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Abstract  

There is expanding interest in researching the cerebellum given accumulating evidence of its 

important contributions to cognitive and emotional functions, in addition to more established 

sensorimotor roles. While large genome-wide association studies (GWAS) have shed light on the 

common allele architecture of cortical and subcortical brain structures, the cerebellum remains under 

investigated. We conducted a meta-GWAS of cerebellar volume in 33,265 UK-Biobank European 

participants. Results show cerebellar volume to be moderately heritable (h2
SNP=50.6%). We identified 

33 independent genome-wide associated SNPs with total cerebellar volume, with 6 of these SNPs 

mapped to protein-coding genes and 5 more shown to alter cerebellar gene expression.  We highlight 

21 unique candidate genes for follow-up analysis. Cerebellar volume showed significant genetic 

correlation with brainstem, pallidum and thalamus volumes, but no significant correlations with 

neuropsychiatric phenotypes. Our results provide important new knowledge of the genetic 

architecture of cerebellar volume and its relationship with other brain phenotypes.  
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Introduction  

The cerebellum has historically been ascribed solely to a role in the coordination of movement, 

however, increasing evidence has underlined its relevance in cognition and emotional processing1. 

Detailed functional mapping of the cerebellum indicates expansive functional connectivity with non-

motor cortical regions2–4 as well as elevated activity during a wide range of cognitive tasks5. Supporting 

its role in cognition, lesions and disruption of cerebellar functioning lead not only to motor alterations, 

but also to uncoordinated thought (i.e. dysmetria of thought)6, mirroring impairments present in some 

neurological and psychiatric disorders7,8.  

Twin studies have estimated cerebellar volume to have moderate to high heritability (33.6 to 86.4%)9 

in line with other structural brain phenotypes. Recent genome-wide association studies (GWAS) for 

cerebral anatomical phenotypes have revealed their highly polygenic nature, with a substantial 

contribution to heritability from common alleles (e.g. thalamus single nucleotide polymorphism (SNP)-

based heritability h2
SNP= 47%, cortical surface area h2

SNP= 34%)10–12 and their shared genetic liabilities 

with brain-related phenotypes such as cognition or psychiatric disorders. Whilst two previous brain-

wide GWAS studies have included cerebellar volumetric measures amongst other phenotypes 

investigated13,14, there has been little exploration and discussion of these cerebellar findings in terms 

of their relationship with other brain-based measures and functional consequences of genetic 

variants.   

We report here a GWAS of total cerebellar grey matter volume in 33,265 participants from the UK-

Biobank cohort15 -  increasing the sample size by more than 10,000 participants from the largest GWAS 

to date including cerebellar measures14. We completed two independent GWAS analyses with 

approximately half the total sample in each, corresponding to two Magnetic Resonance Imaging (MRI) 

data releases from the UK-Biobank. We examined the replicability of our results between both GWASs, 

followed by a meta-analysis of both sets of results. We report on the genome-wide significant regions 

identified, including functional annotation and gene expression analysis to identify likely related 

genes, in addition to assessing the genetic overlap with other brain-based (e.g. cortical thickness) and 

brain-related (e.g. general cognitive ability) phenotypes. Our primary focus was on the genetic 

architecture of total cerebellar volume, however, we provided additional lobe-specific analyses based 

on primary, horizontal and posterolateral fissure separations. Our study expands our understanding 

of the influence of common genetic variants on brain anatomy and the shared genetic liability across 

different anatomical brain and cognitive/clinical phenotypes. 
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Results 

GWAS analyses for phase 1 and phase 2 data releases 

We processed and analysed two independent samples from the UK-Biobank corresponding to two 

consecutive data releases of brain imaging data, henceforth referred to as phase 1 and phase 2 (see 

Methods). A total of 17,818 participants from phase 1 (age mean[min,max]= 63[45,80]yrs, 53% 

female) and a total of 15,447 participants from phase 2 (age mean[min,max]= 65[48,81]yrs, 53% 

female)  had genotype data which passed quality control and were included in their respective GWASs 

of cerebellar volume (supplementary table 1). Genotype quality control was performed on each phase 

separately. A total of 6,193,476 SNPs passed quality control and were common to both phases. Using 

conditional and joint analysis (COJO)16 on each phase of the GWAS results, we identified 6 

independent genome-wide significant associated regions (containing index SNP p< 5×10-8; LD range 

SNPs r2 > 0.2 to index SNP) in the phase 1 GWAS, and 6 independent genome-wide significant 

associations in the phase 2 GWAS (Figure 1; Supplementary table 2A & 2B).  

Between-phase results’ reliability and validity  

We examined the direct replication, genetic correlation and the out-of-sample predictive ability of the 

identified variants for each phase. All but 1 of the 6 index SNPs observed in phase 1 were replicated 

in phase 2 (p< 0.0083 {0.05/6}), while all 6 of the index SNPs identified in phase 2 were replicated in 

phase 1 (p< 0.0083 {0.05/6}). Four index SNPs were genome-wide significant across both phases 

(Supplementary tables 2A & 2B). 

<INSERT FIGURE 1 ABOUT HERE> 

We obtained similar moderate GCTA-GREML (Genome-wide complex trait analysis – Genome-based 

restricted maximum likelihood)17,18 SNP-based heritability for each phase (phase 1 h2
SNP[standard 

error(SE)]= 46.8[3.4]% and phase 2 h2
SNP[SE]= 45.3[3.9]%), and a very strong between-phase genetic 

correlation (rg[SE]= 1.0[0.1], p= 2.2×10-33).  

Finally, the polygenic score based on the phase 1 GWAS that best predicted the variance of total 

cerebellar volume in phase 2 participants was that calculated at a SNP inclusion p-threshold< 0.01 

(19,210 SNPs), uniquely explaining (ΔR2) 1.9% (p= 5.3×10-118) of the variance once the effect of the 

relevant demographic, imaging and genetic covariates (see methods) had been accounted for. 

Reciprocally, the polygenic score based on the phase 2 GWAS calculated at SNP inclusion p-threshold< 
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0.1 (146,489 SNPs) uniquely accounted for the greatest amount of the variance of total cerebellar 

volume in phase 1 participants, being 1.3% (p= 3.9×10-100) (Supplementary table 3).  

Meta-analysis of GWAS results for phase 1 and phase 2 

Given the high correlation between phases, we combined the summary statistics in a fixed-effect 

inverse-variance method meta-analysis using METAL19. The combined analysis included 33,265 

participants and 6,193,476 SNPs present in both phases. The SNP-based heritability estimate in the 

combined sample was h2
SNP[SE]= 50.6[2.0]%. Conditional analysis using COJO on the meta-GWAS 

summary statistics identified a total of 33 independent genome-wide significant associations (Figure 

1; Table 1). LocusZoom20 figures of each of the 33 index SNPs are available in supplementary materials.  

All index SNPs identified in the GWAS of each phase were included within the 33 independent SNPs 

identified in this meta-analysis; and all 33 index SNPs from this meta-analysis were nominally 

significant in each phase GWAS, with 32 and 29 of them remaining significant after Bonferroni 

correction (p< 0.0015 {0.05/33}) in the phase 1 and phase 2 GWAS, respectively. 

<INSERT TABLE 1 ABOUT HERE> 

Annotation of genome-wide significant regions from the meta-GWAS 

We identified high linkage disequilibrium (LD) partners (r2> 0.8) of the 33 index SNPs, mapped nearby 

genes and annotated all SNPs within each region with SNP Consequence, CADD Phred score, and 

putative functional consequence via PolyPhen and SIFT category (Supplementary tables 4, 5A & 5B). 

Five index SNPs were directly or in high LD (r2> 0.8) with non-synonymous SNPs, causing alterations in 

protein structure. Of these 5 non-synonymous SNPs, two were flagged as likely deleterious: the 

missense variant rs1800562 in the HFE (Hereditary hemochromatosis type 1) homeostatic iron 

regulator gene and rs13107325 located within the metal cation symporter SLC39A8 (Solute carrier 

family 39 member 8).  The other three non-synonymous SNPs were flagged as tolerated/benign and 

reside within the transcription factor EIF2AK3 (Eukaryotic translation initiation factor 2 alpha kinase 

3), the protein phosphatase PPP2R4 (Protein Phosphatase 2 Phosphatase Activator; alias PTPA), and 

the transcription factor MYCL (MYCL proto-oncogene). A synonymous annotated SNP was located 

within the PAPPA (Pregnancy-associated plasma protein A) gene, being also the region with the most 

significant association with cerebellar volume from our results.  
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Expression quantitative trait loci (eQTL) and summary-data-based Mendelian randomisation (SMR) 

analysis  

SNPs within each independent region were also mapped to cis-eQTL SNPs from the Genotype-Tissue 

Expression – version 7 (GTEx-7) cerebellum and cerebellar hemisphere labelled datasets. Six of the 

independent regions contained genome-wide significant eQTLs for either cerebellar labelled tissue, at 

cytobands 3p21.31, 5q14.2, 6q16.2, 8p23.1, 8q24.3 and 9q34.11 (Supplementary table 6A & 6B). The 

index SNP rs3118634 at 9q34.11 is an eQTL for 3 transcripts; PPP2R4 , as well as two transcripts of 

unknown function, RP11-247A12.2 and RP11-247A12.7. A region within the 3p21.31 cytoband 

included the variant rs3774800, a SNP which is in strong LD with the index SNP rs7640903 of that 

region (r2= 0.83) and is an eQTL with 5 transcripts: AMT (Aminomethyltransferase), CCDC71 (Coiled-

Coil Domain Containing 71), NCKIPSD (NCK Interacting Protein With SH3 Domain), WDR6 (WD Repeat 

Domain 6 ) and GPX1  (Glutathione Peroxidase 1), with the latter only observed as an eQTL in the 

cerebellum labelled dataset while the other four were all observed as eQTLs in both cerebellar labelled 

datasets. The variant rs55803832 located at 5q14.2 is an eQTL in cerebellum labelled tissue for the 

extracellular matrix protein gene VCAN (Versican).  Additional eQTLs were mapped for PTK2 (Protein 

Tyrosine Kinase 2) and other transcripts of unknown function, namely RP1-199J3.5, RP11-481A20.10, 

RP11-481A20.11 and AF131216.5.  

We further extended the eQTL investigation by applying SMR21,22 analysis (Table 2). SMR examines the 

relationship between the GWAS and eQTL association at multiple SNPs within a region and, by doing 

so, can distinguish between associations driven by linkage from those by possible causal (or 

pleiotropic) relationships between altered gene expression and altered cerebellar volume. We again 

focused our analysis on the two cerebellar labelled GTEx-v7 eQTL tissue datasets. SMR identified 

significant relationships between associations at 3 independent regions: at 5q14.2, 8p23.1 and 

9q34.11 cytobands. In total there were 6 transcripts which showed evidence supporting a causal (or 

pleiotropic) relationship between trait association and transcript expression, namely PPP2R4, RP11-

247A12.2 and RP11-247A12.7 at 9q34.11; VCAN at 5q14.2; and the long non-coding RNA FAM85B 

(family with sequence similarity 85 member B) and pseudogene FAM86B3P (family with sequence 

similarity 86 member B3, pseudogene) at 8p23.1. The strongest SMR association was observed for 

VCAN, where we see a clear relationship with the GWAS associations with cerebellar volume and VCAN 

gene expression in cerebellum labelled tissue (Figure 2). It is important to note that the physical 

location of the VCAN gene transcript does not overlap with the location of the peaks of the GWAS 
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associations and that this relationship would not have been prioritised without the use of functional 

annotations.  

<INSERT TABLE 2 AND FIGURE 2 ABOUT HERE> 

Genetic Correlations 

Correlation against previous research on cerebellar phenotypes 

We performed genetic correlation analyses between our meta-GWAS results and previous studies 

including cerebellar volumes: Elliott et al (2018)13 (left & right cerebellum) and Zhao et al (2019)14 (left 

& right cerebellar hemispheres and 3 vermal divisions). We found high genetic correlation between 

our results and those of Elliott et al (left and right cerebellum: rg[95% Confidence Intervals(CI)]= 

0.92[0.75,1.00] & 0.98[0.77,1.00], respectively) and Zhao et al (left & right hemispheres; IIV-V, VI-VII 

& VIII-IX vermal regions: rg[95%CI]= 0.91[0.84,0.97] & 0.91[0.84,0.98]; 0.44[0.28,0.60], 0.45[0.32,0.57] 

& 0.56[0.46,0.65], respectively), with all passing Bonferroni corrected significance threshold (p< 

0.0071 {0.05/7}) (Supplementary table 7A). Of the 33 independent associations that we identified, 15 

were present in these previous works (our index SNP r2> 0.1 or the LD region around our index SNP< 

500kb away from their identified independent regions) while 18 were novel to the literature.  

Correlation against anthropomorphic phenotypes 

Since several of the identified index variants were previously reported to be associated with multiple 

anthropometric traits (http://www.nealelab.is/uk-biobank/), as an additional analysis we investigated 

whether the variance in cerebellar volume observed might reflect measures of general body size. To 

do this, we explored genetic correlations between our cerebellar volume meta-GWAS and several 

anthropometric measurements in the UK-Biobank data, including Birth Weight, Body Fat Percentage, 

Body Mass Index (BMI), Sitting Height, Standing Height and Weight (Supplementary table 7B). None 

of these correlations were significant after Bonferroni correction (p< 0.0083 {0.05/6}). The strongest 

correlation observed was with Body Mass Index (rg[95%CI]= -0.07[-0.12,-0.02], p= 0.01).    

Correlation against other brain-based and brain-related phenotypes 

We examined the genetic correlation between our meta-GWAS for cerebellar volume and the most 

recent GWAS for subcortical volumes11,12 and cortical thickness and surface area10. We found positive 

genetic correlations passing our Bonferroni corrected significance threshold (p< 0.005 {0.05/10}) 
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between the volumes of the cerebellum and the volume of brainstem (rg[95%CI]= 0.47[0.37,0.58] , p= 

1.0×10-18), pallidum (rg[95%CI]= 0.31[0.19,0.43], p= 4.5×10-7) and thalamus (rg[95%CI]= 

0.24[0.12,0.36], p= 6.5×10-5). A trend towards a negative correlation with cerebral cortical surface 

area was also found, but this just felt short of the Bonferroni corrected significant threshold 

(rg[95%CI]= -0.14[-0.25,-0.04], p= 0.007) (Table 3A). 

We also ascertained the genetic correlation between cerebellar volume and brain-related phenotypes 

previously associated with cerebellar anatomy and/or function, including schizophrenia23, bipolar24, 

autism spectrum25 disorders, Parkinson’s disease26 and general cognitive ability27. None of these 

showed significant genetic correlation with cerebellar volume even at a nominal level of significance 

(p< 0.05) (Table 3B).  

<INSERT TABLE 3 ABOUT HERE> 

Cerebellar lobe analysis 

To ascertain the homogeneity of common allele architecture across the cerebellum, we partitioned 

the cerebellum into 7 separate lobes using the demarcations of primary, horizontal, and posterolateral 

fissures:  hemispheres of the anterior (I-V), superior posterior (VI-Crus I), inferior posterior (Crus II-IX) 

and flocculonodular (X) cerebellum, plus the vermal regions of the latter three. We showed similar 

SNP-based heritability estimates across all lobes ranging around the overall cerebellar heritability, 

except for the vermal flocculonodular lobe which showed slightly lower heritability (h2
SNP[SE]= 

35.4[1.9]%) (Supplementary table 8A). Genetic correlation between lobes was at least moderate for 

most (between-lobes mean rg≈ 0.44) and all correlations survived Bonferroni correction for the total 

number of lobe-pairings tested (p< 0.0024 {0.05/21}); being strongest between the inferior posterior 

hemisphere and vermis (rg[95%CI]= 0.66[0.60,0.72], p= 1.4×10-103) and weakest between the 

flocculonodular hemisphere and vermis (rg[95%CI]= 0.19[0.07,0.30], p= 1.3×10-3) (Figure 3; 

Supplementary table 8A).  

<INSERT FIGURE 3 ABOUT HERE> 

We explored the associations between these cerebellar lobes and the brain-based and brain-related 

phenotypes mentioned previously. Correcting for the 70 possible pairings with other brain-based 

traits (p< 0.00071 {0.05/70}), positive correlations were seen between all lobes and the brainstem, 

being highest with flocculonodular vermis (rg[95%CI]= 0.49[0.38,0.59], p= 4.3×10-18) and lowest with 

the superior posterior hemisphere and vermis (rg[95%CI]= 0.26[0.15,0.37], p= 3.0×10-6 & rg[95%CI]= 
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0.26[0.14,0.38], p= 1.5×10-5, respectively). All lobes also showed a positive genetic correlation with 

bilateral pallidum, aside from the superior posterior hemisphere which did not survive Bonferroni 

correction (rg[95%CI]= 0.18[0.06,0.30], p= 3.8×10-3) and with the highest correlation being with the 

flocculonodular vermis (rg[95%CI]= 0.30[0.17,0.43], p= 4.0×10-6). The same pattern was seen with the 

thalamus, with only the superior posterior hemisphere and vermis positive correlations not surviving 

Bonferroni correction (rg[95%CI]= 0.12[0.00,0.24], p= 0.066 & rg[95%CI]= 0.15[0.03,0.27], p= 0.016, 

respectively) and with the highest correlation being with the flocculonodular vermis (rg[95%CI]= 

0.31[0.18,0.45], p= 3.8×10-6) (Supplementary table 8B). We also found a negative genetic correlation 

between the flocculonodular hemispheres and cerebral cortical surface area (rg[95%CI]= -0.16[-0.26,-

0.07], p= 4.2×10-4). Finally, no lobes showed Bonferroni-corrected significant (p< 0.0012 {0.05/42}) 

genetic correlation with any of the brain-related phenotypes included in our study (Supplementary 

table 8C).  

Discussion 

In this study we combine the UK-Biobank imaging and genotype data of 33,265 individuals of European 

ancestry to investigate common allele influences on cerebellar volume. After ascertaining that total 

cerebellar volume was moderately heritable in our sample (h2
SNP= 50.6%), we identified 33 

independent genome-wide significant SNPs across 29 regions associated with this phenotype. 

Functional annotation and positional mapping identified 6 SNPs impacting protein coding genes while, 

via SMR, we show evidence of impact on expression of 6 transcripts in cerebellar tissue. Overall, we 

identified 21 genes of interest for follow-up analysis for their effect on cerebellar volume. We found 

a large genetic overlap between cerebellar volume and the volume of the brainstem, the pallidum and 

the thalamus, however, no genetic associations with neurological, psychiatric, or cognitive 

phenotypes previously associated with changes in cerebellar anatomy and/or function were found.  

Further analyses separating the cerebellum into lobes showed moderate to high genetic correlation 

between them, consistent with the relatively homogenous gene expression seen across cerebellar 

subdivisions28. 

We initially performed two independent GWASs of cerebellar volume (phase 1 and phase 2) following 

two consecutive brain imaging data releases from the UK-Biobank.  We obtained a high replication of 

independent index SNPs across phases, a significant out-of-sample prediction of cerebellar volume for 

both sets of results and a very high significant correlation between both GWASs. On this basis, we 

combined both sets of results into a meta-analysis to increase statistical power to reveal significant 
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associations and for additional downstream investigation. We compared the main results from our 

meta-analysis to those previously reported on cerebellar grey-matter measures. To our knowledge 

only two previous GWASs have considered the cerebellum; both using UK-Biobank samples including 

approximately 10,00013 and 20,00014 participants each. We found high genetic correlation between 

our results for overall cerebellar volume and those previously reported on the left and right cerebellar 

hemispheres (including splitting of vermal regions in one13) in both these studies (all rg> 0.90). We 

found only moderate, although significant, correlation with those reported for purely vermal regions14 

(mean rg≈ 0.50), with the reduction in genetic correlation likely due to their smaller volumes and so 

contributing less to the overall total cerebellar volume measure. Furthermore, the SNP-based 

heritability estimates we obtained are in keeping with those previously reported for other non-

cerebellar grey-matter volumes10–14. Finally, since several of the independent genome-wide significant 

SNPs we identify had also previously been shown to be associated with multiple anthropometric traits 

(http://www.nealelab.is/uk-biobank/) – in addition to other brain-based and brain-related traits – we 

sought to confirm that our results were not simply a function of these anthropomorphic measures. 

We found no genetic correlation between our GWAS results for cerebellar volume and previous 

GWASs of anthropomorphic measures including birth weight, body fat percentage, body mass index 

(BMI), sitting height, standing height and weight. All of the above provide confidence about the 

reliability and validity of the results reported here. 

We applied Conditional and Joint Analysis of Association (COJO) to the total cerebellar volume GWAS 

and identified 33 independent genome-wide significant SNP associations across 29 loci.  Of the 33 

independent SNPs, 15 had been directly or indirectly identified as showing association with cerebellar 

volume while 18 were novel13,14. One previously implicated SNP was the synonymous SNP rs35565319 

in the PAPPA gene transcript. PAPPA is an IGF binging protein protease with possible cerebellar-

specific interactional effects29, being highly expressed in the placenta and whose reduced protein 

expression is associated with various adverse pregnancy outcomes30,31 and neuronal survival in animal 

models32. Of the novel independent regions, 5 contained non-synonymous SNPs altering protein 

structure. Based on functional annotations, two of these were deleterious missense variants: 

rs13107325 in the metal cation symporter SLC39A8 and rs1800562 in the homeostatic iron regulator 

HFE. The rs13107325 variant has been previously associated with increased volume in individual 

inferior posterior and flocculonodular lobules13, as well as with increased striatum and putamen 

volumes13. A study of the association between rs13107325 and putamen volume found it to be 

accompanied by decreased SLC39A8 expression in the putamen and with the SNP-trait association 
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decreased in those with schizophrenia33. The rs13107325 SNP has also been associated with 

schizophrenia itself23, neurodevelopmental outcomes and intelligence test performance34,35, blood 

pressure36 and numerous other factors13,37,38, including over 70 anthropometric traits 

(http://www.nealelab.is/uk-biobank/). The rs1800562 HFE SNP is also known as Cys282Tyr and has 

been associated with reduced putamen volume and T2star signal in the striatum13, as well as being 

involved in iron regulation and transport, being a major risk variant for hemochromatosis where it 

accounts for approximately 85% of cases39, mineral metabolism and haematological disorders40 13. The 

other three non-synonymous SNPs included variants altering protein structure of translation initiation 

factor kinase (rs867529 in EIF2AK3), protein phosphatase (rs2480452 in PPP2R4) and proto-oncogene 

transcription factor (rs3134614 in MYCL) proteins.  

Using eQTL cerebellar tissue data, we were also able to link SNPs within 6 of our associated regions 

with altered expression of 14 gene transcripts: AF131216.5, AMT, CCDC71, GPX1, NCKIPSD, PPP2R4, 

PTK2, RP1-199J3.5, RP11-247A12.2, RP11-247A12.7, RP11-481A20.10, RP11-481A20.11, VCAN, and 

WDR6. Use of summary-data-based Mendelian Randomisation (SMR) highlighted possible mediation 

effects of gene expression on SNP-trait associations for six gene transcripts at 3 of our associated 

regions: PPP2R4, RP11-247A12.2 and RP11-247A12.7; VCAN; and pseudogenes FAM86B3P & FAM85B. 

PPP2R4/PTPA, therefore, was identified in both the functional annotation, eQTL-only and SMR follow-

up analyses. Located at 9q34.11, PPP2R4 encodes an activator of phosphatase 2A implicated in 

controlling cell growth and division, it has been shown to be expressed in neurones and glia in the 

brain, including the cerebellum, where it plays a role in regulating dendritic spine morphology41 and 

whose dysfunction is a known cause of spinocerebellar ataxia42. The strongest SMR association was 

with VCAN, which encodes the extracellular matrix protein Versican and which plays a number of 

crucial roles in maintaining the extracellular matrix, including in nervous system development43,44. The 

pseudogenes FAM86B3P and FAM85B were identified from the SMR analysis. FAM85B, as well as the 

other non-coding gene eQTLs for RP11-481A20.10 and RP11-481A20.11 in the same region, have been 

indicated in mood instability and schizophrenia45,46. While a higher confidence can be placed on genes 

identified in SMR analyses, its requirement for multiple eQTL signals means that it also might omit 

genes with poorer coverage, therefore, both eQTL-only and SMR identified genes should be 

considered for future follow-up work.  

In total, 732 unique gene transcripts were located within 500kb of the 33 independent genome-wide 

associated SNPs. Using functional annotations and gene expression data in the cerebellum, we refined 

this to a list of 21 gene transcripts which particularly warrant further interrogation and follow-up 
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analysis due to our tagging of their protein coding regions or altered expression in cerebellar tissue 

(Supplementary table 9).  

We found strong genetic correlation between the results of our cerebellar volume GWAS and those 

previously run on the volume of the brainstem, pallidum and thalamus, but not with any other 

subcortical structure or with cortical surface area or thickness. A clustering of genetic correlations 

between pallidum, thalamus and brainstem had been noted previoulsy11, as well as basal ganglia-

thalamic pairings in twin-based imaging studies47. These results indicate a significant sharing of 

common allele influences on the volume of these four brain structures. This is at odds, however, with 

the correlations of their actual volumes, where significant (phenotypic) correlations are found across 

all subcortical volumes and with no particular clustering of the pallidum, thalamus and brainstem11. 

The genetic clustering of the cerebellum with these three subcortical structures might be explained 

by their white matter connectivity within the brain, particularly since the gene expression profile of 

cerebellar grey matter is quite distinct28. The major input and output nuclei of the cerebellum are 

located within the brainstem and thalamus, respectively, and the interaction between the pallidum 

and the cerebellum is also well known, occurring at the level of cortex, at the ventrolateral thalamus 

and/or via direct connections48–50. Both structures share roles in sensorimotor regulation, adaptation, 

learning and reward48. The common allele overlap correlation found across these four brain structures 

warrants further research into the neurobiological underpinnings of this potential network.  

Perhaps surprisingly, considering the phenotypic association between grey matter volume in the 

cerebellum with cognitive function and psychopathology51–53, we did not find any evidence of a 

significant genetic correlation between cerebellar volume and our list of cognitive/neuropsychiatric 

phenotypes. Notably, previous GWASs of other brain-based phenotypes have also generally reported 

a lack of genetic association with most of these brain-related traits despite clinical research showing 

brain-wide anatomical changes in mental disorders54 and associations with cognitive performance55–

57; with the exception of small associations between brainstem and ADHD11, hippocampus and 

Alzheimer’s disease12 and cortical surface area with cognitive function, ADHD, depression and 

Parkinson’s disease10. In general, therefore, there does not appear strong evidence for a significant 

overlap of common allele influences between cognitive/neuropsychiatric phenotypes and anatomical 

brain measures. Future research focusing on other brain indices such as white matter microstructure, 

or using different genetic approaches such as focusing on the genetic overlap at specific loci over 

genetic correlations across the whole genome58, might prove more fruitful. 
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There are several limitations to our findings. Most noteworthy, the use of a single, homogenously 

collected and processed UK-Biobank data helps to decrease methodological variation, improving our 

ability to detect genetic-phenotype associations; however, the UK-Biobank’s cohort does not 

represent the general UK population, but deviates in important socioeconomic demographics such as 

age, health, education and economic status59, and who we have further limited to only individuals 

with genetic ancestry of European descent. Moreover, cerebellar measures available from UK-Biobank 

are created without the use of a cerebellar-specific registration tool, likely leading to poorer 

registration and segmentation of individuals lobules60.  For this reason, as well as the high correlation 

between lobules and its conserved cytoarchitecture, our main analyses focus on total cerebellar 

volume. We also additionally corrected for potential head motion and position induced artefacts in 

the scanner to improve the face validity of our results.  

In conclusion, we provide a genome-wide association study of the common genetic variation 

underlying human cerebellar volume. We find, similar to previous reports of cortical and subcortical 

regions, a moderate-to-high heritability, with generally consistent heritability across the cerebellar 

lobes. We also report the cerebellum to show the highest genetic similarity to brainstem, pallidal and 

thalamic volumes, but no significant common allele effect sharing with psychiatric disorders or general 

cognitive function. While further replication and follow-up functional studies are required, we identify 

33 independent SNPs associated with cerebellar volume, highlighting 6 in protein coding variants. 

Using cerebellar gene expression data, we identify 14 associations that map to eQTLs and 6 

associations (4 common with the eQTL-only analysis) showing potential causal relationship with gene 

expression. In total these additional analyses map associations to 21 unique candidate genes that 

warrant further investigation. Overall, these results advance our knowledge on the genetic 

architecture of the cerebellum and pave the way to further research into the neurobiological basis of 

its anatomy, and associations with normal and abnormal phenotypes. 

Methods 

This study used Magnetic Resonance Imaging (MRI) data from the UK-Biobank15,61. At the time of 

initiation of this study in the region of 40,000 individuals’ data had been released. We maintained data 

separated into two phases containing approximately half of the total sample each, based on our 

group’s access to the data. We processed and quality controlled each phase independently, compared 

across phases and then combined the results in a meta-analysis, which we used for all subsequent 

functional annotation and mapping. Ethics for UK-Biobank was granted by the North West Multi-
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Centre Ethics Committee, with our study being approved by the UK-Biobank Access Committee 

(Project #17044). 

Processing genetic data  

A full description of UK-Biobank’s data collection, quality control and imputation process can be found 

elsewhere (http://www.ukbiobank.ac.uk/scientists-3/genetic-data/). Locally, we further harmonised 

and applied additional quality control (independently) to each phase’s raw genotypes from the UK-

Biobank as has been described previously62.  Briefly, all markers were harmonised to genome build 

hg19 and common nomenclature based on the Haplotype Reference Consortium r1.1. We excluded 

markers based on individual marker missingness (>2%), low minor allele count (<5), deviations from 

Hardy-Weinberg equilibrium (p< 1×10–10) and the deviations from the expected Minor Allele 

Frequency (MAF; >4 standard deviations (SD) from GBR MAF reported in 1000G phase 3). Individuals 

were removed with excess overall marker missingness rate (>2%) or heterozygosity (>4 × SD from 

sample mean), those of non-British/Irish ancestry (defined as >4 × SD from 1000G phase 3 GBR sample 

mean based on first 3 principal components (PCs)) and those with close relatives in the cohort 

(estimated kinship coefficient > 0.0442 i.e. 3rd degree relatives). Of note, for phase 2 this also included 

removing individuals with close relatives in phase 1. Of the initial 21,390 and 26,541 individuals with 

genetic data for phase 1 and phase 2, 19,170 and 22,808 passed our genetic quality control, 

respectively. From the initial download of over 90M genetic markers, 7,003,604 and 6,935,580 

markers remained for phase 1 and phase 2 following quality control, respectively. 

Total cerebellar volume measure generation 

We used R(3.6.0) (https://www.R-project.org/) for the generation of our phenotype and all statistical 

analysis. This study utilises the image derived phenotypes (IDPs) generated from structural T1-

weghted MRI scans whose generation and quality control has been described previously63. We 

generated a summated total cerebellar grey-matter volume measure from all the 28 cerebellar lobule 

IDPs64, with the exception of Crus I vermis which was excluded due to its very small size which can 

cause unreliable results, following previous research65. The distribution of cerebellar volume values in 

each phase were normal. We removed individuals missing any of our key covariates (listed below) and 

individuals with outlier total cerebellar or total brain grey- and white-matter volume (UK-Biobank 

data-field code: 25010). Outliers were defined as values greater than five times the median absolute 

deviation from overall median.  
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To correct for possible imaging-based and other related variables which might confound our result, in 

a univariate multiple linear regression model we regressed total cerebellar volume on total brain 

volume, age (UK-Biobank data-field code: 21003-2.0), age2 (2nd degree orthogonal polynomial), sex 

(31), age2*sex, mean resting-state functional MRI head motion averaged across space and time points 

(25741-2.0) (log transformed; 21001-2.0), imaging centre attended (54-2.0), date attended imaging 

centre (53-2.0), X-, Y- and Z-head position in the scanner (25756, 25757, 25758) and starting table-Z 

position (25759). The residuals derived from this for each phase showed a normal distribution. We 

scaled the residuals obtained from this model to provide beta’s reflecting changes in standard 

deviations of residual cerebellar volume.   

Genome-wide association study (GWAS) 

Following generation of phenotype measures as outline above, the GWAS for phase 1 included 17,818 

participants and for phase 2 15,447 participants (Supplementary table 1). Of note the larger drop in 

phase 2 was explained by the availability of MRI data, rather than differences in quality control filtering 

between both phases.  We removed markers with minor allele counts < 5 within each phase, leaving 

6,402,132 and 6,303,745 markers respectively.  GWAS analyses were run on PLINK (v1.9)66, inputting 

our cerebellar residuals and covariates of the first 10 genetic PCs to correct for potential effects of 

remaining population structure. The model assumed linear additive genetic effects. We used 

LocusZoom20 to visually inspect GWAS-significant (p< 5×10-8) peaks.  

SNP-based heritability (h2
SNP) 

For each phase we estimated the lower-bound of narrow-sense (additive) single nucleotide 

polymorphism (SNP)-based heritability (h2
SNP) using GCTA-GREML (Genome-wide complex trait 

analysis – genome-based restricted maximum likelihood)17,18 on the raw genotypes. This is done by 

comparing genetic similarity (in unrelated individuals at our pre-defined cut-off following the above 

quality control) to phenotypic similarity of our total cerebellar volume measure between participants. 

As with the GWAS analysis, the first 10 genetic principal components were added to help correct for 

remaining population structure.  

Identification of independent regions 

Genome-wide association signals in each region were refined to identify independently associated 

signals by applying a stepwise conditional analysis using the COJO (multi-SNP-based conditional & joint 

association analysis using GWAS summary data) function in GCTA16,17. Linkage disequilibrium (LD) data 
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for this analysis was derived from genotypes of the respective UK-Biobank phases. Analysis of 

correlation structure was limited to 10Mb blocks around genome-wide signals. LD-ranges around 

index SNPs were defined according to nominally associated LD-partners; specifically, the boundaries 

around an index SNP defined by modest LD-partner (r2> 0.2) with an association of p< 0.05. 

Additionally, we identified high-LD proxy-SNPs with r2> 0.8 to the index SNPs for use in functional 

annotation. 

Comparison of phase data 

Replication and two-sided binomial sign test 

Independent genome-wide significant association signals in each phase were mapped to GWAS results 

from the other phase, with replication defined as those passing Bonferroni-corrected significance (p< 

0.05/number of index SNPs identified)  

Genetic Correlation 

Genetic correlation (rg) analysis was performed using the LDSC software67, regressing the SNP 

associations (products of the z-scores between the two traits) on their linkage disequilibrium (LD) 

scores. All summary statistics were limited to a common subset of HapMap3 SNPs prior to analysis. Of 

note, LDSC regression is not a bounded estimator, therefore, upper bounds of genetic correlation can 

exceed 1.0 due to sampling variation, though – since none of our results greatly exceeded this level 

and standard errors were low – we capped them here for display.  

Polygenic scores 

We used PLINK to generate polygenic scores for all participants in each phase, using the summary 

statistics from the other phase (clumping r2> 0.2). We further filtered SNPs at 10 different p-value 

thresholds: p< 0.5, 0.1, 0.05, 0.01, 0.001, 1×10-4, 1×10-5, 1×10-6, 1×10-7 & 1×10-8 and repeated this with 

and without including regions of long-range LD as defined from 1000G phase 3 EUR. Multiple linear 

regression was used to ascertain the unique variance of total cerebellar volume explained by each 

polygenic score (ΔR2), accounting for the same covariates as used to generate the GWAS (see above 

section). This was calculated by subtracting the R2 of the model without covariates from the R2 of 

model with covariates. Bonferroni correction was applied for the number of tests performed (p< 

0.0013 {0.05/(10×2×2)}) 
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Meta-analysis 

We meta-analysed the two phases of GWAS using METAL19 , weighting the effect size estimates by the 

inverse of the corresponding standard errors. We retained only the 6,193,476 markers present in both 

phases.  Identification of independent SNPs and calculations of SNP-based heritability were performed 

using the same methods as outlined above. For the GCTA-GREML analysis of h2
SNP we created a merged 

phase dataset using PLINK, so as to obtain the raw genotypes for the whole sample.   

Annotation of GWAS identified independent regions 

We annotated associated regions with positional and functional information. Physical annotation of 

transcripts 

(ftp://ftp.ensembl.org/pub/grch37/current/gtf/homo_sapiens/Homo_sapiens.GRCh37.87.gtf.gz) 

was applied using overlap of LD-ranges with transcripts boundaries. Expression quantitative trait loci 

(eQTL) annotation was based on the GTEx-v7 data (https://gtexportal.org/home) for cerebellum and 

cerebellar hemisphere labelled tissues, mapped to index and LD-partners. Similarly, index and LD-

partner overlap were mapped to SNP consequence (http://www.ensembl.org/), combined 

annotation-dependent depletion (CADD) Phred-like scores68, Polyphen category69  and SIFT category70.  

Summary-data-based Mendelian randomization (SMR) 

We used summary-based Mendelian randomization (SMR)21,22 to explore whether the effect size of a 

SNP on the phenotype is mediated by gene expression. Correlation may infer a causal or pleiotropic 

relationship – as compared to those caused by linkage - and can prioritise genes within the region for 

follow-up studies. SMR was implemented using the SMR package 

(https://cnsgenomics.com/software/smr). The eQTL studies used in the SMR analysis were the same 

two GTEx-v7 cerebellar labelled tissue data (https://gtexportal.org/home).  SMR analysis was limited 

to genome-wide significant SNPs reported in the cerebellar volume GWAS. To detect heterogeneity 

of assocations within a region, we applied a HEIDI (heterogeneity in dependent instruments) test, 

using a conservative threshold (pHEIDI≥ 0.05). To provide sufficient data to implement the HEIDI test, 

analysis was limited to transcripts with a minimum of 10 SNPs in the model. We applied an SMR-wide 

Bonferroni correction based on the number of transcripts that passed inclusion criteria, for both the 

cerebellum (pSMR< 1.42×10-6 {0.05/3526}) and cerebellar hemisphere (pSMR< 2.09×10-5 {0.05/2389}) 

labelled tissues. 

Genetic correlation analysis 
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Between study genetic correlation for other brain-related traits 

Using the LDSC approach as described above, we calculated genetic correlations between our total 

cerebellar volume summary statistics and those of other brain-related traits, including previously 

reported cerebellar measures from Elliott et al (2018)13 (FreeSurfer71 defined left & right cerebellum 

and FSL FAST72 defined 28 individual cerebellar lobules; n= 8,428 EUR) and Zhao et al (2019)14 (ANTs 

(http://stnava.github.io/ANTs/) defined left & right cerebellar hemispheres and 3 vermal divisions; n= 

19,629 EUR). To limit the number of analyses, the comparison with results from Elliott et al were 

limited to their FreeSurfer analysis. All downloaded summary statistics were harmonised to genome 

build hg19 and common nomenclature based on the Haplotype Reference Consortium r1.1 and 

underwent the same procedural steps as outlined above (including HapMap3 filtering_. We also 

report the  LDSC estimated SNP-based heritability scores for the other cerebellar traits, calculated by 

regressing SNP’s trait association (χ2) on their LD. Additionally, to assess the number of novel 

association regions identified in our meta-GWAS compared to those previously identified in these 

published works, we deemed novel regions as those with no previously identified index SNP within 

500kb of our identified independent regions’ LD ranges or with a previously identified index SNP with 

r2> 0.1 of anyone of our index SNPs.  

As several of the identified variants were associated with anthropomorphic measures, in a post-hoc 

analysis we wished to ascertain that the identified cerebellar variants were generally independent 

from a collection of anthropomorphic measures collected from the full UK-Biobank cohort 

(http://www.nealelab.is/uk-biobank/ GWAS round 1 2017 release version limited to EUR ancestry). 

These included standing height (data-field: 50; n= 336,474), sitting height (20015; n= 336,172), birth 

weight (20022; n= 193,063), body mass index (21001; n= 336,107), weight (21002; n= 336,227) and 

body fat percentage (23099; n= 331,117). 

We also ascertained the genetic correlation with summary statistics of other brain-based measures 

and brain-related traits. Brain-based measures were those from the ENIGMA group for mean total 

cortical thickness and surface area using FreeSurfer analysis (n= 33,992 EUR)10, and for the 

hippocampus (n= 26,814 EUR)12 and other subcortical volumes of the putamen, pallidum, thalamus, 

amygdala, nucleus accumbens, caudate nucleus and brainstem (n= 37,741 EUR)11. For brain-related 

psychiatric and neurological traits, we used the latest GWAS summary statistics for schizophrenia 

(40,675 cases; 64,643 controls)23, bipolar disorder (20,352 cases; 31,585 controls)24, autism spectrum 
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disorder (18,381 cases; 27,969 controls) (ASD)25 and Parkinson’s disease (15,056 cases, 18618 proxies, 

430,000 controls)26.  

Bonferroni correction was used for each set of correlations (cerebellar traits: p< 0.0071 {0.05/7}; 

anthropomorphic traits: p< 0.0083 {0.05/6}; brain-based traits: p< 0.0050 {0.05/10} & brain-related 

traits: p< 0.0083 {0.05/6}). 

Within cerebellum analysis – by lobe analysis 

We divided the cerebellum into lobes based on demarcations of primary, horizontal and posterolateral 

fissures as outlined previously73, though grouping hemisphere volumes and separating the 

flocculonodular lobe . This created 7 lobes, being hemispheres of the anterior (I-V), superior posterior 

(VI-Crus I), inferior posterior (Crus II-IX) and flocculonodular (X) and separate vermal regions of the 

latter three (excluding the Crus I vermis). The same outlier exclusion was applied to each lobe 

separately – as had already been applied to total cerebellar volume – and we removed those 

individuals with an outlier value (i.e. outside five times median absolute deviation) for any lobe (phase 

1: 17,813; phase 2: 15,438; total: 33,251). The same quality control procedures, use of PLINK – along 

with application of the same covariate list – and METAL analysis were performed for each lobe as done 

for the main analysis. SNP-based heritability estimates using GCTA-GREML were also similarly 

obtained. Genetic correlations between lobes, between lobes and other brain-regions, and between 

lobes and other brain-related traits were calculated using LDSC software using the same procedure as 

outlined for our primary analysis. Bonferroni adjusted p-values (significance threshold pBonferroni< 0.05) 

were provided following correction for the number of tests (lobe – lobe correlation: p< 0.00024 

{0.05/((7×6)/2}); lobe – other brain regional volume correlation: p< 0.00071 {0.05/(7×10)}; lobe – 

other trait correlation: p< 0.0012 {0.05/(7×6)}) 
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Figure legends 

Figure 1: Manhattan plots of associations with total cerebellar volume for A) Phase 1 data release 

(n= 17,818), B) Phase 2 data release (n= 15,447), and C) Phase 1 + Phase 2 combined METAL meta-

analysis. For the METAL plot, the 33 COJO identified independent index SNPs are highlighted (red 

diamond). In all cases, the dashed line indicates genome-wide significance at p < 5×10-8. Quantile-

quantile (QQ) plots for each GWAS are provided next to the Manhattan plot. For all plots, points p > 

5×10-3 (blue solid line) are removed for ease of interpretation.  

 

Figure 2: Prioritisation of VCAN gene transcript using SMR analysis. For the identified region, we 

show an association between SNP effect p-values from the meta-GWAS on total bran volume (top) 

and SNP effects on VCAN eQTL expression in GTEx-v7 cerebellum labelled tissue (middle) for all SNPs 

present in each summary data, in addition to gene transcripts present in that region (bottom). The 

highlighted red diamonds reflect the top SNP identified in each analysis which, in this instance, was 

the identified GWAS index SNP rs55803832. 

 

Figure 3: Genetic correlation between the seven cerebellar lobes.  Tile size and colour represent 

genetic correlation values (rg) between lobes calculated using LDSC regression analysis. Diagonal 

values of SNP-based heritability estimates calculated using GCTA-GREML. All correlations passed 

Bonferroni correction p < 0.0024 {0.05/21}. (v): vermis. 
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Table 1: Genome-wide association results for total cerebellar volumes in European UK Biobank following COJO analysis  

Locus Cytoband CHR LD range Index SNP Name Index SNP Position A1/A2 BetaGWAS (SE) PGWAS BetaCOJO (SE) PCOJO 

1 1p34.2 1 40236396..40434968 rs12127002 40384968 A/G -0.0334 (0.0055) 1.26E-09 -0.0334 (0.0055) 1.36E-09 

2 1p32.3 1 50841117..52638689 rs7530673 51558856 A/C 0.0542 (0.0055) 6.55E-23 0.0526 (0.0055) 1.58E-21 

2 1p32.3 1 50776624..51682964 rs1278519 50897342 A/C -0.0344 (0.0055) 3.99E-10 -0.0318 (0.0055) 8.74E-09 

3 2p23.3 2 25479624..25619823 rs6546070 25531779 A/G 0.0303 (0.0055) 3.61E-08 0.0303 (0.0055) 4.08E-08 

4 2p11.2 2 88749514..89179064 rs7593335 88878133 A/G 0.0345 (0.0055) 3.55E-10 0.0345 (0.0055) 4.22E-10 

5 2q35 2 217673928..217980232 rs2542212 217803906 A/G -0.0331 (0.0055) 1.76E-09 -0.0329 (0.0055) 2.24E-09 

6 2q36.1 2 222949007..223309955 rs75779789 223057209 A/G 0.0338 (0.0055) 7.97E-10 0.0336 (0.0055) 1.03E-09 

7 3p21.31 3 48184492..50153917 rs7640903 49338465 A/G 0.0339 (0.0055) 7.11E-10 0.0339 (0.0055) 8.62E-10 

8 4p16.2 4 4638654..4902425 rs10033073 4775401 A/G 0.0334 (0.0055) 1.26E-09 0.0334 (0.0055) 1.50E-09 

9 4q22.1 4 88611354..89316460 rs4148155 89054667 A/G 0.0376 (0.0055) 8.12E-12 0.0376 (0.0055) 9.17E-12 

10 4q24 4 102657791..103426409 rs13135092 103198082 A/G -0.0532 (0.0055) 3.94E-22 -0.0532 (0.0055) 5.57E-22 

11 4q31.21 4 145330633..146224823 rs6812830 145613807 A/G 0.0306 (0.0055) 2.64E-08 0.0370 (0.0056) 4.89E-11 

12 5q14.2 5 81667102..82008326 rs55803832 81920587 A/C -0.0383 (0.0055) 3.32E-12 -0.0383 (0.0055) 4.44E-12 

13 5q22.2 5 111934537..112311278 rs3846716 112059594 A/G -0.0302 (0.0055) 4.00E-08 -0.0302 (0.0055) 4.52E-08 

14 5q33.3 5 158058006..158536993 rs7380908 158396062 A/C -0.0326 (0.0055) 3.08E-09 -0.0326 (0.0055) 3.41E-09 

15 6p22.3 6 22006131..22184959 rs9393227 22100912 A/G 0.0312 (0.0055) 1.41E-08 0.0314 (0.0055) 1.23E-08 
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16 6p22.2 6 25264597..28544225 rs1800562 26093141 A/G -0.0377 (0.0055) 7.15E-12 -0.0379 (0.0055) 5.94E-12 

17 6q16.2 6 99654270..100334555 rs546897 100132856 A/G -0.0332 (0.0055) 1.58E-09 -0.0331 (0.0055) 1.95E-09 

18 6q21 6 108635716..109080753 rs1935951 108999101 A/G 0.0368 (0.0055) 2.22E-11 0.0367 (0.0055) 3.06E-11 

19 6q22.32 6 126598460..127377494 rs72971190 127088303 A/G -0.0373 (0.0055) 1.19E-11 -0.0373 (0.0055) 1.46E-11 

20 7q36.3 7 156100022..156273180 rs57131976 156167072 A/C 0.0409 (0.0055) 1.03E-13 0.0456 (0.0055) 2.82E-16 

20 7q36.3 7 156016471..156178006 rs11764163 156066865 A/G 0.0336 (0.0055) 1.00E-09 0.0391 (0.0055) 2.10E-12 

21 8p23.1 8 8042025..11945009 rs2572397 11176403 A/G -0.0325 (0.0055) 3.44E-09 -0.0325 (0.0055) 4.05E-09 

22 8q24.3 8 141983550..142130336 rs6984592 142040038 A/G 0.0335 (0.0055) 1.12E-09 0.0335 (0.0055) 1.35E-09 

23 9q31.2 9 109365922..109976563 rs7027172 109571457 A/G -0.0310 (0.0055) 1.74E-08 -0.0305 (0.0055) 2.78E-08 

24 9q33.1 9 119007741..119200439 rs72754248 119061396 A/G 0.0683 (0.0055) 2.08E-35 0.0716 (0.0055) 3.62E-38 

24 9q33.1 9 119117887..119553742 rs17220352 119248059 A/G 0.0401 (0.0055) 3.08E-13 0.0455 (0.0055) 2.17E-16 

25 9q34.11 9 131364336..132013262 rs3118634 131905854 A/G -0.0348 (0.0055) 2.50E-10 -0.0348 (0.0055) 2.65E-10 

26 10q26.13 10 123306938..123606457 rs4752582 123443605 A/G -0.0322 (0.0055) 4.78E-09 -0.0322 (0.0055) 5.00E-09 

27 12q23.2 12 102349379..102996220 rs5742632 102856474 A/G -0.0530 (0.0055) 5.61E-22 -0.0482 (0.0055) 5.95E-18 

27 12q23.2 12 102405447..103009565 rs703545 102943000 A/G -0.0437 (0.0055) 1.93E-15 -0.0377 (0.0055) 1.24E-11 

28 13q21.33 13 72807523..73006046 rs529059 72933970 A/G -0.0308 (0.0055) 2.14E-08 -0.0308 (0.0055) 2.42E-08 

29 15q25.2 15 82339282..84014925 rs62012045 82521707 A/G 0.0315 (0.0055) 1.02E-08 0.0315 (0.0055) 1.15E-08 
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CHR: chromosome; βGWAS (SE): GWAS original Beta value (Standard Error); PGWAS: GWAS original p-value; βCOJO (SE): Beta value after correcting for neighbouring SNPs (10Mb 

sliding window) following GCTA-COJO (Standard Error); PCOJO: p-value following GCTA-COJO. 
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Table 2: The number of genes identified by summary data-based Mendelian randomisation (SMR) analysis. 

Locus Cytoband Tissue Probe ID Gene Symbol Top SMR 
Marker 

Top SMR 
Marker 
Position 

P (eQTL) P (GWAS) P (SMR) P (HEIDI) N 
SNPs 
HEIDI 

12 5q14.2 Cerebellum ENSG00000038427.11 VCAN rs55803832 81920587 1.48E-12 3.09E-12 6.93E-07 0.57 10 

21 8p23.1 Cerebellum ENSG00000253893.2 FAM85B rs2980439 8094870 3.58E-21 1.01E-06 1.40E-05 0.43 20 

21 8p23.1 Cerebellar 
Hemisphere 

ENSG00000173295.3 FAM86B3P rs1878561 8092405 2.85E-19 1.77E-06 2.44E-05 0.39 20 

21 8p23.1 Cerebellum ENSG00000173295.3 FAM86B3P rs1878561 8092405 2.37E-25 1.77E-06 1.39E-05 0.12 20 

25 9q34.11 Cerebellum ENSG00000119383.15 PPP2R4 rs3118634 131905854 3.99E-16 2.14E-10 5.87E-07 0.27 14 

25 9q34.11 Cerebellum ENSG00000204055.4 RP11-247A12.2 rs3118634 131905854 6.18E-09 2.14E-10 1.87E-05 0.47 13 

25 9q34.11 Cerebellar 
Hemisphere 

ENSG00000268707.1 RP11-247A12.7 rs3124505 131887856 1.94E-20 1.31E-08 1.31E-06 0.17 19 

25 9q34.11 Cerebellum ENSG00000268707.1 RP11-247A12.7 rs3118634 131905854 1.16E-20 2.14E-10 1.65E-07 0.23 19 

P (eQTL/GWAS/SMR): p-values from the GWAS results, eQTL association, and  SMR mediation tests;  P (HEIDI): p-values from the HEIDI (heterogeneity in dependent 

instruments) test with p>0.05 indicating pleiotropic (over linkage) associations; N SNPs HEIDI:  number of SNPs used included in the HEIDI test  
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Table 3: Genetic correlation of total cerebellar volume with (A) brain-based phenotypes and (B) brain-related phenotypes previously associated with 
cerebellar anatomy/function. 

 
h2

SNP (%) h2
SNP SE (%) rg 95% Confidence intervals p pBonferroni 

A)     Brain-based phenotypes       

Brainstem 31.7 3.4 0.47 0.37 0.58 1.02E-18 1.02E-17 

Pallidum 16.9 2.3 0.31 0.19 0.43 0.00000045 0.0000045 

Thalamus 16.0 2.1 0.24 0.12 0.36 0.0000645 0.000645 

Cortical surface area 35.3 3.2 -0.14 -0.25 -0.04 0.007 0.07 

Amygdala 8.4 1.9 -0.18 -0.37 0.01 0.07 0.67 

Hippocampus 13.0 2.7 -0.14 -0.29 0.02 0.08 0.84 

Caudate 28.6 2.6 -0.07 -0.18 0.04 0.20 1.00 

Accumbens 20.2 2.3 -0.07 -0.20 0.06 0.29 1.00 

Putamen 28.6 2.8 0.01 -0.10 0.11 0.88 1.00 

Cortical thickness 26.5 2.2 -0.01 -0.11 0.10 0.91 1.00 

B)     Brain related phenotypes       

Schizophrenia disorder 42.1 1.5 -0.04 -0.10 0.02 0.18 1.00 

Bipolar disorder 34.6 1.9 -0.04 -0.12 0.04 0.33 1.00 
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Autism spectrum disorder 19.5 1.5 -0.10 -0.22 0.02 0.10 0.62 

Cognition 20.0 0.7 0.00 -0.06 0.06 0.97 1.00 

Educational attainment 11.2 0.3 -0.02 -0.07 0.03 0.43 1.00 

Parkinson's disease 7.4 0.8 0.00 -0.11 0.11 1.00 1.00 

Calculated using LDSC regression analysis software. h2
SNP: SNP-based heritability estimates; SE: standard error; rg: genetic correlation; p: uncorrected p-values; pBonferronni: p-

values adjusted for the number of tests performed regions/traits tested (10 & 6, respectively) 
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Figure 1 
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Figure 2 
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Figure 3:  
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