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Abstract 

The consequence of a mutation can be influenced by the context in which it operates. 

For example, loss of gene function may be tolerated in one genetic background, but lead 

to lethality in another. The extent to which mutant phenotypes are malleable, the 

complexity of the architecture of modifiers, and the identities of causal genes and 

pathways remain largely unknown. Here, we measure the fitness effects of ~1,500 

temperature sensitive alleles of yeast essential genes in the context of variation from ten 

different natural genetic backgrounds, and map the modifiers for 19 combinations. 

Altogether, fitness defects for 183 of the 530 tested genes (35%) could be suppressed 

by standing genetic variation in at least one wild strain. Suppression was generally 

driven by gain-of-function of a single, strong modifier gene. The validated causes 

included both variants in protein interaction partners or pathway members suppressing 

specific genes, as well as general modifiers altering the effect of many temperature 

sensitive alleles. The emerging frequency of suppression and range of possible 

suppression mechanisms suggest that a substantial fraction of monogenic diseases 

could be repressed by modulating other gene products. 
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Introduction 

The phenotypic outcome of a mutation is determined by the genetic context in which it 

occurs. The elusive causes of such variation are fascinating in themselves, but are also 

central to finding ways of predicting and ameliorating genetic diseases. Loss of gene 

function may lead to death of specific tumour cells only, making the gene a potent drug 

target (Behan et al. 2019; Gonçalves et al. 2020). Moreover, a coding mutation with no 

discernible impact in a parent can result in a disorder in their child (Wright et al., 2019). 

Understanding how such incomplete penetrance arises, and predicting it for a new 

context, would therefore deepen our understanding of cellular systems, and likely impact 

diagnoses for developmental disorders or personalised treatments for tumours. 

 

Viability is perhaps the simplest mutation phenotype to analyse. In the course of 

establishing the yeast gene knockout collection, it became clear that about 1,100 of the 

~6,000 yeast genes are indispensable under standard, nutrient-rich growth conditions 

(Giaever et al. 2002). However, repeating this resource construction in another genetic 

background offered a tantalising glimpse into the complexity of mutant phenotypes, as 

over 5% of the essential genes were variable between two closely related strains 

(Dowell et al. 2010). These and new strain panels (Galardini et al., 2019; Sanchez et al. 

2019) have established similar estimates of ~10% of genes demonstrating variable 

knockout phenotypes between closely related strains and species. 

 

The reason for incomplete penetrance in general, and variable gene essentiality in 

particular, is the abundance of modifier loci that can suppress mutation effects (Hou et 

al. 2018). Although their existence has been appreciated for a century (Altenburg and 

Muller 1920), validated examples remain elusive. A small number of modifiers have 

been mapped and validated for mouse models (Hamilton and Yu 2012) and human 

disease (Harper, Nayee, and Topol 2015; Riordan and Nadeau 2017). By far, the most 

well studied are examples from yeast, powered by the availability of a large number of 

genetically diverged natural isolates (Peter et al. 2018), genetic tools that allow making 

large collections of loss-of-function alleles (Hou et al. 2019; Sanchez et al. 2019), and 

the ability to systematically cross strains in controlled designs (Tong et al. 2001; Hallin et 

al., 2016; Bloom et al. 2019).  

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.11.24.395855doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.24.395855
http://creativecommons.org/licenses/by-nd/4.0/


 

3 

Systematic identification of spontaneous mutations that can suppress fitness defects of 

“query” mutant alleles in a reference yeast strain has illuminated mechanisms of 

suppression (van Leeuwen et al. 2016, 2017, 2020). These studies have shown that 

although deletion mutants are mainly suppressed by genes with a role in the same 

functional module, partial loss-of-function alleles are frequently suppressed by more 

general mechanisms affecting query protein expression or stability. However, surveys in 

model organisms have been largely limited to detecting single gene suppression in a 

laboratory setting, whereas more complex networks of modifiers may affect the 

penetrance of any given allele in natural populations. Linkage-based analyses of large 

panels of individuals have indeed identified second and higher-order modifier effects 

(Chandler et al. 2014; Taylor and Ehrenreich 2015; Hou et al. 2019; Sanchez et al. 

2019), but few modifiers are usually characterised in depth beyond mapping the loci in 

such designs. The relevance of established broad suppression mechanisms for natural 

populations thus remains unclear (Matsui, Lee, and Ehrenreich 2017). 

 

Here, we measure phenotypes elicited by crossing nearly 1,500 temperature sensitive 

mutant alleles of essential genes to ten genetically diverse yeast strains. We use 

powerful genetic mapping approaches to identify modifier loci of a subset, and validate 

causal genes for 19 of them. A single strong suppressor allele could independently 

overcome the mutation phenotype in nearly all mapped cases. The suppressing variants 

tend to operate within the same biological module as the query gene, with mutations in 

protein interaction partners or protein complexes often suppressing specific genes, 

mutations in pathways suppressing other pathway members, and general modifiers 

altering the effect of many mutations. Together, these results demonstrate the natural 

genetic flexibility of cells to fulfil crucial tasks, and suggest that loss of human gene 

function could often be specifically complemented as well.  
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Results 

 

Measuring suppression by standing variation 

We set out to test mutation effects in segregant progeny from diverse yeast isolates from 

various geographic locations and sources (“wild yeasts”) (Liti et al. 2009; Bergström et 

al. 2014). To do so, we used the Synthetic Genetic Array approach (Tong et al. 2001) to 

cross a collection of 1,499 temperature sensitive alleles (“TS alleles”) of 673 essential 

query genes in the laboratory strain S288C (Costanzo et al. 2016) to 10 stable haploid 

wild yeasts (Figure 1A) (Cubillos, Louis, and Liti 2009), as well as into the S288C control 

as a reference. We isolated segregant progeny carrying the TS allele to obtain diverse 

populations of haploid individuals with genomes that, except for the genomic regions 

around the TS allele and selection markers, are a mosaic of the reference and wild 

parents (Figure 1B, Methods). We grew the segregants at permissive (26 °C) and 

restrictive (34 °C) temperatures to measure the fitness effect of TS alleles in different 

genetic backgrounds. In the control cross with S288C, no segregants are expected to 

grow at the restrictive temperature due temperature-sensitivity of the allele. However, in 

cases where the wild yeast strain harbours variants that can suppress the TS 

phenotype, the haploid segregants that carry them will be able to grow at the restrictive 

temperature, and will take over the population (Figure 1B).  

 

We first measured the growth defect of each TS allele in complex pools of wild yeast 

strain cross progeny (Data S1, Figure S1). After filtering out 379 temperature insensitive 

strains at 34 °C, we were left with 1,120 TS alleles of 580 query genes (Methods). We 

estimated suppression as normalised log2-scale growth difference between the wild and 

reference strain crosses at the restrictive temperature, and considered a TS allele 

phenotype suppressed, if this value was above 0.75, i.e. the wild strain segregants had a 

1.68-fold improvement in growth, and if this was unlikely due to chance (false discovery 

rate = 0.012, Methods, Figure 2A, Data S2).  
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Figure 1. Experimental overview. High-throughput measurement and mapping of suppressor 

effects from a panel of wild strains. A. Strains used in the study. Seven wine / European strains, 

and three other distant ones (all blue) were crossed to the S288C reference (yellow). B. Strategy 

for identifying suppression by standing variation. A temperature sensitive (TS) allele collection of 

1,499 partial loss-of-function mutants in the reference background (yellow) was crossed to the 10 

wild yeast strains with potential suppressor alleles (blue), to produce large segregant populations 

selected to carry the TS allele. The fitness of the resulting 14,990 populations was measured in 

two biological and four technical replicates. A subset of 38 candidate suppression events were 

used in bulk segregant analysis for linkage mapping of causal loci that display selection at 

restrictive temperature (dark) but not permissive temperature (light). Panel A adapted from Liti et 

al. (2009).  

 

Our screen included several positive control crosses that were expected to show 

suppression. Three of the wild strains harbour a chrVIII-chrXVI reciprocal translocation 

(Pérez-Ortín et al. 2002; Figure S2A). Crossing these strains to the reference strain 

results in 25% of the progeny carrying a duplication of a substantial part of the left arm of 

chromosome XVI (Figure S2B). This creates an extra copy of the essential query genes 

in this region that complements the TS allele. Reassuringly, we confirmed that this extra 

copy suppressed 39 out of 53 TS alleles in the duplicated region on average, while 

segregant progeny from the other wild strains suppressed a median of two (Figure 2B). 

Further, the extra copy of chromosome VIII carried by the NCYC110 strain resulted in a 

similar pattern of suppression (Figure S3A-C).  

 

Also beyond these large genomic determinants, suppression of fitness defects by 

standing variation in the species was relatively common. Overall, 246 of 1,067 TS alleles 

(23%, excluding temperature insensitive and copy number suppressed alleles discussed 

above) and 183 of the 530 tested genes (35%) were suppressed in segregant progeny 
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from at least one genetic background, and on average wild strain progeny could 

suppress 57 essential gene mutant alleles (5%). For 154 genes, we tested at least two 

different temperature sensitive alleles, and of these, 25 (16%) had at least two of the 

alleles consistently showing suppression by some wild yeast variants, with a median of 

five genes per strain (Figure 2A). Due to variation in temperature sensitivity, different TS 

alleles of the same gene are not necessarily expected to show suppression at the same 

temperature. As a negative statistical control, a smaller number of 36 out of 530 

successfully tested genes (7%) had at least one allele supporting suppression at the 

permissive temperature, and 4 of 154 genes with two possible supporting alleles. 

 

To further validate the suppression events identified in our screen, we tested a selection 

of 102 suppression effects of variable strength by examining the fitness of hundreds of 

single colony progeny from individual crosses. As the progeny of most crosses showed 

high variation in colony size, which was also influenced by the number of colonies on the 

plate, we used stringent thresholds for identifying suppression (Methods). We observed 

good concordance of strong effects between the phenotypes of the population in the 

initial screen and the individual progeny in this assay (53% of crosses show suppression 

for suppression scores above 0.75, 16% for below 0.75, Figure S3E, Data S3).  

 

Thus, we found that suppression by standing genetic variation is relatively common, and 

that the identified suppression events can often be validated by additional alleles or in 

complementary assays. 

 

Patterns of suppression 

Next, we asked whether segregant progeny from genetically similar wild strains were 

more likely to suppress the same TS alleles compared to more diverse strains. Indeed, 

suppression patterns were more distinct for the two strains genetically furthest from the 

wine/European cluster (maximum Pearson’s R to any other strain for NCYC110, 

UWOPS87-2421 less than 0.5, and between 0.59 and 0.75 for the rest), and were 

consistent with the genetic relatedness otherwise (Figure 2C). The DBVPG1106 wine 

strain was a phenotypic outlier of Wine/European strains due to overall poor growth at 

the restrictive temperature (0% of TS allele crosses with log2-scale colony size of more 

than 10.5 across all crosses; at least 11% for all other strains, Figure S1). 
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Figure 2. The extent of genetic suppression of essential gene mutants by standing 

variation. Genetic suppression of TS alleles is not frequent for individual allele-strain 

combinations, but relatively common for a gene. A. Large suppression effects are rare. Fraction 

of genes or alleles (y-axis) above a suppression cutoff (x-axis) for all pairs of wild strain and allele 

combinations (black, N=9,708), for the strongest gene suppression signal across alleles and wild 

strains (cyan, N=529), and for the second-strongest gene suppression signal across alleles and 

wild strains (blue, N=154). B. A positive control region shows suppression signal. Average 

suppression signal (y-axis) for TS alleles of query genes located on the left arm of chromosome 

XVI (allele index, sorted by chromosome coordinates, x-axis) across strains with a translocation 

that generates a duplication of the shaded area (blue markers), and strains without (grey 

markers). Dashed line: y = 0.75 (suppression cutoff in screen). C. Genotype and phenotype trees 

are concordant. Top: Hierarchical clustering (UPGMA) of the ten wild strains used in this study 

based on sharing segregating sites. Colours: global genetic cluster membership. Bottom: as top, 

but based on correlation distance between genetic suppression profiles. Strain abbreviations as 

in Figure 1A, with in addition: NC = NCYC110, UW = UWOPS87-2421, and 27 = 273614N. D. 

Genetic suppression is consistent across different alleles of the same gene. Suppression score 

(colour scale) in crosses to different wild strains (x-axis) for TS alleles (y-axis) of GAB1 and NSE4 

genes. E. Genetic suppression is consistent across genes encoding members of the same 

complex. Strongest suppression score across TS alleles for a gene (colour scale) in crosses to 
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different wild strains (x-axis) for genes (y-axis) that encode members of the GPI-anchor trans-

amidase complex (bottom) or the nuclear condensin complex (top). The GPI16 gene suppression 

was not estimated in the NCYC110 strain due to chromosome II copy number variation (“X”). 

 

The patterns of suppression of the same gene in the various wild strain crosses were 

diverse. In some cases, the gene is possibly essential only in the reference background, 

with multiple alleles showing suppression in all the different tested strains, while for other 

genes, suppression was limited to a few wild strains (e.g. GAB1 and NSE4 genes, 

respectively, Figure 2D). Suppression was also shared across genes with related 

function. For example, Gab1 is a member of the GPI-anchor transamidase complex, 

mutations to three screened members of which were strongly suppressed (Figure 2E), 

and the GPI8 gene with less suppression was likely carrying the suppressor variant (see 

below). Again, we also observed suppression in specific backgrounds, e.g. mutations to 

genes in the nuclear condensin complex were suppressed almost exclusively in the 

UWOPS87-2421 background (Figure 2E). In general, we observed consistent 

suppression patterns between genes encoding members of the same protein complex 

most frequently (33% of protein complexes with average between-gene suppression 

correlation significantly higher than permuted controls at FDR=0.20, Methods), followed 

by cellular locations (30%), broad functional categories (28%), KEGG pathways (27%) 

and Gene Ontology categories (25%). This concordance is consistent with the nature of 

connectedness within genetic networks in general, where many interactions are shared 

within complexes, compared to broader functional connections. 

 

Mapping of genomic regions involved in suppression 

Given frequent, strong, and technically and biologically consistent suppression of TS 

alleles by variants from wild genetic backgrounds, we next sought to identify the causal 

loci and genes. First, to estimate the average number of modifiers involved in the 

suppression phenotype, we dissected meiotic progeny of 16 crosses, and examined the 

growth of spores carrying the TS allele at 26 and 34 °C. In all cases, 15-65% of the 

spores grew well at the restrictive temperature, with little additional phenotypic variation 

in growth beyond survival, suggesting that most of the detected suppression phenotypes 

are the result of at most 1-3 strong modifier variants in the wild strain background 

(Figure S4, Discussion).  
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To map the suppressor loci, we performed bulk segregant analysis on 38 segregating 

TS allele populations at both 26 °C (allele functional) and 34 °C (allele loss-of-function, 

Figure 1B) (Liti and Louis 2012). We sequenced the populations, and compared variant 

allele frequencies between the two temperatures (Data S4 and S5). We first considered 

positive controls expected to involve suppression by an additional, wild-type copy of the 

query gene described above, either generated by the chrVIII-chrXVI translocation (6 

samples) or located on an aneuploid chromosome (6 samples). In all 12 cases, we could 

indeed observe selection for either the translocation or the aneuploidy, and further 

confirmed that suppression occurred by the presence of a second, wild-type allele of the 

query gene (Figures S2C-D and S3D).  

 

Second, we sequenced meiotic progeny of six crosses that showed weak “suppression” 

in our screen (suppression score below 0.6), unrelated to any known translocations or 

aneuploidies. Four cases showed selection for newly acquired aneuploidies of either the 

chromosome carrying the query gene or other loci selected in the crossing protocol. 

These cases often represent ways of cells to escape the strong selection applied in our 

protocol, rather than true cases of suppression. The remaining two cases harboured 

regions of selection for the wild strain sequence specific to high temperature (Data S4 

and S5), suggesting that some of the weaker scores in our screen also represent true 

cases of suppression, and corroborating the observations from the confirmation of 

individual suppression effects.  

 

Third, we analysed 20 crosses that showed strong suppression in our screen 

(suppression score above 0.75). The large majority (16) showed regions of specific 

selection for the wild sequence at high temperature (Figure 3A, Data S4 and S5), 

whereas three populations diploidised or showed selection for an aneuploidy. The one 

remaining cross did not show any suppressor loci or aneuploidies. Thus, we could map 

suppressor loci for 16/20 (80%) of the crosses that showed strong suppression in our 

screen, and in 2/6 (33%) of the crosses that showed weak suppression. 
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Figure 3. Mapping suppressor loci. Suppressor loci can be mapped by sequencing 

segregant pools. A. Example of the mapping results. Wild allele frequency in progeny of a cross 

of the gab1-1 temperature sensitive allele to the YJM975 strain (y-axis) along the yeast genome 

(x-axis) at the permissive 26 °C (blue) and restrictive 34 °C (allele loss-of-function, cyan). The 

allele frequency change between the two temperatures is used in mapping. Labels: selected loci 

in the cross. Blue regions: called suppressor loci. B. Suppressors are plentiful. The average 

number of suppressor loci per cross (y-axis) at given allele frequency change cutoff (x-axis) with 

wild allele beneficial (blue) or reference allele beneficial (yellow). C. Suppressors are reproducible 

across TS alleles. Allele frequency change in crosses using different TS alleles of the same gene 

(x- and y-axis) crossed with the same wild strain. Colours: gene and wild strain combinations. D. 

Suppressors are reproducible across wild strains. Allele frequency change at 34 °C in crosses 

using the same TS allele and different wild strain (x- and y-axis). Colours: TS alleles.  

 

The landscape of suppressors is diverse. We identified 31 suppressor loci in the 19 

crosses without aneuploidies (1.6 on average, Figures 3B and 4A, Data S5), and an 

additional 48 weaker reproducible signals (2.5 on average, Figures 3B and 4A, Data S5). 

This number of modifier loci is in agreement with our estimates based on segregation 

patterns observed after tetrad dissection (Figure S4). Most of the suppressor loci (27/31) 

were selected for the wild strain sequence, consistent with the additional variation in 

species providing the substrate for circumventing essential gene function. Reassuringly, 

suppressor loci were reproducible across biological replicates, different TS alleles of the 
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same gene when crossed to the same wild strain (e.g. RPN11), and same TS alleles 

when crossed to different wild strains (TFG1 and GAB1; Figures 3C-D and 4A). A 

suppressor locus on chromosome XIV was shared across five different essential genes 

(GPI13, MED7, RPN11, SEC24, and TFG1), indicating the presence of a pleiotropic 

modifier in this locus, co-localising with the previously characterised MKT1 gene 

(Steinmetz et al. 2002). 

 

Suppressor gene identification and validation 

We next sought to identify the causal suppressor genes. As each of the mapped 

suppressor regions harbors tens of plausible candidate genes, we computationally 

prioritised them based on their functional connection to the query gene (Data S6, 

Methods, (van Leeuwen et al. 2020)). We also included known general modifiers, such 

as MKT1 and HAP1, that each affect the expression of thousands of genes (Fay 2013; 

Parts et al. 2014; Albert et al. 2014, 2018). To test the phenotypic consequence of the 

candidates, we replaced their open reading frame and ~100-400 bp surrounding region 

with the wild version in the reference strain background, and tested for suppression of 

the corresponding TS allele. In total, we tested 50 suppressor gene candidates from 31 

mapped loci of various strength (Data S7, Figure S5), and identified causal genes for 17 

loci (55%, Data S7, Figures 4A and S5), validating both our mapping strategy, as well as 

the computational prioritisation. The 14 suppressor loci without a confirmed suppressor 

gene resulted from failed experiments, inconclusive results, or cases in which no 

suppression was observed for the wild allele (Data S7). Causal suppressor genes were 

more likely to be identified for strong suppressor loci compared to weaker signals, 

suggesting that in unconfirmed cases the suppression phenotype may have been too 

weak to detect in our validation assay (Figure 4B). 

 

Many of the validated suppressor genes were consistent with their known roles in the 

biology of the query gene. For example, two different alleles of TSC11, which encodes a 

subunit of TOR complex 2 (TORC2) that activates a phosphorylation cascade controlling 

sphingolipid biosynthesis, were suppressed by multiple variants present in the 

DBVPG1373 strain (Figure 4A). The two strongest suppressor loci were located around 

MSS4 and ORM2, which encode an upstream activator and a member of the TORC2 

signalling pathway, respectively (Lucena et al., 2018; Han et al., 2010; Figure 4A and C). 

Indeed, we confirmed the suppression of tsc11-5 temperature sensitivity by the ORM2-
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DBVPG1373 allele (Figure S5). Orm2 inhibits the first committed step in sphingolipid 

synthesis, and loss of Orm2 function may lead to the reactivation of sphingolipid 

biosynthesis in the absence of TORC2 (Figure 4C). Intriguingly, a third weak suppressor 

locus was identified for the tsc11-5 allele around ORM1, a paralog of ORM2. However, 

ORM1 has no variants within the ORF in the DBVPG1373 strain, and we were not able 

to confirm a suppression phenotype for the ORM1 promoter variants in the presence of 

reference alleles of MSS4 and ORM2.  

 

Genetic mapping alone is not sufficient to identify causal genes. Our computational 

prioritisation identified RPT4 and RPN8 as potential suppressor genes within the 

chromosome XV suppressor locus of RPN11 with equally high scores (Figure 4A and D). 

As the query gene RPN11 encodes a metalloprotease subunit of the 19S regulatory 

particle of the proteasome, and the candidate suppressors RPT4 and RPN8 also both 

encode subunits of the same particle, genetic information and computational prior were 

not sufficient to pinpoint one as the causal gene. In experimental validations, the RPN8 

allele from UWOPS87-2421 suppressed the rpn11-8 phenotype, whereas the RPT4 

allele did not (Figures 4E and S5). Rpn8 and Rpn11 form an obligate heterodimer (Bard 

et al. 2018), and the RPN8 allele from UWOPS87-2421 may thus restore the interaction 

between the two proteins, which could have been weakened by the RPN11 mutations. 

This ability to resolve a causal gene from multiple linked candidates underscores the 

importance of thorough experimental validation to understand the mechanism of 

suppression. 
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Figure 4. Identifying and validating suppressor candidates. A. Mapping results for segregant 

pools involving the indicated TS alleles and wild strains. The change in S288C allele frequency 

between the meiotic progeny isolated at 26 ºC and 34 ºC is plotted by genomic coordinate. 

Causal suppressor genes are indicated for regions that show selection for the wild strain 

sequence. Genes in brackets have not been validated experimentally. B. Comparison of the 

change in reference allele frequency, either for suppressor loci for which a causal suppressor 

gene was validated (N=17), or for loci for which we were unable to validate a suppressor gene 

(N=10). Loci for which all experiments failed due to technical reasons were excluded from the 

analysis. Statistical significance was determined using a two-tailed Mann-Whitney’s U test (** = p 

< 0.005). C. A cartoon of the TORC2 signalling pathway, highlighting suppression of a TORC2 

mutant (tsc11) by mutations in ORM2. D. Suppressor prediction within the chromosome XV QTL 

of rpn11 TS mutants. Functional information prioritization score (y-axis) for genes in the 

suppressor region (x-axis) identified RPT4 and RPN8 as two highest-scoring suppressor 
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candidates. E. Experimental validation of RPN8 as the causal suppressor of the rpn11-8 TS 

mutant. Cultures of the indicated strains were diluted to an optical density at 600 nm of 0.1 and a 

series of ten-fold dilutions was spotted on agar plates and incubated for 2-3 days at 34 ºC. 

UWOPS = UWOPS87-2421. See also Figure S5.  

 

Genetic simplicity of strong suppression 

Previous approaches for identifying suppressors have relied on spontaneous mutation, 

and thus sample genetic backgrounds that are very similar to that of the reference. As a 

result, more complex allele arrangements that may be required for suppression, e.g. 

combinations of two or more mutations, are not easily obtained. Despite observing 

multiple loci that are involved in the suppression phenotype in each of the sequenced 

populations (Figure 4A), we found no evidence for the interdependence of one 

suppressor locus genotype on the presence of another, and all strong suppressors acted 

in isolation (Figures 4B and S5; Discussion). For example, both the RPN8 and the MKT1 

allele from UWOPS87-2421 could individually suppress the rpn11-14 TS allele to near-

wild type fitness (Figure S5). We did not observe examples consistent with strong 

suppression by many small effect variants. Conversely, multiple mutations within a locus 

could be required for robust suppression. The ORM2-DBVPG1373 allele that 

independently suppressed tsc11-5 carries two missense mutations, P26T and G134S, 

that affect conserved residues, are predicted to be highly deleterious, and are both 

required for a robust suppression phenotype (Figure S5).  

 

Next, we compared the suppressor genes identified by our mapping results to those 

previously found in the reference strain background (Oughtred et al. 2019). In cases 

where we confirmed a candidate suppressor, we also often found prior evidence of 

suppression in that gene (4/9 unique suppressor-query pairs; Data S7). In all four cases, 

the suppressor and query gene pairs encoded members of the same protein complex or 

pathway, and in three cases the suppressor and query proteins interact physically (Data 

S7). The five suppressor-query gene pairs that had not been previously described 

included four cases of suppression by the general modifier MKT1. We have previously 

observed a similar prevalence of general suppressor genes that affect the expression of 

the query mutant among spontaneous suppressor mutations of TS alleles isolated in the 

reference strain (~50% of all suppressor genes; (van Leeuwen et al. 2016, 2017)). Out 

of the 9 suppressor-query pairs, 7 (78%) appear to involve a gain-of-function suppressor 
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allele (Methods; Data S7). This relatively large proportion of gain-of-function alleles is 

consistent with the idea that loss-of-function alleles may be under stronger negative 

selection in natural populations.  

 

Overall, mechanisms of suppression identified in a laboratory setting mimic those driven 

by natural variation, and can involve identical suppressor genes when considering 

suppressors that function within the same functional module as the query gene. In 

addition, despite the presence of multiple selected suppressor regions in nearly every 

cross, strong suppressor mutations always acted independently of the genetic 

background. Combined, these observations are consistent with a model where single 

genes evolve along a lineage, perhaps adapting to the rest of the environmental and 

genetic context via multiple gain-of-function mutations, which then in turn gives the 

derived allele ability to independently suppress fitness effects of other alleles. 

 

Mutations in NSE1 can suppress SMC5/6 complex dysfunction 

One of our mapped suppressor interactions involved the suppression of a nse3-ts4 TS 

allele by the NSE1 allele from UWOPS87-2421 (“NSE1-UW”; Figures 4A and 5A). Nse1, 

Nse3, and Nse4 form a subcomplex within the highly conserved SMC5/6 complex, which 

is essential for the removal of recombination intermediates during DNA replication and 

repair (Figure 5B) (De Piccoli et al. 2006; Menolfi et al. 2015). Nse3 and Nse4 bridge the 

globular head domains of Smc5 and Smc6 (Figure 5B), whereas Nse1 is a RING finger 

protein with ubiquitin ligase activity that strengthens the interactions between Nse3 and 

Nse4 (Hudson et al. 2011; Pebernard et al. 2008). The NSE1-UW allele also suppressed 

the growth defect of a nse4-ts4 TS allele, but not that of any of the other tested SMC5/6 

subunits (Figure 5A). A nse1 loss-of-function allele exacerbates the fitness defect of a 

nse3 TS mutant (Costanzo et al. 2016), and overexpression of NSE1 suppresses a nse3 

TS allele (Magtanong et al. 2011) (Figure 5C), suggesting that the NSE1-UW allele has 

a gain-of-function effect that improves the stability or activity of the SMC5/6 complex. 

Indeed, the NSE1-UW allele suppressed the sensitivity of nse3 and nse4 mutants to 

DNA damaging aging agents hydroxyurea (HU) and methyl methanesulfonate (MMS) 

(Figures 5D and S6A), but could not suppress the lethality associated with deleting 

either NSE3 or NSE4 (Figure S6B). Thus, SMC5/6 complex activity could be restored in 

nse3 and nse4 partial loss-of-function mutants by the presence of NSE1-UW. 
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Figure 5. The NSE1 allele of UWOPS87-2421 can suppress NSE3 and NSE4 TS mutants. 

A,D. Suppression of nse3-ts4 and nse4-ts4 temperature sensitivity (A) and DNA damage 

sensitivity (D) by the NSE1 allele of UWOPS87-2421. Cultures of the indicated strains were 

diluted to an optical density at 600 nm of 0.1 and a series of ten-fold dilutions was spotted on 

agar plates and incubated for 2-3 days. UW = UWOPS87-2421. The plates shown in (D) were 

incubated at 30 ºC. B. A cartoon of the SMC5/6 complex. C. An illustration of the various types of 

genetic interactions that have been observed between different alleles of NSE1 and NSE3. D. 

See (A). E. Recruitment of Smc6-FLAG by ChIP-qPCR at two known SMC5/6 binding sites 

(pericentromere of chromosome XIV and CEN3) and one negative control locus (arm of 

chromosome III) in G2/M arrested strains. Relative enrichment corresponds to the ratio of the 

signal after immunoprecipitation (FLAG) over beads alone, normalized to the WT ratio at CEN3. 

Error bars: standard error of the mean of three independent experiments. Statistical significance 

was determined using Student’s t-test (* = p < 0.05, ** = p < 0.005).  

 

To more directly test the impact of NSE1-UW allele on the SMC5/6 complex function, we 

measured its accumulation at two established chromosomal SMC5/6 binding sites using 

an Smc6-FLAG based ChIP-qPCR assay in the reference strain (Lindroos et al. 2006; 

Jeppsson et al. 2014). Although the amount of Smc6-FLAG protein was comparable in 

all strains (Figure S6C), the accumulation of Smc6-FLAG at the two genomic loci was 

substantially reduced in nse3-ts4 and nse4-ts4 mutants compared to wild type (Figure 

5E). Replacing the reference NSE1 allele with the NSE1 allele of UWOPS87-2421 
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increased recruitment of the SMC5/6 complex to the DNA, both in the presence of wild-

type or TS alleles of NSE3 or NSE4. This suggests that the NSE1-UW allele increases 

association of the SMC5/6 complex to the DNA, thereby counteracting the negative 

effects of the nse3 and nse4 TS alleles on SMC5/6 complex activity. 

 

Discussion 

We used systematic large-scale genetics to cross partial loss-of-function alleles to ten 

different genetic backgrounds, measured the extent to which standing variation in the 

species can suppress the loss-of-function phenotype, used a powerful pooled mapping 

approach to localise modifying alleles, and identified the causal genes for many of them. 

We found that suppression was consistent across replicates, alleles, and within 

complexes, with modifier genes often acting either directly by interacting with the 

mutated protein or the complex in which it operates, complementing the output of the 

pathway in which it is a member, or unspecifically via general compensation 

mechanisms.  

 

Genetic architecture of suppression 

The genetic architecture of suppression we mapped was skewed towards alleles of 

strong effect. Nearly all linkage maps had a strong modifier, and there was a long tail of 

weaker effects, many of which validated, as has been observed for virtually all mapped 

traits in general. Some previous studies identified a relatively large fraction of beneficial 

reference alleles in yeast linkage maps (e.g. ⅓ of overall in Parts et al., 2011). Although 

we find a comparable fraction of reference alleles when including weak modifier loci, we 

found the reference allele was preferred in only every eighth strong suppressor locus. 

This is consistent with a few large effect alleles explaining the majority of phenotypic 

variability, that then by definition requires their effect to align with the phenotype 

differences between the strains. 

 

We attempted to identify candidate genes for all strong suppressors, and succeeded for 

most. Multiple TS alleles and different wild strains often consistently supported the 

suppression region, and the plausible suppression mechanisms were affected via gain-

of-function mutations affecting complex integrity, pathway activity, or unspecific 

modifiers. For the three strong suppressor loci for which we failed to confirm a 
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suppressor candidate (Figure 4A), we may have failed to include the causal suppressor 

gene in our experiments, or the suppression may have been dependent on the presence 

of other suppressor alleles. However, cases of suppression that require more than a 

single allele were not frequent in our analysis, as a single strong suppressor allele could 

independently overcome the mutation phenotype in nearly all mapped cases. These 

results are consistent with a long list of studies that identify a single gene or genomic 

locus with a strong effect on a phenotypic trait in diverse organisms (Johnston et al. 

2011; Barson et al. 2015; Jones et al. 2018; Thompson et al. 2020), and suggest 

additional scrutiny of single large effect alleles modifying human phenotypes as a 

promising research direction as well. 

 

Many of the suppression events were driven by aneuploidies. These generally involved 

pre-existing aneuploidies and translocations, most frequently in the wild parent. This is 

not surprising, as the wild strains generally tolerate aneuploidy well (Hose et al. 2015; 

Peter et al. 2018), and the strong imposed selection forces the cells to use all available 

diversity to survive. The range of possible ways to escape the various selection steps 

was such that it is arguable that most of the logically consistent and physically possible 

scenarios took place. While such chromosome-scale plasticity may not be common in 

higher eukaryotes where imbalances in gene dosage are often deleterious, it 

underscores the evolutionary potential of large-scale rearrangements compared to point 

mutations. De novo aneuploidies and diploidisation events also explain a large fraction 

(67%) of the weak “suppression” signals that we sequenced, with a suppression score 

<0.75 in our screen, where a few cells had escaped one of the selection steps, and 

could partially take over the population. 

 

Consistency of suppression across experiments 

A subset of the genes we mapped suppressors for had previously been analysed to 

identify spontaneously evolved modifiers in the reference background. The suppressor 

genes that had a functional connection to the query gene were often identical in both 

studies, consistent with the shared selection targets of de novo and pre-existing variation 

observed under drug treatment (Li et al. 2019). This could indicate that the suppressor 

allele complements an independent deficiency in the reference strain (consistent 

suppression of GAB1 in all wild strains by the same GPI8 allele), or that the suppressor 

has co-evolved with the complex or pathway within (SMC5/6 complex and TORC2 
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pathway). Further, the vast majority of validated suppressor alleles likely conferred a 

gain-of-function phenotype compared to the reference allele (Data S7), whereas many of 

the spontaneous suppressor mutations isolated in the reference background had a loss-

of-function effect  (van Leeuwen et al. 2016, 2020). Loss-of-function alleles are more 

likely to arise spontaneously as the underlying mutation events are more common, but 

may have a higher chance to be subjected to negative selection in natural population 

compared to gain-of-function variants. 

 

We also frequently observed suppression via general, pleiotropic modifiers. Although 

general modifiers that can suppress the growth defect of many different mutant genes 

have been identified by spontaneous mutation in the reference background as well, they 

tend to affect mRNA and protein degradation pathways (van Leeuwen et al. 2016, 2017). 

The natural variation general modifiers HAP1, encoding a transcription factor regulating 

the response to haem and oxygen, and MKT1, encoding a nuclease-like protein of which 

the precise cellular function remains unclear, were never found as spontaneous 

suppressors among the >2000 described suppressor interactions in S288C (van 

Leeuwen et al. 2016). In the case of HAP1 this is expected as the gene is inactivated by 

a transposon insertion in S288C. The MKT1 gene on the other hand is intact in S288C, 

but the reference allele may perform poorly compared to MKT1 alleles available in the 

wild, that have been described to suppress many different phenotypes, including 

temperature sensitivity (Steinmetz et al. 2002; Fay 2013; Parts et al. 2014; Albert et al. 

2014, 2018).  

 

Our study used temperature sensitive mutant strains that show a progressive decline in 

gene function with an increase in temperature. This enables identifying suppressors that 

can completely bypass gene function, but also those that rescue partially functional 

alleles. For example, the nse3-ts4 allele could be completely rescued by mutations in 

NSE1, both encoding members of the Nse1-Nse3-Nse4 complex module (Figure 5). 

However, this subcomplex would not assemble in the absence of the NSE3 gene, and 

the NSE1 mutant allele does not rescue a nse3∆ deletion mutant (Figure S6). 

Comparison of our suppressors with a systematic survey of bypass suppression of 

essential gene deletion mutants (van Leeuwen et al. 2020), showed little overlap in the 
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identified suppressable essential genes, suggesting that the vast majority of standing 

variation suppressors will depend on the presence of the TS allele.  

 

Future perspectives 

Our screen for natural variants that can suppress TS alleles was not saturated. First, 

although the TS mutant strain collection we used in our screen contained TS mutants for 

~60% of all essential yeast genes, due to variation in temperature sensitivity, not all 

tested genes will have had a suppressable phenotype at our chosen restrictive 

temperature of 34°C. Second, the set of possible suppressor mutations we considered 

was restricted to the standing variation in the ten wild strains we used. Indeed, we could 

not detect all known suppression alleles that have been identified via spontaneous 

mutation in the reference background. Despite these limitations, we found that 35% of 

the tested essential genes could be suppressed by at least one wild strain. As this 

relatively high number is likely an underestimate of the true suppression potential of 

standing variation, we expect suppression to be common in natural populations.  

 

We have provided a first glimpse into the extent, complexity, and mechanisms of 

mutation effect suppression by standing variation. Given the high frequency at which we 

observed suppression via complementing natural variants, we expect it to have an 

important contribution to other phenotypes, species, and contexts, including human 

disease. The large overlap between natural suppressor variants and those identified in a 

laboratory setting suggests that suppressor screening in human cell lines will help 

understand variable penetrance of human disease mutations as well. In parallel, 

systematic studies in yeast and other species will continue to refine our view of the 

mechanisms adopted by modifier mutations to determine the severity of genetic traits. 

 

Supplementary Data 

1. Raw colony size data 

2. Suppression scores 

3. Random sporulation analysis 

4. Allele frequency VCF files 

5. Identified QTLs 

6. Suppressor gene prediction 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.11.24.395855doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.24.395855
http://creativecommons.org/licenses/by-nd/4.0/


 

21 

7. Tested suppressor gene candidates 

8. Yeast strains and plasmids 
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Methods 

 

Yeast strains, plasmids, and growth 

Yeast strains were grown using standard rich (YPD) or minimal (SD) media. Methyl 

methanesulfonate (MMS) and hydroxyurea (HU) were obtained from Sigma-Aldrich. 

For SGA analysis (see below), we used a collection of temperature sensitive 

mutants of essential genes (MATα xxx-ts::natMX4 can1∆::STE2pr-SpHIS5 lyp1∆ his3∆1 

leu2∆0 ura3∆0 met15∆0; (Costanzo et al. 2016)). Four of these strains appeared to have 

a different TS mutant allele than originally annotated. Because we could not determine 

where a potential mistake or mix-up had occurred, we assigned new strain IDs to these 

strains. TSQ2353 (tre2-5008) was renamed as TSQ2884x (tfg1), TSQ1864 (brr2-5019) 

as TSQ2885x (fas2), TSQ1877 (iki3-5008) as TSQ2886x (epl1), and TSQ1879 (iki3-

5010) as TSQ2887x (epl1).  

 For the allele swaps (see section “suppressor candidate validation”) we used 

strains from either the BY4741 deletion mutant collection (MATa xxxΔ::kanMX4 his3Δ1 

leu2Δ0 ura3Δ0 met15Δ0; Euroscarf), or the TS-allele-on-plasmid collection (MATa 

xxxΔ::natR_kanR(Cterm) his3Δ1 leu2Δ0 ura3Δ0 [xxx-ts_kanR(Nterm), AgMFA2pr-hphR, 

URA3]; (van Leeuwen et al. 2020)). 

All other yeast strains used in this study are listed in Data S8. 

 

Making the wild yeast strains SGA compatible 

Twenty-six wild yeast strains had previously been deleted for HO and URA3, and 

haploid MATa spores had been isolated (MATa ho∆::hphMX6 ura3∆::kanMX4; (Cubillos, 

Louis, and Liti 2009)). To make these strains compatible with SGA analysis and facilitate 

further genetic manipulations, we (partially) deleted the LEU2 and HIS3 genes. 

First, to delete LEU2, we used plasmid p7410 (Data S8), that contains in the 

following order: a SwaI restriction site, base pair -403 to 8 of LEU2, base pair +62 to 

+258 downstream of the LEU2 stop codon, the TDH3 promoter from Ashbya gossypii 

(Ag) driving the nrsR (“natR”) gene followed by the AgTDH3 terminator, the GAL1 

promoter driving KAR1 followed by the AgCYC1 terminator, the kanMX4 cassette, and 

base pair +62 to +783 downstream of the LEU2 stop codon. We digested the plasmid 

using SwaI, and transformed the wild yeast strains with the linearised plasmid. 
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Transformants were isolated on YPD + NAT, and subsequently replica plated onto 

YPGal media, to induce overexpression of KAR1, which is lethal and thus selects for 

recombination between the two LEU2-3’ sequences. Recombination was confirmed by 

testing for growth on YPD + G418 media. 

Second, to partially delete HIS3, we used plasmid p7411 (Data S8), that contains 

in the following order: a SwaI restriction site, base pair 137 to 310 of the HIS3 gene, 

base pair 495 to +112 of the HIS3 gene, the AgTEF1 promoter driving LEU2 followed by 

its endogenous terminator, the URA3 gene under control of its own promoter and 

terminator, and base pair 495 to +707 bp of HIS3. We digested the plasmid using SwaI, 

and transformed the wild yeast strains with the linearised plasmid. Transformants were 

isolated on SD -Ura -Leu, and subsequently replica plated onto media containing 5-

fluoroorotic acid (SD + 5-FOA), which is toxic to cells expressing URA3 and will thus 

select for recombination between the two HIS3-3’ sequences. Recombination was 

confirmed by testing for growth on SD -Leu media. 

Proper deletion of LEU2 and a part of HIS3 was confirmed by PCR. Strain 

identity was validated by sequencing the barcodes inserted at the ura3∆ locus (Cubillos, 

Louis, and Liti 2009). In total, we obtained 10 wild yeast strains with the genotype MATa 

ho∆::hphMX6 ura3∆::kanMX4 his3∆1 leu2∆0 (Data S8). 

 

Synthetic genetic array (SGA) analysis 

The 10 SGA-compatible wild strains (Data S8, MATa ho∆::hphMX6 ura3∆::kanMX4 

his3∆1 leu2∆0), and a S288C negative control strain (DMA1, MATa his3∆::kanMX 

ura3∆0 leu2∆0 met15∆0 or DMA809, MATa ho∆::kanMX his3∆0 ura3∆0 leu2∆0 

met15∆0; Data S8) were crossed to a collection of temperature sensitive mutants of 

essential genes (MATα xxx-ts::natMX4 can1∆::STE2pr-SpHIS5 lyp1∆ his3∆1 leu2∆0 

ura3∆0 met15∆0; (Costanzo et al. 2016)). SGA analysis was performed as described 

previously (Baryshnikova et al. 2010), with the exception that 5% mannose was added to 

the YPD plates used in the first steps of SGA analysis to facilitate pinning of the wild 

isolates. The final double mutant selection was performed at both 26 and 34 °C.  
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Plate images were processed with gitter v1.0.3 (Wagih and Parts 2014) and 

normalised with SGAtools (Wagih et al. 2013). Briefly, this process includes processing 

plate image files to detect the grid of colonies, quantifying the colony sizes, filtering out 

any technical replicates that accounted for at least 90% of the variation in the signal, 

averaging the remaining technical replicates, and log2-transforming. To calculate fitness 

values, we also averaged across multiple biological replicates. For the six out of ten wild 

strains that had two biological replicates, we used the replicate with the largest number 

of query strain measurements as a reference, and fit the other to it using linear 

regression. We used the single measurement for the remaining four strains. The 

average log2-scale colony size of all measurements passing the filters was reported as 

the fitness value at both permissive and restrictive temperatures. We filtered out 379 

query strains that did not show lower fitness at the restrictive temperature (reference 

fitness difference between 26 and 34 °C below 0.2), retaining 1120 query strains in total 

for 580 genes. In addition, we removed strains for query genes that were genetically 

linked to the HIS3, HO, or URA3 loci that were used for selection in the screen. 

 

SGA suppression analysis 

To estimate suppression of the mutation effect by a wild strain, we quantified the 

difference in fitness at restrictive temperature after adjusting for overall growth between 

the reference and wild strains. To adjust, we set the median restrictive temperature 

fitnesses of temperature-insensitive strains to be equal, and scaled the wild strain 

restrictive temperature fitnesses to minimise mean-squared error of the fit to the 

respective values of reference. Importantly, growth at the permissive temperature, and 

its additional measurement noise, were not considered beyond filtering for strains that 

were not fit at the permissive temperature in the reference, as described above. 

To generate genotype and phenotype trees, we used the scikit-learn average() 

function to compute the UPGMA tree, and the dendrogram() function for display 

(Pedregosa et al. 2012). For genotype trees, we calculated the distance between strains 

as the number of called genetic variants that are present in either strain, but not the 

other one. For phenotype trees, we calculated the distance between strains as 1 minus 

the Pearson’s correlation of their suppression profiles.  

To test for consistency of suppression within complexes and pathways, we 

considered multiple functional annotation datasets. The sources for these datasets were: 

protein complexes (the Complex Portal (Meldal et al. 2015), downloaded June 6, 2018), 
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KEGG pathway annotation (Kanehisa et al. 2016), coexpression degree (number of 

gene partners with a coexpression score > 1; (Huttenhower et al. 2006), and subcellular 

localisation (Huh et al. 2003). For each annotation that groups multiple genes, we 

calculated both complex average suppression value across TS alleles and wild strains, 

as well as average correlation of suppression values across wild strains between all 

possible allele pairs. To evaluate the significance of these values for a complex with N 

alleles, we sampled random alleles. For mean suppression, we sampled the N alleles 

1,000 times, and computed the means. For mean correlation of suppression, we 

sampled the matching number of N(N-1)/2 allele pairs, while also matching the number 

of pairs that came from the same gene. We calculated the p-value of enrichment as the 

frequency of observing statistics from permuted data more extreme than the real value, 

and used the false discovery rate correction to adjust the p-values. 

 

Random sporulation assay 

A total of 102 wild strain x TS allele combinations were selected for confirmation assays 

(Data S3). Between 3 to 20 different TS alleles were tested for each of the 10 wild 

strains, for a total of 78 different TS alleles corresponding to 56 different essential genes. 

The selected crosses spanned a wide range of suppression scores, and included 7 

crosses with a negative suppression value. As controls, we crossed each selected TS 

allele to a reference S288C strain, and each wild strain was crossed to a wild-type 

S288C reference strain, giving a total of 78 S288C TS allele controls, and 10 S288C x 

wild strain controls. 

All 190 strain pairs were crossed and sporulated. Sporulated cells were plated 

onto two agar plates that selected for haploid MATa spores that carried the TS allele (SD 

-His/Arg/Lys +CAN/LYP/NAT). One plate was incubated at 26 °C and one at 34 °C. After 

3 days plates were imaged, and colony size and number were determined using 

CellProfiler (Carpenter et al. 2006). We calculated the difference between the number of 

colonies and the colony area at 26 °C and 34 °C for each TS allele - wild strain 

combination, and compared the values for the S288C control to those of the wild strain 

crosses (Data S3). Images that contained <100 colonies at 26 °C were excluded from 

the analysis, and all images with <30 colonies were excluded from colony size 

determination. A TS allele - wild strain pair was considered to show suppression when 

either the number or the average size of the colonies of the wild cross was substantially 

larger than that of the control cross (TS allele x S288C) at 34 °C (Data S3). 
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Sequencing, read mapping, SNP calling, and QTL analysis 

We selected 38 crosses that showed various levels of suppression in the screen for bulk 

segregant analysis. The 38 samples included 6 positive controls involving query genes 

located on the left arm of chromosome XVI that were suppressed by the chrVIII-chrXVI 

translocation, 6 positive controls involving genes located on chromosome II or 

chromosome VIII that were suppressed by one of the NCYC110 aneuploidies, 6 cases 

that showed weak “suppression” in our screen (suppression score <0.6), and 20 cases 

that showed strong suppression in our screen (suppression score >0.75). In addition, we 

crossed each wild strain to a S288C reference strain. We collected at least two 

replicates of 1000 haploid progeny colonies per temperature for each cross, using the 

random sporulation assay outlined above. Colonies were scraped from the agar plates, 

and genomic DNA was isolated from the pools using the Qiagen DNeasy Blood & Tissue 

kit. Samples were sequenced using Illumina sequencing. 

For each bulk segregant sequencing sample, we performed read mapping and 

variant calling under the Varathon framework (https://github.com/yjx1217/Varathon). 

Briefly, the raw reads were trimmed by trimmomatic v0.38 (Bolger, Lohse, and Usadel 

2014) and subsequently mapped to the yeast reference genome (SGD R64-1-1) using 

bwa v0.7.17 (Li and Durbin 2009). The resulting read alignment was further processed 

by samtools v1.9 (Li et al. 2009), picard tools 2.18.25 

(https://broadinstitute.github.io/picard/), and GATK3 v3.6 for sorting, duplicate removal, 

INDEL realignment and indexing. Variant calling was carried out by freebayes v1.2.0 

(Garrison and Marth 2012) with the customised options "--ploidy 1 --min-alternate-

fraction 0 --genotype-qualities". Raw variant calls were processed by vt (github commit 

version f6d2b5d) (Tan, Abecasis, and Kang 2015) for variant decomposition, 

normalisation, annotation, and filtered by vcffilter (distributed together with freebayes) 

with the filter: "QUAL > 30 & QUAL / AO > 1 & SAF > 0 & SAR > 0 & RPR > 1 & RPL > 

1". Finally, VEP 101.0 (McLaren et al. 2016) was used to evaluate the functional impact 

of each variant by leveraging its specific genomic context. 

We stratified the 38 bulk segregant QTL mapping experiments according to 

genomic coverage and screen signal. We separated the six crosses with the NCYC110 

strain due to the wild strain ploidy issues, seven further crosses that had evidence for 

aneuploidy from sequencing coverage, and a final six crosses with chrXVI-VIII 

translocation that creates an additional wild type copy of the query gene in the 
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segregants. To call QTLs in the remaining 19 samples without ploidy issues, and with 

strong or moderate suppression scores in the screen, we used Selection QTL Mapper 

(https://github.com/PMBio/sqtl), which implements the approach used for bulk segregant 

analysis mapping described in (Parts et al. 2011). Briefly, this approach first estimates 

reference allele frequencies in each sample using a probabilistic model that includes 

allele frequencies as latent variables, sequencing reads as observations, and the 

recombination rate parameter to couple frequencies at nearby sites. The posterior allele 

frequency distributions were then combined across biological replicates according to 

Bayes rule, and used to identify a broad set of QTL regions that had at least 12% 

frequency change between permissive and restrictive temperatures, and were at least 

1kb long, using parameters “af_lenient=0.8, sd_lenient=3, af_stringent=0.12, 

sd_stringent=5, length_cutoff=1000, peak_cutoff=0.03”. A stricter set with allele 

frequency change of at least 0.20 was used for all but reproducibility analyses. Sites 

within 30kb of the TS allele or a SGA selection marker were not considered as QTL 

candidates.  

All whole-genome sequencing data are publicly available at NCBI’s Sequence 

Read Archive (http://www.ncbi.nlm.nih.gov/sra), under accession number 

PRJNA673501.  

 

Suppressor gene prediction 

For each detected QTL, we predicted the potential causal suppressor genes by ranking 

the genes for which the allele frequency change was within 3% of the strongest selected 

variant in the region by their functional relationship to the query gene, as described 

previously (van Leeuwen et al. 2020). In addition, we scored essential candidate genes 

higher than nonessential genes. Briefly, we evaluated the following functional 

relationships and gene properties in this order of priority: co-complex (highest priority), 

co-pathway, co-expression, co-localisation, and essentiality of the suppressor candidate 

(lowest priority). Thus, genes with co-complex relationships were ranked above those 

with only co-pathway relationships. Additionally, the order between genes within a given 

set was established by evaluating the rest of the functional relationships. For instance, 

the set of genes that were co-expressed with the query gene, but not in the same 

complex or pathway, were further ranked by whether they co-localised (highest rank) or 

not (lowest rank) with the query. The sources for these datasets were: protein 

complexes (the Complex Portal (Meldal et al. 2015), downloaded June 6, 2018), KEGG 
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pathway annotation (Kanehisa et al. 2016), co-expression degree (number of gene 

partners with a co-expression score > 1; (Huttenhower et al. 2006), and subcellular 

localisation (Huh et al. 2003). We manually added suppressor candidate genes with 

genetic interactions or other known functional connections to the query gene that were 

not captured by our computational prediction, and also included known general modifier 

genes MKT1 and HAP1. 

 

Suppressor candidate validation 

To validate the predicted suppressor genes, we introduced 50 potential suppressor 

alleles into the reference genetic background. First, kanR or nrsR (“natR”) targeting 

guide RNA (gRNA) sequences were cloned into the pML104 or pML107 plasmid vectors, 

which carry Cas9 and either URA3 or LEU2 (Data S8, (Laughery et al. 2015)). Second, 

for nonessential suppressor gene candidates, we amplified the genes including ~400 bp 

upstream of the start codon and ~400 bp downstream of the stop codon from the various 

wild strains by PCR, and co-transformed the PCR fragment and the pML104-kanR1136 

and pML107-kanR468 plasmids (Data S8) into a strain carrying a deletion allele of the 

suppressor gene (MATa xxxΔ::kanMX4 his3Δ1 leu2Δ0 ura3Δ0 met15Δ0; Euroscarf). 

The gRNAs will cut the kanMX4 cassette at two places, and the homology of the 

promoter and terminator sequences of the PCR product to the genomic sequences 

flanking the double-stranded DNA breaks will promote repair via homologous 

recombination and integration of the PCR product into the genome. For essential genes 

we used a similar strategy using a set of haploid strains in which the essential gene of 

interest was deleted in the genome but present on a plasmid (MATa 

xxxΔ::natR_kanR(Cterm) his3Δ1 leu2Δ0 ura3Δ0 + [XXX, URA3]; (van Leeuwen et al. 

2020)), and the plasmids pML104-natR412 and pML107-natR854 (Data S8) that carry 

gRNAs that target natR.  

Transformants were initially selected on SD -Ura -Leu, and then propagated on 

YPD. Within 3 days of growth on YPD, the vast majority of yeast strains had lost the 

gRNA plasmids and properly replaced the suppressor candidate deletion allele with the 

wild allele, which we confirmed by PCR. For essential genes, we streaked the allele-

swapped strains on SDall + 5-FOA to remove the plasmid carrying the essential gene.  

Next, we crossed the allele-swapped strains to the corresponding TS mutant, 

and sporulated the resulting diploids. We isolated haploid progeny carrying the TS allele 

and confirmed the identity of the suppressor allele by Sanger sequencing. Growth of the 
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TS mutants carrying the suppressor candidate allele from a wild strain was monitored at 

various temperatures to confirm the suppression phenotype. 

Gain- or loss-of-function effects were predicted for each validated suppressor 

gene based on previously described genetic interactions between the query allele and 

deletion or overexpression alleles of the suppressor gene (Oughtred et al. 2019), or 

based on known phenotypes of the S288C and wild alleles (i.e. HAP1 and MKT1). 

 

Smc6-FLAG chromatin immunoprecipitation 

Smc6-FLAG strains were constructed by PCR gene-targeting (Longtine et al. 1998) 

using primers 

AGAGACCCTGAGAGACAGAATAATTCCAATTTTTATAATcggatccccgggttaattaa and 

GACGATTACACAATATTTTGAATAATTACATGAAGAAACAgcgcgttggccgattcatta to 

amplify the FLAG-tag from pFA6-6xGLY-3xFLAG-HIS3MX6 (Funakoshi and 

Hochstrasser 2009). Proper tagging was checked by colony PCR using primers 

TGCGGTCAAGGATTATTGCG and CGCTGTGAGAGTTGTTGAGG.  

Smc6-FLAG expression was confirmed by western blotting. For each strain, 

whole cell extracts were prepared by TCA precipitation using 10 OD600-units of cells, and 

analyzed by SDS-PAGE. Western blotting was performed using an anti-FLAG antibody 

(clone M2, Sigma-Aldrich). Ponceau staining was used as a loading control. 

Chromatin immunoprecipitation (ChIP) was performed as previously described 

with slight modifications (Cobb et al. 2003). Briefly, cells were grown to 5 x 106 cells/ml in 

YPD and arrested in G2/M by incubation with nocodazole (15 µg/ml, Sigma-Aldrich) for 2 

hours. Samples were fixed with 1 % formaldehyde. Cell pellets were resuspended in 

lysis buffer (50 mM Hepes, pH=7.5, 140 mM NaCl, 1 mM Na EDTA, 1% Triton X-100, 

0.1 % sodium deoxycholate) containing protease inhibitors. Extracts were incubated with 

Dynabeads mouse IgG (Invitrogen, M-280) coated with antibody against FLAG (clone 

M2, Sigma-Aldrich) for 2 hours at 4°C. DNA was purified and enrichment at specific loci 

was measured using qPCR. Relative enrichment was determined by 2-DDCt method (Livak 

and Schmittgen 2001; Cobb and van Attikum 2010). Dynabeads without antibody were 

used to correct for background. An amplicon 14 kb downstream of ARS607, devoid of 

Smc6 binding, was used for normalisation (Lindroos et al. 2006). Primers used are listed 

below. 
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Name Sequence 

PeriCEN14_F AGACAAGAGGCCTCAGAAGGCTTA 

PeriCEN14_R AACGGCTGGAGAAATGAGAGCGTA 

CEN3_F CAGACGATAAGTTGAGTAGCGG 

CEN3_R GTCCACTAGGAGACTCTTGAAC 

ArmChr3_F TCACAAGCACTCTTCCGACACACT 

ArmChr3_R AGGGAGACTGGTGAATTGGAGGAA 

ARS607+14kb_F CAGGATATGCGGCCAAATTT 

ARS607+14kb_R GCATGACAGCCGAATCGAT 
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