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Abstract 

Perception is sensitive to statistical regularities in the environment, including 

temporal characteristics of sensory inputs. Interestingly, temporal patterns implicitly learned 

within one modality can also be recognised in another modality. However, it is unclear how 

cross-modal learning transfer affects neural responses to sensory stimuli. Here, we recorded 

neural activity of human volunteers (N=24, 12 females, 12 males) using 

electroencephalography (EEG), while participants were exposed to brief sequences of 

randomly-timed auditory or visual pulses. Some trials consisted of a repetition of the 

temporal pattern within the sequence, and subjects were tasked with detecting these trials. 

Unknown to the participants, some trials reappeared throughout the experiment, enabling 

implicit learning. Replicating previous behavioural findings, we showed that participants 

benefit from temporal information learned in audition, and that they can apply this 

information to stimuli presented in vision. Such memory transfer was not observed from 

vision to audition. However, using an analysis of EEG response learning curves, we showed 

that learning temporal structures both within and across modalities modulates single-trial 

EEG response amplitudes in both conditions (audition to vision and vision to audition). 

Interestingly, the neural correlates of temporal learning within modalities relied on modality-

specific brain regions, while learning transfer affected activity in frontal regions, suggesting 

distinct mechanisms. The cross-modal effect could be linked to frontal beta-band activity. 

The neural effects of learning transfer were similar both when temporal information learned 

in audition was transferred to visual stimuli and vice versa. Thus, both modality-specific 

mechanisms for learning of temporal information, and general mechanisms which mediate 

learning transfer across modalities, have distinct physiological signatures that are 

observable in the EEG.   
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1. Introduction 

Sensory signals in each modality contain complex feature-based information. Unlike 

modality-specific features - such as sound frequency or colour spectrum - timing information 

is universal across modalities, given their temporal nature (Hardy and Buonomano, 2016; 

Lim et al., 2016). For efficient sensory perception, extracting statistical regularities based on 

stimulus features is essential (Sohoglu and Chait, 2016; Nobre and van Ede, 2018). 

However, it is unclear whether this ability is mediated by global mechanisms or differs across 

sensory modalities. For instance, absolute timing acuity greatly differs between modalities, 

with the auditory modality being more sensitive to timing information (Goodfellow, 1934; 

Grondin and Rousseau, 1991; Grondin, 1993; Grondin and McAuley, 2009). Previous human 

psychophysics studies have reported auditory dominance for temporal processing, 

especially when the information is presented in multiple modalities concurrently (e.g., Repp 

and Penel, 2002; Recanzone, 2003; Grondin and McAuley, 2009). Later neuroimaging 

studies reported involvement of auditory regions during visual timing processing, further 

implying the dominance of the auditory system for processing timing regardless of stimulus  

modality (Grahn et al., 2011; Kanai et al., 2011). However, other studies claim that the 

reports of auditory dominance could be driven by the experimental settings requiring timing 

sensitivity as a crucial factor (Grahn, 2012; Rammsayer, 2014).  

Reflecting discrepancies in the empirical studies, conflicting theoretical models posit 

that temporal processing requires either dedicated (modality-specific) or generalised (cross-

modal) mechanisms (Buonomano, 2000; Karmarkar and Buonomano, 2003; Ivry and Schlerf, 

2008). It is widely claimed that sub-second interval encoding is processed in modality-

specific regions where temporal patterns are spatially coded by dynamic changes of neural 

states (Buonomano and Maass, 2009; Hardy and Buonomano, 2016). An opposing view 

suggests that temporal information is processed by an internal “pacemaker” emitting timing 

information to memory, particularly for longer time intervals (scalar expectancy theory; 

Gibbon, 1977; Gibbon et al., 1984; Rammsayer and Ulrich, 2001; Karmarkar and 

Buonomano, 2007). While most previous work focuses on processing single time intervals or 
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rhythmic time patterns associated with motor tasks, sensory inputs from natural scenes are 

often more complex, containing temporal structure in both sub-second and supra-second 

ranges. It is currently unknown whether temporal patterns in the supra-second range, 

composed of irregular sub-second range intervals, are treated independently across 

modalities or mediated by generalised mechanisms.  

            One recent human psychophysics study attempted to investigate implicit 

learning of timing information across modalities, covering audition, touch, and vision (Kang 

et al., 2018). Participants showed an improvement on a given task only for a specific random 

time pattern that re-appeared over trials, even in an unsupervised learning setting. These 

improvements were observed for all three tested modalities, suggesting rapid and implicit 

learning of arbitrary temporal structure. Regardless of better overall task performance in 

audition than vision, the learning effect was qualitatively similar. Interestingly, participants 

showed successful memory transfer from audition to other modalities, suggesting that the 

memory encoding of random time patterns may be mediated by crosstalk between 

modalities. However, it is unclear which brain regions and neural activity patterns are 

involved in memory transfer across modalities.  

Here, we measured brain responses of human volunteers using 

electroencephalography (EEG), during a repetition detection task (Agus et al., 2010; Kang et 

al., 2018). Across experimental sessions, they were exposed to auditory or visual stimulus 

sequences with irregularly timed stimuli. Unknown to the participants, some temporal 

patterns repeated throughout the experiment, and we examined whether participants 

benefited from temporal information learned in one modality when they perform the same 

task in another. Here, we developed a novel method for analysing learning curves in sensor 

and source space, to investigate which brain regions mediate learning transfer across 

modalities. While our behavioural finding showed the transfer of temporal pattern learning 

only from audition to vision, EEG findings confirmed the transfer of temporal pattern learning 

from audition to vision as well as from vision to audition. The neural effects were reflected in 
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beta frequency band modulation of activity in the right inferior frontal gyrus (rIFG), 

suggesting modality-general encoding of the temporal patterns transferred across modalities.   

 

2. Materials and methods 

2.1 Participants 

A total of 24 participants enrolled in the study (12 females, 12 males; median age = 

20 years, SD = 3.24 years). All participants self-reported as normal hearing and having 

normal or corrected-to-normal vision, with 3 self-reported as left-handed and the remaining 

as right-handed. Participants were pseudo-randomly assigned to one of two test groups 

(audition to vision vs. vision to audition) to maintain the gender ratio.  

Participants gave informed consent to taking part in the experiments and received 

cash reimbursement for their time after participating in the study. All study protocols were 

approved by the Human Subjects Ethics Sub-Committee of the City University of Hong Kong. 

 

2.2 Experimental design and statistical analyses 

2.2.1 Stimuli 

Auditory or visual stimulus “sequences” (brief trains of clicks or visual flashes)  were 

presented in training or testing blocks which are described in detail below. Each sequence 

consisted of a set of 0.2 ms rectangular stimulus pulses delivered at an average rate of 7 Hz. 

To generate pulse trains following a Poisson distribution (with a 10 ms refractory period), 

inter-pulse time intervals were drawn from an exponential distribution, and intervals less than 

10 ms were discarded. The length of each sequence was limited to 2.4 s. Sequences either 

had random time intervals for the full duration (random patterns, P), or a half length (1.2 sec.) 

of random intervals seamlessly presented twice (repeated patterns, RP). While for most 

trials, both P and RP stimuli were generated afresh each time and occurred only once, one 

specific RP sequence (reference repeated patterns, RefRP) randomly re-occurred several 

times within the test block. As in Agus et al. (2010), the rationale is that repeats in RefRP 
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trials should become easier to detect, even though the subjects are generally unaware that 

they had encountered the RefRP pattern before in the same block.  

Test blocks were divided into two conditions: in the Transfer condition, RefRPs had 

an identical temporal structure for both modalities, while in the Control condition, the RefRP 

temporal structure differed between modalities (Fig. 1).  

 

 

 
Figure 1. Example schematic of the stimulus patterns. Each stimulus example refers to one trial of 
either RP (black), P (grey), or RefRP (red). Different trial types were presented in a randomized order. 
Dotted lines within each stimulus indicate the midpoint of the pattern where the repetition begins for 
RP and RefRP trials. While stimuli are newly generated for RP and P, the RefRP is identical across 
trials in a block. The black solid horizontal line indicates the middle of the test block, at which point in 
time the stimuli are presented with a new modality. In the Transfer condition, the same RefRP is 
presented between two modalities, while in the Control condition, a different RefRP is presented after 
the modality switch.  
 

In the auditory modality (Audition), the click trains were high-pass filtered at 2 kHz to 

avoid the possibility of spectral cues arising from filter ringing at a lower frequency range 

(Pollack, 1968; Kang et al., 2017). The low frequency range below 2 kHz was filled with 

band-passed pink noise between 50 Hz and 2 kHz at -2 dB SNR relative to pulse trains. The 
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sound level for the auditory stimulus sequences was kept at 72 dB SPL, and they were 

presented at a 44.1 kHz sampling rate. In the visual modality (Vision) no filtering was applied 

to pulse trains, and identical filtered pink noise was presented acoustically during the visual 

stimuli via a separate channel for consistency between modalities. All stimulus sequence 

waveforms were generated using custom Matlab scripts (R2017a, MathWorks Inc.), and 

played via MOTU UltraLite-mk3 Hybrid soundcard. Auditory stimuli were delivered to the 

participants through Brainwavz B100 earphones.  

For visual stimuli, a single green LED light was housed in a custom-made 7x4x3 cm 

box covered with translucent plastic film to diffuse dimmed light. It was attached on top of the 

screen at the subjects’ eye level. The LED lights were driven by a RM2 mobile processor 

(Tucker-Davis Technologies, TDT) and triggered by the MOTU soundcard. 

 

2.2.2 Apparatus and Procedure 

Participants were seated in a sound-attenuated and electrically shielded room in front 

of a computer screen. The screen was used to deliver instructions and display a white 

fixation cross on a gray background during the auditory task. During the visual task, the 

screen was black and participants were instead asked to fixate on the LED delivering the 

visual pulse trains. After a given trial (auditory or visual), participants were asked whether 

the trial contained repetition within the sequence. Their responses were acquired by a 

keyboard button press on a testing laptop (1 for a repetition; 2 for no repetition). Before 

performing the actual task, all subjects received a short training session to confirm that they 

correctly understood the task. There were three training blocks for each modality. The first 

training block for each modality had 10 trials of either RPs with 10 repetitions of a short 1.2 

sec. segment of pulse trains, or the equivalent length of a random non-repeating pattern (P). 

Under these conditions, the repetition in RP trials was very salient so that participants could 

familiarise themselves with the task. The second and third training blocks consisted of 20 

trials each, with the number of repetitions within each RP trial first reduced to 3, and then to 

2. During the training sessions, participants received feedback after each trial on whether 
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they made a correct response. Since the training session was solely designed to ensure that  

participants understood the task requirements, no RefRP stimuli were included in the training. 

The training was done first on auditory, then on visual pulse trains. All subjects showed at 

least 50% correct responses in the final training block for both Audition and Vision. Average 

correct responses of the final training block were 69.8% for Audition and 66.2% for Vision.  

Prior to performing the actual task, the participants were fitted with an EEG cap, and 

a conducting gel was applied on the scalp under each of the EEG electrode contacts. 

Participants were instructed to minimise blinking and body movement during stimulus 

presentation. EEG signals were recorded using ANT Neuro EEGo Sports 64 channel device 

at a sampling rate of 1000 Hz. 

Participants were randomly assigned to one of two groups. One group performed the 

task in Audition first and then moved on to Vision (AV). The other group performed the tasks 

in the opposite order (VA). Each participant completed a total of 4 test blocks. Each block 

contained 160 trials - 80 trials for the first modality and 80 trials for the second modality. Half 

way through each block, participants were instructed about the modality switch. Each 

modality contained 40 P, 20 RP and 20 RefRP trials, presented in a random order. 

Participants performed 2 blocks of each condition, Transfer and Control, in a randomised 

order. Each block contained a newly generated RefRP.  

Two seconds after the onset of the stimulus sequence in each trial, a visual prompt 

emerged on the screen asking the subject to indicate whether they had perceived a within-

sequence repetition after the sequence ended. No trial-by-trial feedback was provided during 

the actual task.   

 

2.2.3 Behavioural data analysis 

First, based on signal detection theory, behavioural d’ sensitivity index was 

calculated per participant, separately for RefRP and RP stimuli which were generated in the 

same way but differed in its re-occurrences across trials. d' values were then rescaled to the 

across-subject mean performance in each condition and modality order group relative to 
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each subject’s overall mean performance, to minimise the individual performance difference 

and focus on the performance gain that could have occurred due to the learning of RefRP. 

To test whether participants were more sensitive to make correct responses for RefRP than 

RP, a mixed-design analysis of variance (ANOVA) was performed on d’ values using, with 

stimulus type (RefRP or RP), condition (Transfer or Control), and modality (Audition or 

Vision) as within-subject factors, order (AV or VA) as a between-subject factor, and 

participant as a random factor. Post-hoc repeated-measures ANOVAs were conducted 

separately for each level of the modality and order factors. Lastly, paired t-tests were 

conducted on the performance difference between RefRP and RP per modality and 

condition to see whether there was a behavioural benefit of receiving the same RefRP in the 

Transfer condition compared to the Control condition.  

 

2.2.4 EEG data analysis 

The recorded EEG multichannel signals were preprocessed using the SPM12 

Toolbox (Wellcome Trust Centre for Neuroimaging, University College London) for Matlab. 

The EEG data were high-pass filtered at a cut-off frequency of 0.01 Hz using a 5th order 

two-pass Butterworth filter to reduce slow drifts such as changes in impedance due to 

sweating. A 5th order two-pass Butterworth notch filter (48-52 Hz) was applied to remove 

line artefacts. Then, a 5th order two-pass Butterworth low-pass filter at 90 Hz was applied to 

reduce any high-frequency environmental or physiological noise. Eyeblink artefacts were 

removed by subtracting the first two spatiotemporal components associated with each 

eyeblink (Ille et al., 2002), as implemented in SPM12. Specifically, the first two principal 

components were extracted from the time course and topography of the average eyeblink-

evoked response, and removed from the raw EEG data at the time of each blink using 

spatial filtering. After this preprocessing, the data were further denoised based on Dynamic 

Separation of Sources (de Cheveigné and Simon, 2008). This denoising procedure is 

commonly used to increase the signal-to-noise ratio of event-related potentials (ERPs) by 

maximizing the reproducibility of stimulus-evoked responses across trials. To calculate ERPs, 
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continuous data were epoched between 200 ms before stimulus onset to 2600 ms after 

stimulus offset. Each epoch (segment) was baseline-corrected to the mean of the pre-

stimulus period (i.e., from -200 ms to 0 ms relative to stimulus onset). In order to exclude 

epochs contaminated by transient artefacts, we removed epochs that had an average RMS 

(root mean square) amplitude exceeding the median by 2 standard deviations from further 

analysis.  

The remaining epochs were subjected to single-trial learning-curve fitting. First, to 

determine the learning curve equation, we fitted four models to the grand-average ERP RMS 

amplitude. To calculate the grand-average data, first - per participant, session, stimulus type, 

and channel - a “relative RMS response amplitude” was calculated for each of the 20 trials  

of each stimulus type as RMS(stimulus)-RMS(baseline). Then, these single-trial relative 

RMS values were averaged across participants, sessions, stimulus types, and channels. The 

four models used to fit the grand-average data were based on previous studies in which 

learning curves were quantified in the context of statistical learning (Kepinska et al., 2017; 

Siegelman et al., 2018; Choi et al., 2020) and sensory adaptation (Ulanovsky, 2004). They 

included linear, quadratic, exponential, and logarithmic models, described by the following 

four equations respectively: 

 

𝑦 = 	𝑎𝑥 + 𝑏       (1) 

𝑦	 = 	𝑎	𝑒𝑥𝑝(−𝑏𝑥) + 𝑐      (2) 

𝑦	 = 	𝑎𝑥² − 𝑏𝑥 + 𝑐      (3) 

𝑦 = 𝑎(𝑙𝑜𝑔	𝑥) + 𝑏      (4) 

 

In equations (1)-(4), x is the trial index number (ranging from 1 to 20); a, b and c are 

model coefficients; and y is the grand-averaged RMS amplitude of all data at trial x. To 

select the most appropriate among these four candidate models, the models were compared 

using the adjusted R2 metric, which quantifies the goodness of fit of each model, while 
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penalising for the number of model coefficients (Miles, 2014). The adjusted R2 values, grand-

averaged across participants for each model, were: linear (eqn 1): 0.309; quadratic (eqn 2): 

0.348; exponential (eqn 3): 0.340; and logarithmic (eqn 4): 0.384. Since the logarithmic 

model yielded the highest adjusted R2 on average, and to ensure that the learning curve 

coefficients are comparable across participants, it was selected for subsequent learning 

curve estimation in each individual participant and condition (Fig. 4A).  

To estimate learning curves, epoched EEG data were sorted into 6 trial types per 

session according to two within-subjects factors - modality (Audition; Vision) and stimulus 

type (P; RP; RefRP). Additionally, across sessions, data were grouped according to a third 

within-subjects factor (Transfer; Control). Finally, across participants, data were grouped into 

a between-subjects factor of modality order (AV; VA). This yielded a 2✕3✕2✕2 design with 

three within-subjects factors (modality, stimulus, condition) and one between-subjects factor 

(order). For each participant, channel, time point, and stimulus/trial type (design cell), single-

trial EEG amplitudes corresponding to the first 20 trials of a particular stimulus/trial type were 

fitted with the logarithmic fit, yielding the logarithmic coefficient a (quantifying the “learning 

rate”) and a constant b (quantifying the “baseline” ERP amplitude, after regressing out the 

learning curve).  

The resulting ERPs and learning curves were analysed separately, in a series of 

repeated-measures ANOVAs. Specifically, we designed separate flexible factorial designs 

(repeated-measures ANOVAs) for the following factors: dependent variable (ERP; learning 

curve); order (AV; VA), and modality (Audition; Vision). Each ANOVA had the within-subjects 

factors stimulus (P; RP; RefRP) and condition (Transfer; Control), as well as a random 

participant factor. ERP and learning curve data were converted into 3D images (2D: scalp 

topography; 1D: time), smoothed with a 8 mm x 8 mm x 50 ms Gaussian kernel (to ensure 

that data conform to random field theory assumptions, used in SPM12 to correct for multiple 

comparisons across time points and channels), and entered into the flexible factorial designs. 

Statistical parametric maps (SPMs) were thresholded at p < 0.005 (uncorrected) and 

significant effects were inferred at a cluster-level p < 0.05 family-wise error (FWE), correcting 
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for multiple comparisons across time points and channels under random field theory 

assumptions (Kilner et al., 2005).  

For each ANOVA, the following contrasts were examined: First, we looked at the 

main effects of stimulus (RefRP vs. RP: testing for the effect of stimulus repetition across 

trials). We focused on this comparison only, since the difference between RefRP and P 

stimuli includes multiple factors (repetition within trials, repetition between trials, as well as 

differences in button press preparation), while the difference between RefRP and RP only 

includes repetition between trials - i.e., our effect of interest in the context of pattern learning. 

Second, we examined the main effect of condition (Transfer vs. Control: a sanity check, 

testing for overall differences between experimental sessions). Finally, we tested the 

interaction effect of stimulus (RefRP vs. RP) and condition (Transfer vs. Control), zooming 

into the cross-modal learning transfer effects. We reasoned that, in the second modality, 

RefRP stimuli should be processed differently between Transfer and Control conditions, 

since in the Transfer condition the subjects had just experienced the same temporal pattern 

in a different modality, while in the Control condition they had not. Conversely, RP stimuli 

should be processed identically in the Transfer and Control conditions.  

The significant interaction effects were subjected to an additional post-hoc analysis, 

verifying whether the effects of “learning” a RefRP pattern in the previous modality 

significantly affect the initial presentations of RefRP stimuli in the Transfer condition, in the 

second modality. This would indicate that the temporal pattern identifying the particular 

RefRP that had been learned in one modality could be applied in another modality. To this 

end, we investigated the differences in trial-by-trial changes in EEG signals between four 

trial types (stimulus: RefRP vs. RP; condition: Transfer vs. Control). Per participant and trial, 

we extracted data from EEG channels corresponding to the significant SPM cluster (using 

the 2D coordinates of each EEG channel mapped onto the 2D cluster coordinates), 

calculated the RMS of the significant time window (averaged across channels), and 

subtracted the RMS of the pre-stimulus baseline. Based on previous studies (Kang et al., 

2017; 2018), we expected rapid learning to occur within at most the first five trials. To test 
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this hypothesis, the RMS data were averaged across the first three trials of each trial type, 

normalised per participant by dividing each data point by the standard deviation (pooling 

across trial types), and subject to pairwise comparisons (paired t-tests).  

The spatiotemporal clusters of significant effects were source-localised using the 

multiple-sparse-priors approach under group constraints (Litvak and Friston, 2008). For each 

significant main effect, sensor-level data were subject to source localisation for a time 

window in which the significant effect was observed, plus an additional 100 ms of signal on 

either side, given that, in multiple-sparse-priors source reconstruction, rise and fall times of 

neural signals should be included, as source activity estimates are based on signal variance 

across time (López et al., 2014). For each participant, the source estimates were converted 

into 3D images (in MNI space), smoothed with a 5×5×5 mm Gaussian kernel, and entered 

into flexible factorial designs with one within-subjects factor (Stimulus) and one between-

subjects factor (Participant). The resulting statistical parametric maps were thresholded at p 

< 0.05 (two-tailed, uncorrected) and significant effects were inferred at a cluster-level p < 

0.05 family-wise error (FWE, small-volume corrected), correcting for multiple comparisons 

across voxels under random field theory assumptions (Kilner et al., 2005). Sources were 

labelled using the Neuromorphometrics atlas, as implemented in SPM12.  

In case of significant interaction effects, the source reconstruction procedure was 

identical as for the main effects, except that sensor-level data were used to calculate 

contrast time-series (RefRP-RP). Flexible factorial designs had one within-subjects factor 

(condition: Transfer vs. Control) and two between-subjects factors (participant; order: AV vs. 

VA). Statistical thresholds were set at p < 0.05 (uncorrected), correcting for multiple 

comparisons across time points at a cluster-level p < 0.05 family-wise error (FWE).  

Furthermore, we investigated whether pattern learning transfer was reflected in 

changes in activity in specific EEG frequency bands. Since we observed significant 

interaction effects between stimulus and condition for both AV and VA participant groups, 

which in both cases source-localised to the right inferior frontal gyrus (rIFG; see Results), we 

focused on the time-frequency activity localized to the rIFG. To this end, continuous EEG 
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data were re-epoched ranging from 800 ms before stimulus onset to 800 ms after stimulus 

offset. Dipole waveforms were estimated for rIFG coordinates (dipole location: peak MNI 

coordinates of the source reconstruction in each AV and VA group; dipole orientations: three 

orthogonal dipole moments), resulting in three dipole time-series (corresponding to three 

orthogonal dipole orientations) per trial. The dipole time-series were subject to a time-

frequency estimation using multi-taper convolution with a frequency range of 8-48 Hz 

(frequency step: 1 Hz) and a time window of 400 ms (time step: 50 ms), yielding three time-

frequency maps per trial. For each trial and time-frequency point, maximum power was 

selected across the three orthogonal dipole orientations, and log-rescaled to the pre-stimulus 

(600-200 ms) baseline. These single-trial rescaled time-frequency estimates were subject to 

logarithmic fitting, as described above.  

The resulting time-frequency maps of model coefficients (learning curves) were 

converted into 2D (time x frequency) images per trial type, smoothed with a 5 Hz x 50 ms 

Gaussian kernel (to ensure that data conform to random field theory assumptions), and 

entered into a factorial design with two within-subjects factors (stimulus: RefRP vs. RP; 

condition: Transfer vs. Control) and one between-subjects factor (participant). Statistical 

parametric maps were thresholded at p < 0.05 (two-tailed, uncorrected) and significant 

effects were inferred at p < 0.05 family-wise error (FWE), correcting for multiple comparisons 

across time and frequency under random field theory assumptions (Kilner et al., 2005). As in 

the case of EEG amplitudes, the significant interaction effects were subject to an additional 

post-hoc analysis to test if the interaction between stimulus and condition modulates 

stimulus processing for the initial trials. Per participant and trial, we pooled power estimates 

from the significant cluster, averaged them across the first three trials of each trial type, and 

normalised the resulting estimates of initial power per participant by dividing each data point 

by the standard deviation (pooling across trial types). These data were subject to pairwise 

comparisons (paired t-tests).  

Finally, we tested whether behavioural sensitivity correlates with neural signatures of 

learning transfer (i.e., the effects of learning transfer on EEG amplitude and time-frequency 
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activity) across participants. As the behavioural measure, per participant and condition 

(Transfer vs. Control) we calculated the difference in d’ between RefRP and RP stimuli 

presented in the second modality. As the neural signature of learning transfer on EEG 

amplitude, we calculated the differences in EEG-based logarithmic fits (pooling from 

significant clusters shown in Fig. 4BC and 4EF; see Results) between RefRP and RP stimuli, 

separately for each participant and condition (Transfer vs. Control). Similarly, as the neural 

signature of learning transfer on time-frequency activity, we calculated the corresponding 

differences in beta-band logarithmic fits (pooling from significant clusters shown in Fig. 5B). 

The single-trial estimates of differences in behavioural sensitivity to RefRP and RP stimuli 

were entered into an analysis of covariance (ANCOVA) with the following independent 

variables: (1) EEG signature of learning transfer (as a continuous regressor), (2) time-

frequency signature of learning transfer (as a continuous regressor), (3) condition (Transfer 

vs. Control), (4) order (AV vs. VA), as well as their interactions. Significant interactions were 

inspected using post-hoc ANCOVAs.  

 

3. Results 

3.1 Behavioral effects 

 First, a mixed-design ANOVA on d’ confirmed a significant effect of stimulus type 

(F1,22 = 24.23, p < 0.001), modality (F1,22 = 1541.1, p < 0.001), and condition (F1,22 = 27.97, p 

< 0.001). A significant interaction for the stimulus type, modality, condition, and modality 

order was also observed (F1,22 = 4.556, p < 0.05). As the significant interaction was observed 

when the modality order was included, we ran separate repeated-measures ANOVA on each 

AV and VA group. First, overall performance in the auditory modality was better (that is, d’ 

values were higher) than in the visual modality for both AV and VA trial types (AV: F1,11 = 

1140.37, p < 0.001; VA: F1,11 = 420.15, p < 0.001). Better performance for RefRP compared 

to RP was confirmed only in the VA group (F1,11 = 32.44, p < 0.001), and that of the AV 

group showed borderline significance (F1,11 = 4.54, p = 0.057). Due to the significant 

performance difference observed between A and V, further post-hoc ANOVAs were carried 
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out on each modality separately. In the AV group, ANOVA on the first modality (Audition) 

confirmed that there was a significant performance difference between RP and RefRP (F1,11 

= 6.53, p = 0.027) and no overall performance difference between Transfer and Control 

conditions (F1,11 = 0.33, p = 0.58). In contrast, an ANOVA on the second modality (Vision) 

revealed no significant performance difference between stimulus type (F1,11 = 0.20, p = 0.66) 

but a significant performance difference between condition (F1,11 = 28.28, p < 0.001) and a 

weak interaction between the stimulus type and condition (F1,11 = 4.33, p  = 0.06). For the VA 

group, a post-hoc ANOVA on each modality confirmed that both modalities showed 

significantly greater performance for RefRP than RP (V: F1,11 = 14.05, p = 0.004; A: F1,11 = 

29.86, p < 0.001), and for Transfer than Control (V: F1,11 = 182.18, p < 0.001; A: F1,11 = 

180.18, p < 0.001). No effect of the condition or interaction between condition and stimulus 

type were observed (Fig. 2A), possibly due to the ceiling effect for task performance in the 

second modality (A). Overall, significant performance differences between RP and RefRP 

were observed in all cases except for the second modality of the AV group, which is the only 

case where a significant performance difference between Transfer and Control conditions 

was observed.  

 

 

 
Figure 2. Behavioral results. (A) Sensitivity index d’ values averaged across subjects for RP (black) 
and RefRP (red) for each modality (top: AV group, bottom: VA group) and each condition (filled: 
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Transfer, hatched: Control). Grey lines on the bar graphs indicate individual subject’s d’ values per 
stimulus type and condition. Error bars represent 95% confidence intervals. Asterisks indicate where 
there are statistically significant differences between stimulus types (p < 0.05 to indicate main effect 
between stimulus types). (B) The time course of performance difference (RefRP - RP) for Transfer 
(filled markers) and Control (empty markers) conditions (top: AV group, bottom: VA group). Dashed 
lines indicate the midpoint of the test block where the modality switch occurred.  
 

To investigate whether observed performance differences between stimulus type and 

modality type were due to a performance improvement of RefRP, especially for the Transfer 

condition, we computed a hit rate difference between RefRP and RP for each trial, for each 

modality order group. Unlike previous studies (e.g., Agus et al., 2010; Kang et al., 2018), we 

did not observe a rapid performance improvement (within 5-10 trials) in all cases, possibly 

due to a limited number of test blocks (see Discussion). However, participants still showed 

greater performance difference in the second modality of the Transfer condition vs. Control 

condition, at least for the AV group (t(11) = -2.89, p < 0.05, Bonferroni correction; Fig. 2B), 

while no significant performance difference was observed in all other cases, i.e., the first 

modality in both groups as well as the second modality in the VA group (p > 0.05), which 

further supports the hypothesis that behavioural effects of pattern learning transfer should be 

most robust from audition to vision. 

 

3.2 Stimulus repetition modulates ERP amplitude 

In the analysis of the effects of stimulus repetition across trials (RefRP vs. RP) on 

ERP amplitude, two significant spatiotemporal clusters were identified (Fig. 3AD). In the first 

modality of the AV blocks (i.e., for auditory stimuli), RefRP stimuli differed in amplitude from 

RP stimuli over posterior channels, during the second stimulus segment (latency range 

1110-1900 ms, cluster-level pFWE < 0.001, Fmax = 34.27, Zmax = 5.37), while for the first 

modality of the VA blocks (i.e., for visual stimuli), RefRP stimuli differed in amplitude from RP 

stimuli over central channels during both stimulus segments (latency range 372-1442 ms, 

cluster-level pFWE < 0.001, Fmax = 29.21, Zmax = 4.99). The remaining effects did not yield 

significant clusters. In the source reconstruction of the two significant clusters (Fig. 3CF), the 

difference in auditory RefRP and RP stimuli was attributed to the right middle/inferior 
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temporal gyrus (MNI peak: [54 -24 -22], cluster-level pFWE = 0.047, small-volume corrected, 

Tmax = 2.42, Zmax = 2.37), in the immediate vicinity of secondary auditory regions, while the 

difference in visual RefRP and RP stimuli was attributed to the left inferior occipital gyrus 

(MNI peak: [-22 -98 0], cluster-level pFWE = 0.047, small-volume corrected, Tmax = 2.30, Zmax 

= 2.26), in the early visual cortex.  

 

 
Figure 3. ERP effects of stimulus repetition. (A) Scalp topographies of repetition effects across 
trials (RefRP vs. RP stimuli), in the first modality of AV blocks. Highlighted significant clusters (pFWE < 
0.05).  (B) Time courses of the effects of repetition across trials, in the first modality of AV blocks. 
Red: RefRP stimuli; black: RP stimuli. Shaded areas denote SEM across participants. Black bars 
denote the significant effect time windows. (C) Source estimates of the significant clusters in the AV 
blocks: right middle/inferior temporal gyrus (peak MNI [54 -24 -22]). (D) Scalp topographies of 
repetition effects across trials (RefRP vs. RP stimuli), in the first modality of VA blocks. Highlights as 
in (A). (E) Time courses of the effects of repetition across trials, in the first modality of VA blocks. 
Legend as in (B). (F) Source estimates of the significant clusters in the VA blocks: left inferior occipital 
gyrus (peak MNI [-22 -98 0]).  

 

3.3 Cross-modal transfer modulates EEG learning curves 

In the analysis of the effects of cross-modal transfer (interaction: [RefRP vs. RP] x 

[Transfer vs. Control]) on EEG learning curves, two significant clusters were identified. In the 

second modality of the AV blocks (i.e., for visual stimuli), there was a significant interaction 
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between stimulus (RefRP vs. RP) and condition (Transfer vs. Control) over right-lateralized 

central electrodes, during the first stimulus segment (latency range 704-942 ms, cluster-level 

pFWE = 0.042, Fmax = 15.41, Zmax = 3.63; Fig. 4BC), while for the second modality of the VA 

blocks (i.e., for auditory stimuli), the same interaction yielded a significant cluster over right-

lateralized frontal electrodes, also during the first stimulus segment (latency range 476-700 

ms, cluster-level pFWE = 0.003, Fmax = 23.30, Zmax = 4.47; Fig. 4EF). In the source 

reconstruction of these clusters, both significant interaction effects were attributed to source 

activity in the right inferior frontal gyrus (rIFG; AV blocks, MNI peak: [46 40 -4], cluster-level 

pFWE = 0.049, small-volume corrected across voxels, Tmax = 3.17, Zmax = 3.05; Fig. 4D; VA 

blocks, MNI peak: [52 14 20], cluster-level pFWE = 0.049, small-volume corrected across 

voxels, Tmax = 3.67, Zmax = 3.50; Fig. 4G). 

A further inspection of the interaction effect (Fig. 4HI) revealed that, for the initial 

three trials of the second modality, it was driven by the significant difference in ERP 

amplitude between RefRP stimuli presented in Transfer vs. Control conditions (t23 = 2.38, p = 

0.026), with no significant differences between the remaining stimulus/condition pairs (all 

other p > 0.2). 
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Figure 4. EEG learning curves reflect cross-modal transfer. (A) Learning curve estimation by 
logarithmic fitting. Plots show RMS of ERP responses (relative to baseline), averaged across 
channels and participants for all conditions (left), and for RefRP, RP, and P stimuli separately 
(middle/right). For display purposes, data were smoothed by a moving average of 3 points. Error bars 
denote SEM across participants. (B) Scalp topography of the cross-modal transfer effect (interaction: 
[RefRP vs. RP] x [Transfer vs. Control]) on EEG learning curves, in the second modality of AV blocks. 
Highlighted significant cluster (pFWE < 0.05). (C) Time course of AV cross-modal transfer effect. Left: 
transfer condition, right: control condition. Red: RefRP stimuli; black: RP stimuli. Shaded areas denote 
SEM across participants. Black bars denote the significant interaction effect time windows. (D) Source 
estimates of the significant cluster: right inferior frontal gyrus (peak MNI [46 40 -4]). (E) Scalp 
topography of the cross-modal transfer effect in the second modality of VA blocks. Highlighted 
significant cluster (pFWE < 0.05). (F) Time course of VA cross-modal transfer effect. Legend as in (B). 
(G) Source estimates of the significant cluster: right inferior frontal gyrus (peak MNI [52 14 20]). (H) 
Single-trial EEG amplitude (RMS). Left: transfer condition, right: control condition. Red: RefRP stimuli; 
black: RP stimuli. Solid curves denote logarithmic fits to the group average. Error bars denote SEM 
across participants. (I) Post-hoc tests of the EEG amplitude (RMS) averaged across the first three 
trials. Only the difference between RefRP EEG amplitudes (RMS) in transfer vs. control conditions 
was significant (p < 0.05).  
 

3.4 Cross-modal transfer modulates frontal beta power 
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 For the analysis of time-frequency activity, we estimated source activity localized to 

the rIFG region, and tested whether any time-frequency clusters are sensitive to cross-modal 

transfer (interaction effect) as identified above for ERPs. This analysis revealed that, across 

AV and VA blocks, beta-band power was modulated by cross-modal transfer during the first 

stimulus segment (latency range 500-800 ms, frequency range 15-20 Hz, cluster-level pFWE 

= 0.016, Tmax = 3.25, Zmax = 3.19; Fig. 5AB). The main effect of block order (AV vs. VA) was 

not significant. A closer inspection of this interaction effect for the first three trials (Fig. 5CD) 

revealed that, as in the case of ERPs, it was driven by the significant difference beta power 

between RefRP stimuli presented in Transfer vs. Control conditions (t23 = -2.59, p = 0.016), 

with no significant differences between the remaining stimulus/condition pairs (all other p > 

0.1).  

 

 
Figure 5. Frontal beta power reflects cross-modal transfer. (A) Time-frequency map of the cross-
modal transfer effect (interaction: [RefRP vs. RP] x [Transfer vs. Control]) on single-trial changes 
(logarithmic coefficients) in rIFG activity, in the second modality of both AV and VA blocks. Highlighted 
significant cluster (pFWE < 0.05). (B) Time-frequency maps of each condition. Highlighted cluster 
denotes the time and frequency window (corresponding to the maximum range of the cluster depicted 
in Fig. 5A) used to obtain single-trial estimates in (C,D). (C) Single-trial frontal beta power. Left: 
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transfer condition, right: control condition. Red: RefRP stimuli; black: RP stimuli. Solid curves denote 
logarithmic fits to the group average. Error bars denote SEM across participants. (D) Post-hoc tests of 
the frontal beta power, averaged across the first three trials. Only the difference between RefRP 
frontal beta power in transfer vs. control conditions was significant (p < 0.05). 
 

3.5 Neural signatures of learning transfer contribute to behaviour 

 Across participants, the behavioural benefits in sensitivity to RefRP vs. RP stimuli were 

explained in an ANCOVA by a combination of EEG signatures of learning transfer (difference in 

logarithmic fit coefficients for RefRP vs. RP stimuli based on EEG amplitudes; see Fig. 4BC and Fig. 

4EF), beta-band signatures of learning transfer (difference in logarithmic coefficients for RefRP vs. RP 

stimuli based on beta power; Fig. 5B), experimental condition (Transfer vs. Control), and modality 

order (AV vs. VA). Here, for the behavioural benefit measure, we used raw d' values (before rescaling; 

see Section XYZ) to preserve the individual differences. Specifically, there was a significant three-way 

interaction between the continuous covariate representing the EEG signatures of learning transfer, 

and the categorical factors of condition and order (F1,31 = 4.36; p = 0.045), as well as a significant 

four-way interaction between the continuous covariates representing the EEG and beta-band activity 

signatures of learning transfer, and the categorical factors of condition and order (F1,31 = 5.02, p = 

0.032). The remaining main and interaction effects were not significant (all p > 0.1). A further 

inspection of the significant interaction effects revealed that, in the Transfer condition of the AV group, 

behavioural sensitivity benefits were subject to a significant main effect of EEG signatures of learning 

transfer (F1,8 = 5.52, p = 0.047, β = 0.425), and a significant interaction effect between EEG and beta-

band signatures of learning transfer (F1,8 = 7.67, p = 0.024, β = -0.262). These effects were not 

significant in the Control condition or in the VA group (all p > 0.05).  

 

 

4. Discussion 

In this study we show that the temporal patterns of occasionally repeated stimuli 

(RefRP) are learned and exploited, both when these stimuli are presented within a particular 

modality (in both audition and vision), as well as when the temporal patterns are learned in 

one modality and presented in another. First, participants had better behavioural 

performance (within-trial repetition detection) for RefRP stimuli, presented several times 
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during the experiment, than for RP stimuli, only presented once. These performance benefits 

were observed in both audition and vision as the first modality, consistent with previous 

studies using the same paradigm (Kang:2018ee; Kang et al., 2017; Gold et al., 2014; Bale et 

al., 2017), and regarded as an index of learning for RefRP. A qualitatively similar 

performance improvement in both modalities was achieved by controlling presented 

temporal patterns at a low pulse rate with a fixed minimum interval (Rammsayer et al., 2015; 

Rammsayer and Pichelmann, 2018). 

The ERP difference observed between RefRP and RP in the first modality further 

confirmed that stimulus repetition across trials modulates the processing of that stimulus. We 

observed a significant ERP difference between RefRP and RP in both audition and vision, 

complementing previous studies using similar paradigms which reported a modulation of 

neural responses to stimulus repetition in audition (Luo et al., 2013; Andrillon et al., 2015). 

However, while previous studies focused on comparing RefRP stimuli to completely random 

sequences (the equivalent of P stimuli in our study) and did not report significant differences 

between RefRP and RP stimuli on ERP responses, in this study we focused a priori on 

comparing RefRP and RP stimuli, since there are fewer confounding factors such as motor 

response preparation. Furthermore, while previous studies used Gaussian noise as stimuli, 

in the present study we used random temporal patterns of discrete brief stimuli. Our rationale 

for using relatively slow (average pulse rate 7 Hz) patterns of discrete stimuli was to 

minimize the absolute differences in temporal acuity between audition and vision and ensure 

that each pulse gap could be clearly perceived by both modalities (Kang et al., 2018). 

However, as a result the sequence used in the present study was simpler and more salient 

than frozen noise stimuli, possibly augmenting differences in neural responses to RefRP and 

RP stimuli. A source localisation of these effects showed that, in audition, differences in 

ERPs evoked by RefRP vs. RP stimuli were primarily due to activity in or near the auditory 

cortex while, in vision, these differences originated from the visual cortex. This is 

contradictory to some of the previous studies suggesting an involvement of auditory regions 

in temporal processing of both auditory and visual stimuli (Guttman et al., 2005; Kanai et al., 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 21, 2021. ; https://doi.org/10.1101/2020.11.24.395368doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.24.395368
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

2011), or an involvement of visual regions in mnemonic processing of both auditory and 

visual stimuli (Wolff et al., 2020). Instead, our findings of modality-specific neural dynamics 

modulated by repeated presentation of the same temporal pattern are more consistent with 

the intrinsic model, according to which temporal information is coded in modality-specific 

sensory regions (Ivry et al., 1988; Ivry and Schlerf, 2008; Buonomano and Maass, 2009). 

Crucially, beyond the effects of occasional pattern repetition on stimulus processing 

within a given modality, we also observed behavioural and neural correlates of learning 

transfer across modalities. In the behavioural data, there was a trend for better performance 

achieved for RefRP stimuli which were first presented in audition and whose temporal 

characteristics were transferred to vision. While no such finding was observed for transfer 

from vision to audition, this could be due to a behavioural ceiling effect in audition. Also, a 

limited number of test blocks run for the EEG recording could have caused the unbalanced 

task performance between conditions for the first modality, vision, with greater variability. 

However, since such unbalanced task performance in vision was observed only for early 

trials and disappeared for later trials, it would not have affected our investigation of the 

transfer effect. Transfer effects of learning across modalities have not been consistent 

across previous studies. Some studies reported that training in audition improves visual 

temporal processing but not vice versa (Bratzke et al., 2012; Barakat et al., 2015), while 

other studies showed a generalization of temporal perceptual learning from vision to audition 

(Bueti and Buonomano, 2014) or even no transfer effect at all (Lapid et al., 2008). It should 

be noted, however, that because we recorded neural responses concurrently, the test blocks 

were longer and as a result a smaller number of behavioural blocks were presented 

compared to the previous studies, possibly decreasing the behavioural sensitivity to learning 

transfer.  

Nevertheless, the analysis of neural responses showed robust correlates of learning 

transfer across modalities, in both directions (from audition to vision and from vision to 

audition). Previous auditory imaging studies in humans under the same paradigm focused 

on the inter-trial coherence as an index of neural activity modulated by the re-occurrence of 
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reference sequences (e.g., Luo et al., 2013; Andrillon et al., 2015). However, the inter-trial 

coherence by definition averages information across trials. In the present study, since we 

were primarily interested in learning transfer, we estimated a neural learning curve to 

repeated presentations of RefRP stimuli across trials, based on a logarithmic fit of trial-by-

trial responses. Our choice of logarithmic fitting, as opposed to other (e.g. linear and 

exponential) fits analysed here, is consistent with previous work on statistical learning in 

adults (Siegelman et al., 2018) and infants (Choi et al., 2020) which has shown that 

logarithmic fits efficiently describe learning curves. This allowed us to quantify the gradual 

changes in neural responses, tapping more directly into the learning mechanisms. Using 

these methods, we found that learning transfer of RefRP temporal patterns from one 

modality to another, for both AV and VA groups, were reflected by a significant difference in 

the ERP learning curves between RefRP stimuli presented in the second modality in the 

transfer condition compared to the control condition, whereas no such difference was 

observed for RP stimuli. A significant interaction effect of stimulus (RefRP vs. RP) and 

condition (transfer vs. control) on ERP learning curves was observed in the second modality 

for both AV and VA groups. Importantly, these effects were driven by the initial few trials - 

and, unlike the first modality, in which we observed overall differences between ERP 

amplitudes evoked by RefRP and RP stimuli, here the average differences in ERP 

amplitudes were not significant. Furthermore, in the AV group, in which we observed 

significant behavioural benefits of learning transfer, these benefits were explained by the 

ERP signatures of learning transfer (i.e., EEG-based learning curves predicted the size of 

the behavioural benefit in the Transfer condition, but not in the Control condition). This 

indicates that there is a distinct difference in neural responses driven by memory transfer 

across modalities, immediately after presenting a previously learned stimulus in a new 

modality, and largely limited to the initial stimulus presentations.  

Interestingly, for both AV and VA groups, source localization revealed that the 

learning transfer effect was associated with activity modulations in the right IFG, typically 

associated with working memory, attention, and detection of relevant targets, regardless of 
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modality (Linden et al., 1999; Corbetta and Shulman, 2002; Hampshire et al., 2010). 

Furthermore, within the rIFG cluster, significant signal modulation due to the learning 

transfer effect was specifically observed in the beta-band, also implicated in working memory 

function (Spitzer and Blankenburg, 2012; Lautz et al., 2017; Gelastopoulos et al., 2019). 

Also, the interaction of beta-band and ERP-based learning curves could be related to the 

behavioural benefits of learning transfer, suggesting that the interplay between both kinds of 

neural signatures has behavioural relevance. Previous work has identified the right prefrontal 

beta-band activity as a neural correlate of working memory maintenance independent of 

modality or specific stimulus type (Spitzer et al., 2014; Wimmer et al., 2016), and mounting 

evidence suggests that prefrontal beta is linked to reactivating working memory contents 

(Spitzer and Haegens, 2017). In this context, our findings are consistent with the notion that 

learning transfer requires a reactivation of a previously learned temporal pattern in working 

memory, possibly matching the temporal pattern in a new sensory format to the pattern in 

the previously-learned modality.  

 

5. Conclusion 

The present study suggests that both modality-specific and modality-general 

mechanisms mediate temporal information processing, depending on whether temporal 

sequences are processed in one modality or transferred across modalities. Different effects 

of the reference sequence reoccurrence on neural activity during the first and second 

modality learning phases suggest dissociable information processing mechanisms between 

the two phases. A dominant involvement of modality-specific cortical regions during the first 

phase could be explained by the intrinsic model, according to which temporal information is 

initially coded in the contextually relevant regions (Buonomano and Maass, 2009). However, 

higher-order processing of information, i.e. transferring the temporal pattern learned in one 

modality to another modality, relies on reactivating the relevant stimulus contents in working 

memory (Spitzer and Haegens, 2017). Similar neural effects of learning and learning transfer 

independent of modality (audition, vision) and order (audition-to-vision and vice versa) 
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suggests that general mechanisms might be at play when learning temporal patterns in 

different sensory modalities.  
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