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Abstract1

We present distinct, a general method for dif-2

ferential analysis of full distributions that is3

well suited to applications on single-cell data,4

such as single-cell RNA sequencing and high-5

dimensional flow or mass cytometry data. High-6

throughput single-cell data reveal an unprece-7

dented view of cell identity and allow com-8

plex variations between conditions to be discov-9

ered; nonetheless, most methods for differential10

expression target differences in the mean and11

struggle to identify changes where the mean is12

only marginally affected. distinct is based on13

a hierarchical non-parametric permutation ap-14

proach and, by comparing empirical cumulative15

distribution functions, identifies both differen-16

tial patterns involving changes in the mean, as17

well as more subtle variations that do not in-18

volve the mean. We performed extensive bench-19

marks across both simulated and experimen-20

tal datasets from single-cell RNA sequencing21

and mass cytometry data, where distinct shows22

favourable performance, identifies more differ-23

ential patterns than competitors, and displays24

good control of false positive and false discovery25

rates. distinct is available as a Bioconductor R26

package.27

keywords: Differential distribution; Differential anal-28

yses; Differential state; High-throughput single-cell29

data; Single-cell RNA-seq; Single-cell flow and mass cy-30

tometry; Permutation tests.31

Background32

Technology developments in the last decade have led to33

an explosion of high-throughput single-cell data, such34

as single-cell RNA sequencing (scRNA-seq) and high-35

dimensional flow or mass cytometry data, allowing re-36

searchers to investigate biological mechanisms at single-37

cell resolution. Single-cell data have also extended the38

canonical definition of differential expression by dis-39

playing cell-type specific responses across conditions,40

known as differential state (DS) [28], where genes or41

proteins vary in specific sub-populations of cells (e.g.,42

a cytokine response in myeloid cells but not in other43

leukocytes [10]). Classical bulk differential expression44

methods have been shown to perform well when used45

on single-cell measurements [22, 23, 27] and on aggre-46

gated data (i.e., averages or sums across cells), also re-47

ferred to as pseudo-bulk (PB) [5, 28]. However, most48

bulk and PB tools focus on shifts in the means, and49

may conceal information about cell-to-cell heterogene-50

ity. Indeed, single-cell data can show more complex51

variations (Figure 1 and Supplementary Figure 1); such52

patterns can arise due to increased stochasticity and53

heterogeneity, for example owing to oscillatory and un-54

synchronized gene expression between cells, or when55

some cells respond differently to a treatment than oth-56

ers [12, 27]. In addition to bulk and PB tools, other57

methods were specifically proposed to perform differ-58

ential analyses on single-cell data (notably: scDD [12],59

SCDE [11], MAST [8], BASiCS [26] and mixed mod-60

els [24]). Nevertheless, they all present significant limi-61

tations: BASiCS does not perform cell-type specific dif-62

ferential testing between conditions, scDD does not di-63

rectly handle covariates and biological replicates, while64

PB, SCDE, MAST and mixed models performed poorly65

in previous benchmarks when detecting differential pat-66

terns that do not involve the mean [5,12].67

Results68

distinct ’s full distribution approach69

To overcome these challenges, we developed distinct, a70

flexible and general statistical methodology to perform71

differential analyses between groups of distributions.72
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distinct is particularly suitable to compare groups of73

samples (i.e., biological replicates) on single-cell data.74

Our approach computes the empirical cumulative dis-75

tribution function (ECDF) from the individual (e.g.,76

single-cell) measurements of each sample, and compares77

ECDFs to identify changes between full distributions,78

even when the mean is unchanged or marginally in-79

volved (Figure 1 and Supplementary Figure 1). First,80

we compute the ECDF of each individual sample; then,81

we build a fine grid and, at each cut-off, we average the82

ECDFs within each group, and compute the absolute83

difference between such averages. A test statistic, sobs,84

is obtained by adding these absolute differences.85

More formally, assume we are interested in compar-86

ing two groups, that we call A and B, for which NA87

and NB samples are available, respectively. The ECDF88

for the i-th sample in the j-th group, is denoted by89

ecdf
(j)
i (.), for j ∈ {A,B} and i = 1, . . . , Nj . We90

then define K equally spaced cut-offs between the mini-91

mum,min, and maximum,max, values observed across92

all samples: b1, . . . , bK , where bk = min + k × l, for93

k = 1, . . . ,K, with l = (max − min)/(K + 1) being94

the distance between two consecutive cut-offs. We ex-95

clude min and max from the cut-offs because, trivially,96

ecdf
(j)
i (min) = 0 and ecdf

(j)
i (max) = 1, ∀j, i. At ev-97

ery cut-off, we compute the absolute difference between98

the mean ECDF in the two groups; our test statistic,99

sobs, is obtained by adding these differences across all100

cut-offs:101

sobs =
K∑
k=1

∣∣∣∣∣
∑NA

i=1 ecdf
(A)
i (bk)

NA
−
∑NB

i=1 ecdf
(B)
i (bk)

NB

∣∣∣∣∣ .
(1)

Note that in differential state analyses, these operations102

are repeated for every gene-cluster combination.103

Intuitively, sobs, which ranges in [0,∞), approximates104

the area between the average ECDFs, and represents105

a measure of distance between two groups of densities:106

the bigger sobs, the greater the distance between groups.107

The number of cut-offs K, which can be defined by108

users, is set to 25 by default, because no detectable109

difference in performance was observed when further110

increasing it (data not shown). Note that, although at111

each cut-off we compute the average across each group’s112

curves, ECDFs are computed separately for each indi-113

vidual sample, therefore our approach still accounts for114

the within-group variability; indeed, at a given thresh-115

old, the average of the sample-specific ECDFs differs116

from the group-level ECDF (i.e., the curve based on117

all individual measurements from the group). The null118

distribution of sobs is then estimated via a hierarchical119

non-parametric permutation approach (see Methods).120

A major disadvantage of permutation tests, which of-121

ten restricts its usage on biological data, is that too122

few permutations are available from small samples. We123

overcome this by permuting cells, which is still pos-124

sible in small samples, because there are many more125

cells than samples. In principle, this may lead to an126

inflation of false positives due to lack of exchangabil-127

ity (see Methods); nonetheless, in our analyses, distinct128

provides good control of both false positive and false129

discovery rates.130

Importantly, distinct is general and flexible: it targets131

complex changes between groups, explicitly models bio-132

logical replicates within a hierarchical framework, does133

not rely on asymptotic theory, avoids parametric as-134

sumptions, and can be applied to arbitrary types of135

data. Additionally, distinct can also adjust for sample-136

level cell-cluster specific covariates (i.e., whose effect137

varies across cell clusters), such as batch effects,: dis-138

tinct fits a linear model with the input data (e.g., CPMs139

or log2-CPMs) as response variable, and the covariates140

as predictors; the method then removes the estimated141

effect of covariates, and performs differential testing on142

these normalized values (see Methods).143

Furthermore, to enhance the interpretability of differen-144

tial results, distinct provides functionalities to compute145

(log) fold changes between conditions, and to plot den-146

sities and ECDFs, both for individual samples and at147

the group-level.148

Note that, although distinct and the Kolmogorov-149

Smirnov [15] (KS) test share similarities (they both150

compare distributions via non-parametric tests), the151

two approaches present several conceptual differences.152

Firstly, the KS considers the maximum distance be-153

tween two ECDFs, while our approach estimates the154

overall distance between ECDFs, which in our view is155

a more appropriate way to measure the difference be-156

tween distributions. Secondly, the KS test only com-157

pares two individual densities, while our framework158

compares groups of distributions. Thirdly, while the159

KS statistic relies on asymptotic theory, our framework160

uses a permutation test. Finally, a comparison between161

distinct and scDD [12] based on the KS test (labelled162

scDD-KS ) shows that our method, compared to the KS163

test, has greater statistical power to detect differential164

effects and leads to fewer false discoveries (see Simula-165

tion studies).166

Simulation studies167

We conducted an extensive benchmark, based on168

scRNA-seq and mass cytometry simulated and experi-169
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Figure 1: Cumulative distribution functions (CDFs) unravel
differences between distributions. Density (left panels) and CDF
(right panels) of five differential patterns: differential variability (DV),
and the four proposed by Korthauer et. al. [12]: differential expression
(DE), differential proportion (DP), differential modality (DM), and
both differential modality and different component means (DB).

mental datasets to investigate distinct ’s ability to iden-170

tify differential patterns in sub-populations of cells.171

First, we simulated droplet scRNA-seq data via mus-172

cat [5] (see Methods). We ran five simulation repli-173

cates for each of the differential profiles in Figure 1,174

with 10% of the genes being differential in each clus-175

ter, where DE (differential expression) indicates a shift176

in the entire distribution, DP (differential proportion)177

implies two mixture distributions with different propor-178

tions of the two components, DM (differential modal-179

ity) assumes a unimodal and a bimodal distribution,180

DB (both differential modality and different component181

means) compares a unimodal and a bimodal distribu-182

tion with the same overall mean, and DV (differential183

variability) refers to two unimodal distributions with184

the same mean but different variance (Figure 1 and185

Supplementary Figure 1). Each individual simulation186

consists of 4,000 genes, 3,600 cells, separated into 3 clus-187

ters, and two groups of 3 samples each, corresponding188

to an average of 200 cells per sample in each cluster.189
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Figure 2: distinct identifies various differential patterns and
controls for the FDR. TPR vs. FDR in muscat simulated data;
DE, DP, DM, DB and DV refer to the differential profiles illustrated
in Figure 1. Results are averages across the five simulation replicates.
Circles indicate observed FDR for 0.01, 0.05, 0.1 and 0.2 significance
thresholds. Two groups of 3 samples are compared and, on average,
200 cells are available for every sample in each of three clusters.

We considered three different normalizations: counts190

per million (CPMs), logarithm of CPMs to base 2 (log2-191

CPMs) and residuals from variance stabilizing normal-192

ization from sctransform (vstresiduals) [9]. We com-193

pared distinct to several PB approaches from muscat,194

based on edgeR [21], limma-voom and limma-trend [20],195

which emerged among the best performing methods for196

differential analyses from scRNA-seq data [5, 23]. We197

further considered three methods from muscat based198

on mixed models (MM), namely MM-dream2, MM-199

vstresiduals and MM-nbinom (see Methods). Finally,200

we included scDD [12], which is conceptually similar201

to our approach: scDD implements a non-parametric202

method to detect changes between individual distri-203

butions from scRNA-seq, based on the Kolmogorov-204

Smirnov test, scDD-KS, and on a permutation ap-205
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Figure 3: distinct has uniform null p-values. Density of raw
p-values in muscat null simulated data; each replicate represents a
different null simulation. Two groups of 3 samples are compared and,
on average, 200 cells are available for every sample in each of three
clusters.

proach, scDD-perm. For scDD-perm we used 100 per-206

mutations to reduce the computational burden.207

In all scenarios and on all three input datasets, dis-208

tinct shows favourable performance: it has good sta-209

tistical power while controlling for the false discov-210

ery rate (FDR) (Figure 2). In particular, for DE,211

DP and DM, distinct has similar performance to the212

best performing competitors (edgeR.counts and limma-213

trend.log2-CPMs), while for DB and DV, it achieves214

significantly higher true positive rate (TPR), especially215

when using log2-CPMs. PB methods in general per-216

form well for differential patterns involving changes in217

the mean (DE, DP and DM), but struggle to identify218

DB and DV patterns. scDD provides good TPR across219

all patterns when using the KS test on vstresiduals220

(scDD-KS.vstresiduals), while the TPR is significantly221

reduced when using log2-CPMs and with the permu-222

tation approach(scDD-perm); however, scDD methods223

also show a significant inflation of the FDR. In contrast,224

MMmethods provide good control of the FDR but have225

low statistical power in all differential scenarios.226

We further simulated five null simulation replicates227

with no differential patterns; again with each simula-228

tion having 4,000 genes, 3,600 cells, 3 cell clusters and229

two groups of 3 samples each. In the null simulated230

data, no method presents an inflation of false positives,231

with distinct, edgeR, limma-trend and scDD showing232
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Figure 4: distinct achieves good performance when varying
the number of available cells. TPR vs. FDR in muscat simulated
data; with 50, 100, 200 and 400 cells per cluster-sample combination,
corresponding to a total of 900, 1,800, 3,600 and 7,200 cells, respec-
tively. Results are aggregated over the five replicate simulations of
each differential type (DE, DP, DM, DB and DV), contributing in
equal fraction. Each individual simulation replicate consists of 4,000
genes, 3 cell clusters and two groups of 3 samples each. Circles indicate
observed FDR for 0.01, 0.05, 0.1 and 0.2 significance thresholds. Note
that scDD-perm.vstresiduals was excluded from this analysis due to its
computational cost.

approximately uniform p-values for all types of input233

data (Figure 3).234

We also extended previous simulations to add a cell-235

type specific batch effect (i.e., a batch effect that affects236

differently each cell-type) [5,14]. In particular, we sim-237

ulated 2 batches, that we call b1 and b2, with one group238

of samples having two samples associated to b1 and one239

to b2, and the other group of samples having two sam-240

ples from batch b2 and one from b1. Differential results241

are substantially unchanged (Supplementary Figure 2),242

which shows distinct can effectively remove nuisance243

confounders. Furthermore, by varying the number of244

cells in the simulated data, we show that, compared to245

PB, MM and scDD methods, distinct achieves higher246

overall TPR, while controlling for the FDR, regardless247

of the number of available cells (Figure 5 and Supple-248

mentary Figure 3).249

From a computational perspective, distinct required250
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Figure 5: distinct requires more computational resources
than PB and scDD-KS methods, but significantly less than
MM and scDD-perm models. Average computing time, expressed
in minutes, inmuscat main simulations (Figures 2-3). For each method,
times are averaged across simulation types (DE, DP, DM, DB, DV and
null) and, for each type, across the five replicate simulations; in each
replicate 3,600 cells are available (200, on average, per cluster-sample
combination). distinct, MM and scDD models were run on 3 cores,
while pseudo-bulk methods based on edgeR and limma used a single
core because they do not allow for parellel computing.

an average time of 3.4 to 4.5 minutes per simulation,251

which is higher than PB methods (0.1 to 0.2 minutes)252

and scDD-KS (0.4 to 0.5 minutes), but significantly253

lower than MM approaches (29.4 to 297.3 minutes) and254

scDD-perm (447.5 to 1970.1 minutes) (Figure 4 and255

Supplementary Table 1). All methods were run on 3256

cores, except PB approaches, which used a single core,257

because they do not allow for parellel computing.258

We further considered the semi-simulated mass cytom-259

etry data from Weber et al. [28] (labelled diffcyt sim-260

ulation), where spike-in signals were computationally261

introduced in experimental data [3], hence maintain-262

ing the properties of real biological data while also263

embedding a known ground truth signal. We evalu-264

ated distinct and two methods from diffcyt, based on265

limma [20] and linear mixed models (LMM), which out-266

performed competitors on these same data [28]. In267

particular, we considered three datasets from Weber268

et al. [28]: the main DS dataset and two more where269

differential effects were diluted by 50 and 75%. Each270

dataset consists of 24 protein markers, 88,435 cells, and271

two groups (with and without spike-in signal) of 8 sam-272

ples each. Measurements were first transformed, and273

then cells were grouped into sub-populations with two274
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Figure 6: distinct shows high power while controlling for
false positive and false discovery rates. (a-b) TPR vs. FDR in
diffcyt semi-simulated data. ‘main’, ‘less 50’ and ‘less 75’ indicate the
main simulation, and those where differential effects are diluted by 50
and 75%, respectively. Each simulation consists of 88,435 cells and
two groups of 8 samples each. Circles indicate observed FDR for 0.01,
0.05, 0.1 and 0.2 significance thresholds. (a) As in the muscat
simulation study, cells were clustered into 8 populations based on
manually annotated cell types [28]. (b) As in Weber et al. [28], cells
were grouped in 100 high-resolution clusters via unsupervised
clustering. (c) Density of raw p-values in diffcyt null semi-simulated
data; each replicate represents a different null simulation. Each
replicate consists of 88,438 cells and two groups of 8 samples each. As
in Weber et al. [28], cells were clustered in an unsupervised manner.

separate approaches (see Methods): i) similarly to the275

muscat simulation study, cell labels were defined based276

on 8 manually annotated cell types [28] (Figure 6a),277

and ii) as in the original diffcyt study from Weber et278

al. [28], cells were grouped into 100 high-resolution clus-279

ters (based on 10 cell-type markers, see Methods) via280

unsupervised clustering (Figure 6b). In the main simu-281

lation, distinct achieves higher TPR when considering282

cell-type labels (Figure 6a, ‘main’), while all methods283

exhibit substantially overlapping performance when us-284

ing unsupervised clustering (Figure 6b, ‘main’). In both285

clustering approaches, as the magnitude of the differ-286

ential effect decreases, the distance between methods287
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increases: diffcyt tools show a significant drop in the288

true positive rate (TPR) whereas distinct maintains a289

higher TPR while effectively controlling for the false290

discovery rate (FDR) (Figures 6a-b and Supplemen-291

tary Figure 4). This indicates that distinct has good292

statistical power to detect even small changes between293

conditions. We also considered the three replicate null294

datasets from Weber et al. [28] (i.e., with no differential295

effect), containing 24 protein markers and 88,438 cells296

across 8 cell types, and found that all methods display297

approximately uniform p-values (Figure 6c).298

Experimental data analyses299

In order to investigate false positive rates (FPRs) in300

real data, we considered two experimental scRNA-seq301

datasets where no differential signals were expected, by302

comparing samples from the same experimental con-303

dition. Given the high computational cost and low304

power of MM, and the high FDR of scDD models, for305

the real data analyses, we only included distinct and306

PB methods. We considered gene-cluster combinations307

with at least 20 non-zero cells across all samples. The308

first dataset (labelled T-cells) consists of a Smart-seq2309

scRNA-seq dataset of 23,459 genes and 11,138 T cells310

isolated from peripheral blood from 12 colorectal can-311

cer patients [30]. We automatically separated cells in312

11 clusters (via igraph [1, 6]), and generated replicate313

datasets, by randomly separating, three times, the 12314

patients to two groups of size 6. The second dataset315

(labelled Kang) contains 10x droplet-based scRNA-seq316

peripheral blood mononuclear cell data from 8 Lupus317

patients, before (controls) and after (stimulated) 6h-318

treatment with interferon-β (INF-β), a cytokine known319

to alter the transcriptional profile of immune cells [10].320

The full dataset contains 35,635 genes and 29,065 cells,321

which are separated (via manual annotation [10]) into322

8 cell types. One of the 8 patients was removed as it323

appears to be a potential outlier (Supplementary Fig-324

ures 5-7). Here we only included singlet cells and cells325

assigned to a cell population, and considered control326

samples only, resulting in 11,854 cells. Again, we ar-327

tificially created three replicate datasets by randomly328

assigning the 7 retained control samples in two groups329

of size 3 and 4. In both null analyses, we found that330

limma-trend leads to a major increase of FPRs, dis-331

tinct ’s p-values are only marginally inflated towards 0,332

while edgeR and limma-voom are the most conservative333

methods and provide the best control of FPRs (Figure334

7a and Supplementary Tables 2-3).335

We then considered again the Kang dataset, and per-336

formed a DS analysis between controls and stimulated337

samples. Again, we removed one potential outlier pa-338
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Figure 7: On experimental scRNA-seq data, distinct
discovers non-canonical differential patterns, and has
almost-uniform null p-values. (a) Density of raw p-values in the
null T-cells (top) and Kang (bottom) experimental data. Each
replicate represents a random partition of samples in two groups. The
T-cells data consists of 12 samples and 11,138 cells across 11 clusters.
For the Kang dataset, we retained 7 samples and 11,854 cells across 8
clusters. (b) Density of log2-CPMs for nine examples of differential
patterns identified by distinct on all input data (adjusted p-values <
0.05), and not by any PB tool (adjusted p-values > 0.05), on the
Kang dataset when comparing controls and stimulated samples. Gene
RPL13 was identified in FCGR3A+ Monocytes cells, while all other
genes were detected in Dendritic cells. Each line represents a sample.

tient, and only considered singlet cells and cells as-339

signed to a cell population, resulting in 35,635 genes,340
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23,571 cells across 8 cell types and 14 samples; we fur-341

ther filtered gene-cluster combinations with less than 20342

non-zero cells across all samples. We found that distinct343

identifies more differential patterns than PB methods,344

with edgeR and limma-voom being the most conser-345

vative methods, and that its results are very coherent346

across different input data (Supplementary Figure 8).347

When visually investigating the gene-cluster combina-348

tions detected by distinct (adjusted p-value < 0.05), on349

all input data (CPMs, log2-CPMs and vstresiduals),350

and not detected by any PB method (adjusted p-value351

> 0.05), we found several interesting non-canonical dif-352

ferential patterns (Figure 7b and Supplementary Fig-353

ures 9-17). In particular, gene MARCKSL1 displays354

a DB pattern, with stimulated samples having higher355

density on the tails and lower in the centre of the dis-356

tribution, gene RPL13 mirrors classical DE, while the357

other genes seem to emulate DP profiles. Interestingly,358

eight out of nine of these genes are known tumor prog-359

nostic markers: EIF3K for cervical and renal cancer,360

SRSF9 for liver cancer and melanoma, NDUFA4 for361

renal cancer, RPL24 for renal and thyroid cancer, HN-362

RNPA0 for renal and pancreatic cancer, MARCKSL1363

for liver and renal cancer, GTF3C6 for liver cancer and364

RPL13 for endometrial and renal cancer [25]. This is365

an interesting association, considering that INF-β stim-366

ulation is known to inhibit and interfere with tumor367

progression [7, 19]. Finally, Supplementary Figures 9-368

17 show how distinct can identify differences between369

groups of distributions even when only a portion of the370

ECDF varies between conditions.371

Discussion372

High-throughput single-cell data can display complex373

differential patterns; nonetheless, most methods for dif-374

ferential expression fail to identify changes where the375

mean is not affected. To overcome present limitations,376

we have introduced distinct, a general method to iden-377

tify differential patterns between groups of distribu-378

tions, which is particularly well suited to perform differ-379

ential analyses on high-throughput single-cell data. We380

ran extensive benchmarks on both simulated and ex-381

perimental datasets from scRNA-seq and mass cytom-382

etry data, where our method exhibits favourable per-383

formance, provides good control of the FPR and FDR,384

and is able to identify more patterns of differential ex-385

pression compared to canonical tools, even when the386

overall mean is unchanged. Furthermore, distinct al-387

lows for biological replicates, can adjust for covariates388

(e.g., batch effects), and does not rely on asymptotic389

theory. Finally, note that distinct is a very general test390

that, due to its non-parametric nature, can be applied391

to various types of data, beyond the single-cell applica-392

tions shown here.393

Availability394

distinct is freely available as a Bioconductor R pack-395

age at: https://bioconductor.org/packages/distinct.396

The scripts used to run all analyses are avail-397

able on GitHub (https://github.com/SimoneTiberi/398

distinct_manuscript, version v2) and Zenodo (DOI:399

10.5281/zenodo.4739098). The diffcyt simulated data400

is available via FlowRepository (accession ID FR-FCM-401

ZYL8 [28]) and HDCytoData R Bioconductor pack-402

age [29]; the Kang dataset can be accessed via musc-403

Data R Bioconductor package [4]; the T-cells dataset404

is deposited on the European Genome-phenome (acces-405

sion id EGAD00001003910 [30]).406
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Methods426

Permutation test427

In order to test for differences between groups, we em-428

ploy a hierarchical permutation approach: to estimate429

the null distribution of sobs, we permute the individual430

observations (e.g., single-cell measurements) instead of431

the samples. Note that this violates the exchangeability432

assumption of permutation tests and, hence, p-values433

are not guaranteed to be uniformly distributed under434
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the null hypothesis; nonetheless, in our simulated and435

experimental analyses, we empirically show that dis-436

tinct provides good control of both false positive and437

false discovery rates. We randomly permute individual438

observations P times across all samples and groups, by439

retaining the original sample sizes. We denote by sp440

the test statistic computed at the p-th permutation,441

p = 1, . . . , P . A p-value, p̃, is obtained as [18]:442

p̃ =

∑P
p=1 1

(
sp ≥ sobs

)
+ 1

P + 1
, (2)

where 1(cond) is 1 if cond is true, and 0 otherwise. In443

order to accurately infer small p-values, when p̃ is below444

some pre-defined thresholds, the number of permuta-445

tions are automatically increased and p̃ is re-computed.446

By default, distinct initially computes 100 permuta-447

tions; when p̃ ≤ 0.1 these are increased to 500; when448

the new p̃ ≤ 0.01 we use 2, 000 permutations, which449

are further increased to 10, 000 if p̃ ≤ 0.001. Note that450

the number of permutations (i.e., 100, 500, 2,000 and451

10,000) can be specified by the user.452

Covariates453

Assume we observe Z nuisance covariates, and that N
samples are available across all groups, where for the
i-th sample we observe Ci values (e.g., single-cell mea-
surements). We fit the following linear model:

y(i)c = β0 +
Z∑

z=1

βzX
(i)
z + ε(i)c , for i = 1, . . . , N,

and c = 1, . . . , Ci, (3)

where y(i)c represents the c-th observation for the i-th454

sample, β0 is the intercept of the model, X(i)
z indi-455

cates the z-th covariate in the i-th sample, βz repre-456

sents the coefficient for the z-th covariate, and ε
(i)
c is457

the residual for the c-th observation in the i-th sample.458

We infer parameters β0, . . . , βZ via least squares regres-459

sion, with the estimated values denoted by β̂0, . . . , β̂Z .460

We then remove the estimated effect of covariates as461

y
(i)
c −

∑Z
z=1 β̂zX

(i)
z ; differential testing is performed, as462

described above, on these normalized values. For DS463

analyses, model (3) is fit, separately, for every gene-464

cluster combination, hence accommodating for cell-type465

specific effects of covariates.466

Normalization467

In scRNA-seq datasets, CPMs and log2-CPMs were468

computed via scater Bioconductor R package [16],469

while vstresiduals were calculated via sctransform R470

package [9] (except for the T-cells data, where, due to471

a failure of sctransform’s variance stabilizing normal-472

ization, we used DESeq2 ’s vst transformation [13]).473

In mass cytometry datasets, measurements were trans-474

formed via diffcyt ’s transformData function, which ap-475

plies an arcsinh transformation.476

diffcyt simulation477

The diffcyt semi-simulated data originates from a real478

mass cytometry dataset of healthy peripheral blood479

mononuclear cells from two paired groups of 8 samples480

each [3]; one group contains unstimulated cells, while481

the other was stimulated with B cell receptor/Fc recep-482

tor cross-linker. The original dataset contains a total483

of 172,791 cells and 24 protein markers: 10 of these484

are cell-type markers used for cell clustering, while 14485

are cell state markers used for differential state anal-486

yses; the distinction between cell state and cell-type487

markers is based on prior biological knowledge [28].488

In Weber et al. [28], semi-simulated data were gener-489

ated by separating the cells of each unstimulated sam-490

ple in two artificial samples; a differential signal was491

then computationally introduced by replacing, in one492

group, unstimulated B cells with B cells from stimu-493

lated samples. Measurements were transformed and494

cells clustered via diffcyt ’s transformData (which ap-495

plies an arcsinh transformation) and generateClusters496

functions, respectively. For the DS simulation in Fig-497

ure 6b, as in Weber et al. [28], we evaluated methods’498

performance in terms of detecting DS for phosphory-499

lated ribosomal protein S6 (pS6) in B cells, which is500

the strongest differential signal across the cell types in501

this dataset [17, 28]. For the DS simulation in Figure502

6a, we considered previously manually annotated cell503

types [28] and included all 14 cell state markers. dif-504

fcyt ’s limma and LMM methods were applied via dif-505

fcyt ’s testDS_limma and testDS_LMM functions, re-506

spectively [28]. We accounted for the paired design by507

modelling the patient id as a covariate.508

muscat simulation and Kang data509

In all muscat simulations, we used the control samples510

of the Kang dataset as a anchor data; as in the real511

data analyses, we excluded one sample as it emerged512

as a potential outlier (Supplementary Figures 5-7), and513

only considered singlet cells and cells assigned to a cell514

population. In muscat ’s simulation studies, we con-515

sidered gene-cluster combinations with simulated ex-516

pression mean greater than 0.2; for DB patterns, we517

increased this threshold to 1 because with low expres-518

sion values differences are not visible by eye. For every519
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simulations, five replicates were simulated, and results520

were averaged across replicates. In the main simulation521

(Figure 2) and the batch effect simulation (Supplemen-522

tary Figure 3), we simulated from a paired design 2523

groups of 3 samples each, with 4,000 genes, and 3,600524

cells distributed in 3 clusters (corresponding to an av-525

erage of 200 cells per sample in each cluster). For the526

simulation study when varying the number of cells (Fig-527

ure 5 and Supplementary Figure 3), the total numbers528

of available cells were 900, 1,800, 3,600 and 7,200, cor-529

responding to an average of 50, 100, 200 and 400 cells530

per sample in every cluster. For the differential sim-531

ulations, we used log2-FC values of 1 for DE, 1.5 for532

DP and DM, and 3 for DB and DV. For the batch533

effect simulation study we used a modified version of534

muscat, developed by Almut Luetge at the Robinson535

lab (available at: https://github.com/SimoneTiberi/536

distinct_manuscript), which allows simulating cluster-537

specific batch effects [5,14]. Allmuscat simulation stud-538

ies, as well as the Kang non-null data analysis, were539

performed by editing the original snakemake workflow540

from Crowell et al. [5]. PB methods were applied on541

aggregated data by summing cell-level measurements;542

for differential testing, we used muscat ’s pbDS function543

[5]. Mixed model methods were implemented, via mus-544

cat ’s mmDS function, using the same approaches as in545

Crowell et al. [5]: in MM-dream2 and MM-vstresiduals546

linear mixed models were applied to log-normalized547

data with observational weights and variance-stabilized548

data, respectively, while inMM-nbinom generalized lin-549

ear mixed models were fitted directly to raw counts. In550

the muscat simulations and in the Kang non-null data551

analysis, we accounted for the paired design by mod-552

elling the patient id as a covariate in all methods that553

allow for covariates (i.e., distinct, PB and MM).554

P-values adjustment555

All p-values were adjusted via Benjamini-Hochberg cor-556

rection [2]. In diffcyt simulations we used globally ad-557

justed p-values for all methods, i.e., p-values from all558

clusters are jointly adjusted once. However, since PB559

methods were found to be over-conservative when glob-560

ally adjusting p-values [5], in muscat simulations and561

Kang discovery analyses, we used locally adjusted p-562

values for all methods.563

Software versions564

All analyses were performed via R software version565

4.0.0, with Bioconductor packages from release 3.11.566
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