete contexts, ct (colors), exist that transition as a Markov process. Each context j is associated with a state, xj

t ,
that evolves as a linear-Gaussian (stochastic) dynamical system independent of the states of the other contexts. For
clarity, only three states are shown and each state is only shown from when the context associated with it first becomes
active, even though all states exist at all times. The current context can lead to the emission of a discrete sensory cue,
qt, and also generates state feedback, yt, associated with its state (i.e. only the state associated withe active context
contributes to the state feedback; black vs. gray arrows). The context and the states are hidden from the learner who
must infer them from observed sensory cues and state feedback.
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Figure S2 | Parameter inference in the COIN model. In addition to inferring states and contexts (shown in Fig. 1),
the COIN model also infers the parameters of within-context state dynamics (a) as well as the parameters governing
transitions between contexts (b) and cue emissions for contexts (c). a, Posterior distribution of drift and retention
parameters for the three instantiated contexts (colors as in Fig. 1). Note that drift and retention are estimated to be
larger for the red context that is associated with the largest perturbation. b, Stationary probability for each instantiated
context (line colors) and the novel context (gray) representing the expected proportion of time spent in each context
given the current estimate of the transition matrix. Insets show Markov chain representations of the inferred transition
probability matrices at four key time points with arrow shading showing the transition probabilities. Note that the model
infers these transition probability matrices (at all time points) but the stationary probabilities illustrated here are not
explicitly computed by the model: we derived them from the transition probability matrices to show the model’s current
prediction for the overall probability of encountering each context in the future. c, Inferred cue emission probabilities
for the three instantiated contexts (panels) and cues (line colors). Note that full (Dirichlet) posterior distributions are
computed over both transition (b) and cue emission probabilities (c) in the model, but for clarity here we only show the
means of these posterior distributions.
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Figure S3 | Validation of the inference algorithm of the COIN model with a single context. We computed infer-
ences in the COIN model with a single context based on synthetic inputs generated by its generative model (Fig. S1).
Plots show the cumulative distributions of posterior predictive p-values of the state variable (left), and the parameters
governing its dynamics (retention, middle; and drift, right). The posterior predictive p-value is computed by evaluating
the c.d.f. of the model’s posterior over the given quantity at the true value of that quantity (as defined by the generative
model). Empirical distributions of posterior predictive p-value were collected across 4000 simulations (with different true
dynamics parameters), with 500 time steps in each simulation (during which the true state changes, but the dynamics
parameters are constant). Note that although true dynamics parameters do not change during a simulation, inferences
in the model about them will still generally evolve, and so a new posterior p-value is generated in each time step even
for these quantities. If the model implements well-calibrated probabilistic inference under the correct generative model,
all these empirical distributions should be uniform. This is confirmed by all cumulative distributions (orange and pur-
ple curves) approximating the identity line (black diagonal). Orange curves show posterior predictive p-values under
the corresponding marginals of the model’s posterior. To give additional information about the model’s joint posterior
over dynamics parameters, we also show the posterior predictive p-value (cumulative) distribution of each parameter
conditioned on the true value of the other one (purple curves).
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Figure S4 | Validation of the inference algorithm of the COIN model with multiple contexts. Simulations with
synthetic data as in Fig. S3 but with multiple contexts allowed both during data generation and inference. Empirical
distributions of posterior predictive p-value were collected across 2000 simulations (with different true retention and drift
parameters), with 500 time steps in each simulation (during which not only states evolve but also contexts transition,
and sometimes new contexts are created). Left column shows the true distributions of sensory cues, contexts and
parameters. Inset shows the growth of the number of contexts over time in both during generation (true) and inference
(inferred). Middle and right columns show the cumulative probabilities of the posterior predictive p-values (pooled across
data sets and time steps) for the observations (top row), contexts and state (middle row) and parameters (bottom row). To
calculate the posterior predictive p-values for the context, inferred contexts were relabeled by minimizing the Hamming
distance between the relabeled context sequence and the true context sequence using the Hungarian algorithm (see
Suppl. Mat.). For the parameters, the posterior predictive p-values were calculated with respect to both the marginal
distributions (retention and drift) and the conditional distributions (retention | drift and drift | retention) as in Fig. S3. The
cumulative probability curves approximate the identity line (thin black line) showing that the inferred posterior probability
distributions are well calibrated.
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Figure S5 | Mathematical analysis of spontaneous and evoked recovery. The channel phase of spontaneous
and evoked (after the two P+ trials) recovery simulated in a simplified setting (Suppl. Text) with two contexts that are
initialized to have equal but opposite state estimates (a) and equal (spontaneous recovery, solid) or highly unequal
(evoked recovery, dashed) predicted probabilities (b). For the two contexts the retention parameters are assumed to
be constant and equal, and the drift parameters are assumed to be constant, of the same magnitude but opposite sign.
Mean adaptation (c), which in the COIN model is the average of the state estimates (a) weighted by the corresponding
context probabilities (b), shows the classic non-monotonic pattern of spontaneous recovery (solid, cf. Fig. 2b-c) and
the characteristic abrupt rise of evoked recovery (dashed, cf. Fig. 2d-e). Note that although in the full model, state
estimates are different between evoked and spontaneous recovery following the two P+ trials, here we assumed they
are the same (no separate solid and dashed lines in a) for simplicity and to demonstrate that the difference in mean
adaptation between the two paradigms (c) can be accounted for by differences in contextual inference alone (b, cf.
Fig. 2b and d, top right insets). Circles on the right show steady-state values of inferences and the adaptation. Note
that in both paradigms, adaptation is predicted to decay to a non-zero asymptote (see also Fig. S6).
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Figure S6 | Evoked recovery does not decay exponentially to zero. According to the COIN model, adaptation
in the channel trial phase of evoked recovery can be approximated by exponential decay to a non-zero (i.e. positive)
asymptote (Fig. 2e, Fig. S5, Suppl. Text). To test this prediction, we fit an exponential function that either decays to
zero (light and dark green) or decays to a non-zero (constrained to be positive) asymptote (cyan) to the adaptation data
of individual participants in the evoked recovery group after the two P+ trials (black arrow). The two zero-asymptote
models differ in terms of whether they are constrained to pass through the datum on the first (channel) trial or not. The
mean fits across participants for the models that decay to zero (green) fail to track the mean adaptation (black, ± s.e.m.
across participants), which shows an initial period of decay followed by a period of little or no decay. The mean fit for
the model that decays to a non-zero asymptote (cyan) tracks the mean adaptation well and was strongly favored in
model comparison (∆ group-level BIC of 944.3 and 437.7 compared to the zero-asymptote fits with constrained and
unconstrained initial values, respectively). Note that fitting to individual participants excludes the confound of finding a
more complex time course (e.g. one with non-zero asymptote) only due to averaging across participants that each show
a different simple time course (e.g. all with zero asymptote but different time constants).
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Figure S7 | State-space model fits to adaptation data from the spontaneous and evoked recovery groups. Solid
lines show the mean fits across participants of the two-state model (top row) and the three-state model (bottom row)
to the spontaneous recovery (left column) and evoked recovery (right column) data sets. Mean ± s.e.m. adaptation
on channel trials shown in black (same as in Fig. 2c and e). Insets show differences in BIC between the two-state
model and the three-state model for individual participants (positive values in green indicate evidence in favor of the
two-state model, and negative values in purple indicate evidence in favor of the three-state model). At the group level,
the two-state model was far superior to the three-state model (group-level BIC of 64.2 and 78.4 for the spontaneous and
evoked recovery groups, respectively). Individual states are shown for the two-state model (top, blue and red). Both
the fast and slow processes adapt to P+ during the extended initial learning period. The P− phase reverses the state
of the fast process, but not of the slow process, so that they cancel when summed resulting in baseline performance.
Spontaneous recovery during the P c phase is then explained by the fast process rapidly decaying, revealing the state
of the slow process that has remained partially adapted to P+. Note that this explanation assumes that the fast and
slow processes contribute equally to the motor output at all times. This is fundamentally different from the expression
and updating of multiple context-specific memories in the COIN model, which are dynamically modulated over time
according to ongoing contextual inference.
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Figure S8 | COIN and dual-rate model fits for individual participants in the spontaneous and evoked recovery
groups. Data and model predictions are shown for individual participants as in Fig. 2c and e for across-participant
averages. Participants in the S and E groups are ordered by decreasing BIC difference between the dual-rate and
COIN model (i.e. S1’s and E1’s data most favor the COIN model), as in insets of Fig. 2c and e. Note that the COIN
model can account for much of the heterogeneity of spontaneous (e.g. from large in S1 to minimal in S6) and evoked
recovery (e.g. from large in E1 to minimal in E7).
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Figure S9 | Parameter recovery in the COIN model. Plots show the COIN model parameters that were recovered
(y-axes) from fits to 10 synthetic data sets generated with the COIN model parameters (true, x-axes) obtained from
the fits to each participant in the SR and ER experiments (Methods). Vertical bars show the interquartile range of the
recovered parameters for each participant. While several parameters are recovered with good accuracy (σq, µa, σd, σm),
others are not (α, and in particular σa and ρ). We expect that with richer paradigms and larger data sets, all parameters
would be recovered accurately. Most importantly, despite partial success with recovering individual parameters, model
recovery shows that recovered parameter sets taken as a whole can be used to accurately identify whether data was
generated by the dual-rate or COIN mechanism (Fig. S10). Note that we make no claims about individual parameters
in this paper as our focus is on model class recovery.
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Figure S10 | Model recovery for spontaneous (a) and evoked recovery experiments (b). Synthetic data sets were
generated using one of two models (COIN model, red; dual-rate model, blue) and then the same model comparison
method that we used on real data (Fig. 2c, e, insets) was used to recover the model that generated each synthetic data
set (Methods). Arrows connect truemodels (used to generate synthetic data, disks on top) to models that were recovered
from their synthetic data (pie-chart disks at bottom). Arrow color indicates identity of recovered model, arrow thickness
and percentages indicate probability of recovered model given true model. Bottom disk sizes and pie-chart proportions
respectively show total probability of recovered model and posterior probability of true model given recovered model
(assuming a uniform prior over true models), with percentages specifically indicating posterior probability of the correct
model.
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Figure S11 | Single-trial learning reflects posterior contextual inference and can be approximated as a dot prod-
uct. a, Single-trial learning for the four cue-perturbation triplets before the training phase in the memory updating
experiment. Data shows mean ± s.e.m. across participants. Single-trial learning is approximately proportional to a dot
product between the vector of responsibilities on the exposure trial of the triplet and the vector of predicted probabilities
on the subsequent channel trial (see Suppl. Mat. for derivation). The model posterior on the exposure trial is also shown
for the context that was predominantly expressed on the final channel trial of the triplet (c∗). b, Single-trial learning as
in (a) after training.
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Figure S12 | Memory updating experiment time course of learning. a, Single-trial learning on triplets that were
consistent with the training contingencies. Data (mean ± s.e. across participants) with mean of COIN model fits.
Positive learning reflects changes in the direction expected based on the force field of the exposure trial (an increase
following P+, and a decrease following P−). b, Adaptation on channel trials at the end of each block of training (purple)
and on the first channel trial of triplet within each block after washout trials (P 0). Data is mean± s.e. across participants
and lines show mean of COIN model fits.
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Figure S13 | Parameters of the COIN model fit to individual participants. Left column: Individual participant’s
parameters in the spontaneous recovery (blue), evoked recovery (green) and memory updating (red) experiments.
Right: scatter plots for all pairs of parameters for the three groups. The overlapping clouds suggest parameters are
similar across experiments.
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Figure S14 | Effect of environmental consistency on single-trial learning. Columns 1 & 2: experimental paradigm
and data replotted from Gonzalez Castro et al. 12 . Columns 3 to 5 show the output and internal inferences of the COIN
model in the same format as Fig. 4c.
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Figure S15 | Maintenance of context probabilities may require working memory. a, Adaptation in a spontaneous
recovery paradigm in which a non-memory (pink) or working memory task (green) is performed before starting the
channel trial phase (data reproduced from Keisler and Shadmehr 19 ). Initial adaptation in the channel trial phase (inset)
shows the working memory task abolishes spontaneous recovery and leads to adaptation akin to evoked recovery (cf.
Fig. S5). b, COIN model simulation in which the working memory task abolishes the memory of the context at the end
of the P− phase. c, COIN model state feedback, state of each context, predicted probabilities and state output for the
non-memory task. The circles on the predicted probability (zoomed view) show the values on the first trial in the channel
phase. d, as (c) for the working memory task. The predicted probabilities on the first trial in the channel phase are the
values under the stationary distribution.
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Figure S16 | Explicit versus implicit learning in the COIN model. a, Results of a spontaneous recovery paradigm (as
in Fig. 2b) for visuomotor learning. Explicit learning (dark green) is measured by participants indicating their intended
reach direction. Implicit learning (light green) is obtained as the difference between total adaptation (solid pink) and
explicit learning. In the visual error-clamp phase (P c), participants were told to stop using any aiming strategy so that
the direction they moved was taken as the implicit component of learning. A control experiment (dashed pink) was
also performed in which there was no reporting of intended reach direction. Reproduced from McDougle et al. 21 . b,
Simulation of the COINmodel with total adaptation (solid pink) reflecting the sum ofmost probable state from the previous
trial (dark green) and estimate of bias (light green). Dashed pink line shows total adaptation in the COIN model for a
non-reporting condition. c-h show simulation of the COIN model. c-e, Inferred bias (c), state, with black line showing
the state of the most probable context (colored line below axis) (d) and predicted probability (e) of each context. f-h,
Predicted (across-context average, as in Fig. 1f) distributions (purple) of bias (f), state (g), and state feedback (h, sum
of bias and state), and their means (cyan lines).
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participant σq µa σa σd α ρ σm αe

F 0.0500 0.9000 1.0e-02 1.0e-02 5.0e+01 0.1000 0.0500 1.0e-01

V 0.1000 0.9000 1.0e-01 1.0e-01 1.0e+01 0.9000 – 1.0e+01

S1 0.1591 0.7996 6.9e-01 1.4e-04 3.1e+01 0.3297 0.0641 –
S2 0.1260 0.9488 8.1e-04 6.2e-03 2.2e+01 0.0869 0.0661 –
S3 0.0331 0.9308 4.2e-03 2.8e-05 1.1e+05 0.1766 0.0846 –
S4 0.1237 0.9561 1.5e-05 9.1e-03 7.1e+00 0.0208 0.0836 –
S5 0.0668 0.9427 1.2e-05 4.7e-05 1.8e+03 0.4522 0.0961 –
S6 0.0775 0.8480 1.6e-05 6.4e-03 1.9e-03 0.9999 0.0978 –
S7 0.1026 0.8088 1.1e-02 1.0e-03 8.9e+00 0.0016 0.1060 –
S8 0.0392 0.7857 1.0e-02 5.9e-03 2.4e+00 0.0152 0.0929 –

E1 0.1234 0.8827 1.8e-02 7.6e-03 1.2e+02 0.2699 0.0901 –
E2 0.1441 0.9121 3.0e-04 8.7e-03 3.8e+02 0.1285 0.0804 –
E3 0.1119 0.9466 6.0e-05 7.5e-03 2.3e+02 0.0070 0.0781 –
E4 0.1172 0.8578 1.2e-02 5.9e-03 1.2e+01 0.0477 0.0883 –
E5 0.0705 0.9460 1.3e-03 5.1e-03 1.0e+07 0.3911 0.0715 –
E6 0.0559 0.9643 3.0e-03 4.9e-03 2.9e+01 0.0044 0.0966 –
E7 0.0926 0.9422 1.6e-05 3.3e-03 3.7e+06 0.0003 0.0936 –
E8 0.0990 0.8405 2.3e-03 7.1e-03 1.6e+02 0.5336 0.1000 –

A 0.0089 0.9425 1.2e-03 8.2e-04 9.0e+00 0.2501 0.0182 –

M1 0.0360 0.6575 1.1e-03 1.0e-05 2.4e+03 0.0029 0.0865 1.9e+01
M2 0.0412 0.7274 8.9e-03 1.3e-02 1.3e-01 0.0062 0.0921 3.0e+03
M3 0.0155 0.9473 1.0e-03 7.9e-04 8.3e-03 0.0003 0.0979 1.8e+03
M4 0.0572 0.6986 4.8e-03 8.0e-03 2.8e+04 0.1732 0.1056 1.3e+00
M5 0.0574 0.8420 9.5e-05 5.0e-04 2.2e+06 0.0352 0.1187 5.9e+00
M6 0.0938 0.7309 1.1e-03 1.5e-03 2.2e+04 0.0118 0.1153 1.5e+01
M7 0.0594 0.8744 2.4e-05 2.3e-03 5.2e+06 0.0007 0.1245 9.9e+01
M8 0.0708 0.7676 9.6e-05 1.6e-03 3.1e+06 0.0040 0.1206 7.0e+00
M9 0.0586 0.8751 2.8e-04 1.9e-03 1.9e+06 0.0139 0.1206 8.2e+01
M10 0.0589 0.8949 1.3e-04 7.3e-04 3.4e+05 0.1347 0.1258 2.4e-01
M11 0.0419 0.9047 1.1e-05 5.4e-04 7.1e+01 0.2443 0.1262 3.5e-01
M12 0.0576 0.8587 1.5e-04 1.1e-03 4.6e+03 0.2205 0.1333 2.3e+00
M13 0.0560 0.9164 3.3e-05 1.4e-03 1.8e+01 0.1020 0.1366 9.7e-01
M14 0.0364 0.8833 6.1e-05 4.4e-03 4.9e+02 0.0041 0.1410 4.0e-01
M15 0.0543 0.8100 4.4e-03 8.3e-04 6.8e-03 0.0508 0.1433 7.5e-03
M16 0.0546 0.8249 3.0e-05 1.1e-03 2.7e+04 0.3736 0.1423 1.2e-02
M17 0.0485 0.8534 1.2e-03 4.9e-04 1.4e+05 0.0019 0.1487 6.0e+01
M18 0.0586 0.7947 5.3e-03 1.3e-02 1.2e+03 0.0002 0.1542 5.8e-01
M19 0.1233 0.7211 1.3e-04 4.4e-03 4.1e+03 0.0002 0.1610 3.5e+01
M20 0.0210 0.9711 1.6e-04 8.6e-04 2.9e-02 0.0004 0.1534 6.6e+02
M21 0.0976 0.8624 4.1e-04 8.4e-03 9.6e+06 0.1154 0.1464 1.8e+01
M22 0.1091 0.7853 7.6e-04 3.9e-03 2.1e+03 0.0314 0.1644 1.0e+00
M23 0.0708 0.8501 3.0e-03 1.9e-03 1.5e+02 0.0220 0.1905 3.5e+01
M24 0.0898 0.9185 1.8e-04 3.0e-03 6.8e+00 0.2249 0.1989 1.5e+00

Table S1 | COIN model parameters Parameters for simulation shown in Fig. 1 (F), model validation (V) and fits for the
spontaneous (S) and evoked (E) recovery participants, to the average of both groups (A), and the memory-updating
participants (M). Participants in the S and E groups are ordered by decreasing BIC difference between the dual-rate and
COIN model (i.e. S1’s and E1’s data most favor the COIN model). Participants in the M group are ordered by decreasing
probability of their adaptation data under the COIN model (likelihood).
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participant af as bf bs σm

S1 0.5284 0.9956 0.5108 0.0333 0.1043
S2 0.4194 0.9973 0.4014 0.0427 0.0784
S3 0.1517 0.9879 0.1476 0.0263 0.0984
S4 0.7078 0.9990 0.3869 0.0388 0.0987
S5 0.2565 0.9936 0.2436 0.0497 0.1029
S6 0.8818 1.0000 0.3705 0.0029 0.1043
S7 0.5435 0.9890 0.3407 0.0492 0.1055
S8 0.9296 0.9996 0.0426 0.0306 0.0872

E1 0.6311 0.9984 0.4835 0.0307 0.1448
E2 0.4933 0.9972 0.4524 0.0336 0.1257
E3 0.6069 0.9967 0.2859 0.0331 0.0994
E4 0.7525 0.9947 0.5218 0.0482 0.1081
E5 0.6474 0.9972 0.2409 0.0341 0.0918
E6 0.7642 0.9969 0.2859 0.0366 0.1059
E7 0.7819 0.9901 0.1251 0.0398 0.0895
E8 0.7984 0.9959 0.2233 0.0299 0.0829

Table S2 | Dual-rate model parameter fits for spontaneous and evoked recovery group. Same format as Table S1.
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single-context models multiple-context models
dual-rate memory

of errors
source of
errors

winner-
take-all

DP-KF MOSAIC COIN

Smith et al. 3 Herzfeld et al. 9 Berniker and
Kording 8

Oh and
Schweighofer 2

Gershman et al. 6 Haruno et al. 23

spontaneousdy
recoverydy 3 7 a 7 b 7 b 7 c

7
d

3

evokeddy
recoverydy 7 e 7 e 73 f 73 f 73 f 7 d 3

memorydy
updatingdy 7 g 7 g 7 g 7 h 7 g,h 3 3

savings afterdy
full washoutdy 7 i 3 3 3 3 3 3

anterogradedy
interferencedy 3 7 a 7 b 7 b 3 7 j 3

environmentaldy
consistencydy 7 i 3 7 b 7 b 7 k 3 3

explicit/implicitdy
learningdy 73 m 7 l 7 l 7 l 7 l 7 l 3

Table S3 | Comparison of COIN to other models. Table shows which experimental phenomena (rows) can be ex-
plained by different single and multiple-context models (columns). Alphabetical superscripts index the key feature(s)
missing from each model which are primarily responsible for their inability to explain a particular phenomenon. Note
that for many models it is either not possible or not clear how the feature(s) could be added. Orange cross-ticks are for
models that can partially explain a phenomemon.
Spontaneous recovery, the gradual, non-monotonic re-expression of P+ in the channel trial phase (Fig. 2c), requires
a single-context model to have multiple states that decay on different timescales or a multiple-context model that can
change the expression of memories in a gradual manner based on the amount of experience with each context. There-
fore, single-context models that have a single statea, or multiple-context models that do not learn context transition
probabilitiesb or do not have state dynamicsd do not show spontaneous recovery. Models that learn transition proba-
bilities but that do not represent uncertainty about the previous contextc (the “local” approximation in DP-KF) can either
include a self-transition bias or not. With a self-transition bias, the expression of memories changes in an abrupt manner
when, in the channel trial phase, the belief about the previous context changes (e.g. from P− to P+), and thus such
models fail to explain the gradual nature of spontaneous recovery. Without a self-transition bias, the change in expres-
sion of memories is gradual based on updated context counts, but this occurs too slowly relative to the timescale on
which the rise of spontaneous recovery occurs.
Evoked recovery, the rapid re-expression of the memory of P+ in the channel trial phase (Fig. 2e) that does not simply
decay exponentially to baseline (Fig. S6), requires a model to be able to switch between different memories based on
state feedback. Therefore, single-context modelse that cannot switch between memories are unable to show the evoked
recovery pattern seen in the data. Multiple-context models with memories that decay exponentially to zerof can only
partially explain evoked recovery, showing the initial evocation but not the subsequent change in adaptation over the
channel trial phase. Models with no state decayd cannot explain evoked recovery.
Memory updating requires a model to update memories in a graded fashion and to use sensory cues to compute these
graded updates. Therefore, models that either have no concept of sensory cuesg or multiple-context models that only
update the state of the most probable context in an all-or-none mannerh do not show graded memory updating.
Savings, faster learning during re-exposure compared to initial exposure, after full washout requires a single-context
model to increase its learning rate or a multiple-context model to protect its memories from washout and/or learn context
transition probabilities. Therefore, single-context models with fixed learning ratesi do not show savings.
Anterograde interference, increasing exposure to P+ leads to slower subsequent adaptation to P−, requires a single-
context model to learn on multiple timescales or a multiple-context model to learn transition probabilities that generalize
across contexts. Therefore, single-context models with a single statea, or multiple-context models that either do not
learn transition probabilitiesb or that learn transition probabilities independently for each row of the context transition
matrixj do not show anterograde interference.
Environmental consistency, the increase/decrease in single-trial learning for slowly/rapidly switching environments,
requires a model to either adapt its learning rate or learn context transition probabilities based on context transition
counts. Therefore, single-context models with fixed learning ratesi or multiple-context models that either do not learn
transition probabilitiesb or that learn transition probabilities based only on context countsk do not show the effects of
environmental consistency on single-trial learning.
Explicit and implicit learning, the decomposition of visuomotor learning into explicit and implicit components, requires
a model to have elements that can be mapped onto these components. For most models, there is no clear way to
map model elements onto these componentsl. It has been suggested that the fast and slow processes of the dual-rate
model correspond to the explicit and implicit components of learning, respectively. However, in a spontaneous recov-
ery paradigm, this mapping only holds during initial exposure and fails to account for the time course of the implicit
component during the counter-exposure and channel trial phasesm (see Suppl. Text).
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