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Summary: SCReadCounts is a method for a cell-level estimation of the sequencing read counts bearing a par-
ticular nucleotide at genomic positions of interest from barcoded scRNA-seq alignments. SCReadCounts gener-
ates an array of outputs, including cell-SNV matrices with the absolute variant-harboring read counts, as well as 
cell-SNV matrices with expressed Variant Allele Fraction (VAFRNA); we demonstrate its application to estimate cell 
level expression of somatic mutations and RNA-editing on cancer datasets. SCReadCounts is benchmarked 
against GATK and Samtools and is freely available as a 64-bit self-contained binary distribution (Linux), along 
with MacOS and Python installation. 
Availability: https://github.com/HorvathLab/NGS/tree/master/SCReadCounts 
Supplementary Information: SCReadCounts_Supplementary_Data.zip 

Introduction Estimation of single nucleotide variants (SNV) 
expression from single cell RNA sequencing (scRNA-seq) data is an 
emerging field with quickly expanding applications, including as-
sessment of allele expression, transcriptional burst kinetics, quanti-
tative loci traits (QTLs), haplotype inference, X-chromosome inac-
tivation, and demultiplexing (Vu et al., 2019; Larsson et al., 2019; 
Reinius et al., 2016; Van Der Wijst et al., 2018; Hongyu Liu; 
Prashant et al., 2019, 2020; Edsgärd et al., 2016; Xu et al., 2019; 
Griffiths et al., 2017; D’Antonio-Chronowska et al., 2019). In can-
cer, studies on cell-level genetic heterogeneity have been instrumen-
tal to trace lineages and resolve subclonal architecture (Vu et al., 
2019; Lee et al., 2017; Puram et al., 2017; Venteicher et al., 2017; 
Müller et al., 2016). Genetically distinct tumor cell populations are 
shown to exert gene expression (GE) heterogeneity, and to differ in 
clinical features. However, it is currently challenging to extract ge-
netically distinct cells for downstream analyses (Petti et al., 2019).  

To aid these types of studies, we have developed a tool – 
SCReadCounts - for cell-level estimation of reference and variant 
read counts (nvar and nref, respectively), from pooled barcoded 
scRNA-seq alignments. Provided a list of variant sites, 
SCReadCounts estimates nvar and nref, calculates expressed Variant 
Allele Fraction (VAFRNA = nvar / (nvar + nref)) and outputs cell-SNV 
matrices. The cell-SNV matrices can be used as inputs for a wide 
range of downstream analyses. We demonstrate the application of 
SCReadCounts to estimate cell level expression of somatic muta-
tions and RNA-editing on cancer datasets from Adrenal Neuroblas-
toma (Dong et al., 2020). We also exemplify a downstream applica-
tion to correlate VAFRNA to GE using scReQTL (Liu et al., 2020). 

Results ScReadCounts requires two inputs: a barcoded 
scRNA-seq alignment, and a list of genomic positions of interest. In 
the exemplified workflow (Fig.1a), the barcodes and the Unique 
Molecular Identifiers (UMIs) are processed using UMItools, and the 
sequencing reads are aligned to the reference genome (GRCh38) us-
ing STAR (v.2.5.7b)(Smith et al., 2017; Dobin et al., 2013). The 
resulting pooled alignments can be filtered to correct for allele-map-
ping bias (WASP, Van De Geijn et al., 2015); this filtering utilizes 
the same list of positions to be used as input for scReadCounts. Ex-
amples of positions of interest include SNVs called in the corre-
sponding alignments (i.e. using GATK, see Fig.1a), or user-speci-
fied lists of coordinates from external sources, such as sets of so-
matic mutations (COSMIC) or RNA-editing loci (Auwera  Mauricio 
O. et al., 2002; Tate et al., 2019; Picardi et al., 2017). 

SCReadCounts generates three main outputs in a tab-separated 
value format: (1) a table containing nvar and nref with quality and fil-
tering metrics for each barcode, (2) a cell-SNV matrix with the ab-
solute nvar and nref counts, and, (3) a cell-SNV matrix with the 

VAFRNA estimated at a user-defined threshold of minimum number 
of required sequencing reads (minR) (S_Fig.1).  

Performance We compared the SCReadCounts estimations 
with the analogous modules of the mpileup utility of Samtools (Li et 
al., 2009) and the haplotype caller of GATK. SCReadCounts default 
options generate nearly identical values to mpileup and GATK 
(Fig.1b and S_Fig.2). SCReadCounts uses, by default, a very simple 
read-filtering criteria, but it can also be readily configured to achieve 
scenario-specific, mpileup-consistent, or GATK-consistent results, 
with optional explicit output of the number of reads discarded by 
each filtering rule. In regard to efficiency, on our system (2x14 cores 
CPUs with 1.5TB RAM compute node) processing of a file contain-
ing ~5000 cells, ~150mln reads, and ~80K SNVs, requires approxi-
mately 4h for the estimation of nvar and nref, and up to 2 minutes for 
the generation of the cell-SNV matrices. The later enables the users 
to quickly generate VAFRNA matrices at various minR. 

Applications We first tested the ability of SCReadCounts to 
assess the expression of known somatic mutations in the neuroblas-
toma scRNA-seq dataset. To do that we extracted from COSMIC 
404,693 single nucleotide substitutions located in Cancer Census 
Genes and not overlapping with known germline SNV loci (S_Table 
1). SCReadCounts estimated detectable expression of a number of 
COSMIC mutations in a low to moderate proportion of the individ-
ual cells. An example is COSV67805199 in the gene RHOH, with a 
variable VAFRNA (minR = 5) across a number of cells from sample 
SRR10156295 (Fig.1c). 

Next, we sought to assess if SCReadCounts can detect cell-spe-
cific RNA-editing levels. We used the same set of neuroblastoma 
samples, this time assessing 101,713 single nucleotide editing events 
from the REDI database (S_Table_2) (Picardi et al., 2017). At minR 
= 5, SCReadCounts identified multiple loci with variable levels of 
editing, some with apparent clustering in the two-dimensional space 
of certain cell-types (cell-types are classified using Seurat and Sin-
gleR (Hafemeister and Satija, 2019; D. et al., 2019) An example of 
RNA-editing in position 14:100846310_A>G) located in the cancer-
implicated lincRNA MEG3 is shown on Fig. 1d. Cells with edited 
MEG3 were seen predominantly in neurons, where they showed 
clear positional clustering. The levels of editing showed positive 
correlation (albeit with small effect size) with the expression of the 
harboring MEG3 (cis-scReQTL, Fig1.e left,), and higher size effect 
correlations with other genes (trans-scReQTLs), for example the 
Neuronal Vesicle Trafficking Associated NSG1 (Fig.1e, right).  

Considerations When applying SCReadCounts, the follow-
ing considerations are in place. First, as mentioned earlier, modeling 
sequencing errors in the UMI is essential. Second, estimation of nvar 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.23.394569doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394569
http://creativecommons.org/licenses/by/4.0/


 

 2 

is sensitive to mapping, therefore WASP-correction of the align-
ments is recommended. Third, when estimating VAFRNA, the  selec-
tion of minimal required number of reads is important; our results 
show that for the most of the current scRNA-seq datasets, minR=5 
provides a reasonable balance between randomness of sampling 
(high minR) and inclusivity (low minR) (Prashant et al., 2020).  

In summary, we believe that SCReadCounts supplies a fast and 
efficient solution for estimation of scRNA-seq genetic variance. 
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Figure 1. a. ScReadCounts work-
flow using publicly available tools. 
b. Concordance of read counts esti-
mations (VAFRNA) between 
SCReadCounts (y-axis) and 
mpileup (x-axis) from an individual 
cell alignment (left), and a pooled 
alignment (right); sample 
SRR10156295. c. IGV visualization 
of variable VAFRNA of the somatic 
mutation COSV67805199 in the 
gene RHOH in three individual cells 
of sample SRR10156295. d. Two-
dimensional UMAP clusters show-
ing cells classified by type (left) and 
visualizing RNA-editing levels in 
the gene MEG3, where the intensity 
of the color corresponds to the pro-
portion of edited reads (sample 
SRR10156295). e. Left: Cis-
scReQTL correlation between ed-
ited levels (x-axis) and GE (y-axis) 
of MEG3. Right: trans-scReQTL 
between editing levels (x-axis) in 
MEG3 and the NSG1 GE (y-axis); 
the sample is SRR10156295). 
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