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Abstract

Chromothripsis is detectable in 20-30% of newly diagnosed multiple myeloma (NDMM)
patients and is emerging as a new independent adverse prognostic factor. In this study,
we interrogate 752 NDMM patients using whole genome sequencing (WGS) to study the
relationship of copy number (CN) signatures to chromothripsis and show they are highly
associated. CN signatures are highly predictive of the presence of chromothripsis
(AUC=0.90) and can be used to identify its adverse prognostic impact. The ability of CN
signatures to predict the presence of chromothripsis was confirmed in a validation series
of WGS comprised of 235 hematological cancers (AUC=0.97) and an independent series
of 34 NDMM (AUC=0.87). We show that CN signatures can also be derived from whole
exome data (WES) and using 677 cases from the same series of NDMM, we were able
to predict both the presence of chromothripsis (AUC=0.82) and its adverse prognostic
impact. CN signatures constitute a flexible tool to identify the presence of chromothripsis

and is applicable to WES and WGS data.
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Introduction

Chromothripsis, a catastrophic chromosomal shattering event associated with
random rejoining, is emerging as strong and independent prognostic factor across
multiple malignancies’’. Reliable detection of chromothripsis requires whole genome
sequencing (WGS) and the integration of both structural variants (SVs) and copy number

(CN) data’248,

Recently, we reported a comprehensive study of structural variation (SV) in a
series of 752 newly diagnosed multiple myeloma (NDMM) from the CoMMpass trial for
which long-insert low-coverage WGS was available (NCT01454297)°. Using the latest
criteria for chromothripsis’™> and manual curation, we reported a 24% prevalence of
chromothripsis, making multiple myeloma (MM) the hematological cancer with the highest
documented prevalence of chromothripsis®®1%11. In MM, chromothripsis has different
features to that seen in solid cancers. Although the biological impact is likely similar
across various malignancies, in MM and in other hematological malignancies, the
structural complexity of each chromothripsis event is typically lower than seen in the solid
cancers’45, Specifically, the total focal CN gains within the regions of chromothripsis is
lower than in solid organ cancer and in MM there is a lack of enrichment for double-

minutes and other more catastrophic events such as typhonas'?2.

CN signatures have been reported in ovarian cancer as a potential BRCAness
surrogate’. This important marker, denoting both prognosis and treatment-
responsiveness, is detectable only by combining multiple WGS features'?13. Similarly,
given the genome-wide distribution and complexity of chromothripsis in MM, we

hypothesized that a comprehensive signature analysis approach using CN may provide


https://doi.org/10.1101/2020.11.24.395939

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.24.395939; this version posted November 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

an accurate estimation of chromothripsis in MM, without requiring specific SV
assessment. Using the CoMMpass trial low-coverage long-insert WGS (n=752) and an
additional validation set of WGS from NDMM (n=34) and other hematological
malignancies (n=235), we demonstrate the accuracy and reproducibility of CN signatures
for the detection of chromothripsis. In the CoMMpass dataset we show that CN signatures
independently associate with shorter progression free (PFS) and overall survival (OS).
Finally, to accelerate the clinical translation of testing for chromothripsis where WGS data
is not available, we extended the analysis to whole exome sequencing (WES), where we
confirm the ability of CN signatures to predict the presence of chromothripsis and show it

is associated with adverse clinical outcomes.

Results

Experimental data and design

Genome-wide somatic CN profiles were generated from 752 NDMM patients with
low-coverage long-insert WGS (median 4-8x) from the CoMMpass study (NCT01454297;
IA13; Supplementary Table 1)'4'5. The final SV catalog was generated by combining
the two SV calling algorithms, DELLY'® and Manta'” with CN data, followed by a series
of quality filters (see Methods)®. According to the most recently published criteria’™®, at
least one chromothripsis event was observed in 24% of the entire series®. Patients with
chromothripsis events were characterized by poor clinical outcomes, with chromothripsis

being associated with multiple unfavorable clinical and genomic prognostic factors
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including translocations involving MAF, MAFB and MMSET, increased APOBEC

mutational activity, del17p13 and TP53 mutations®.

De novo CN signature extraction in multiple myeloma.

CN signature analysis takes the genome-wide CN gains and losses (Figure 1a),
and measures 6 fundamental CN features: (i) number of breakpoints per 10 Mb, (ii)
absolute CN of segments, (iii) difference in CN between adjacent segments, (iv) number
of breakpoints per chromosome arm, (v) lengths of oscillating CN segment chains, and
(vi) the size of segments (Figure 1b)'2. The optimal number of categories in each CN
feature was established using a mixed effect model with the mclust R package (Figure
1c-d). The consequence of taking this approach is that different malignancies and types
of sequencing data may result in varying numbers of CN categories and thresholds

defining these categories (see Methods)'2.

To take account of the biology of MM, we introduced a few modifications to the
original CN features described by Macintyre et. al.'?: (i) given the known poor quality
mapping and copy number complexity related to class switch recombination and VDJ
rearrangements, the regions corresponding to IgH, IgL and IgK were removed; (ii)
considering both the low-coverage long-insert WGS limitation for calling subclonal copy
number events and the less complex MM karyotype compared to solid cancers, fixed
criteria for copy number status were introduced (see Methods, and Supplementary Data

1 for full analytical R code).
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Analyzing the CoMMpass long-insert low-coverage WGS; 28 CN categories were
defined (Figure 1d; Supplementary Table 2). In comparison to the CN features
described in ovarian cancer, in MM we observe lower total CN (median; 2, maximum; 9,
compared with total CN exceeding 30 in a proportion of ovarian cancer)'?. We also note
shorter lengths of oscillating CN, and a low contribution from very large aberrant
segments (in comparison to the dominant contribution from segments >30Mb in ovarian
CN signature #1)'2. Overall, these differences are in line with the lower genetic complexity

of MM compared to ovarian cancer’®.

Running the hierarchical Dirichlet process (hdp), 5 CN signatures were extracted
in MM (Figure 2; Supplementary Table 3). CN-SIG1, CN-SIG2 and CN-SIG3 have high
contributions from CN categories representing low numbers of breakpoints per 10Mb and
breakpoints per chromosome arm. These signatures have small absolute differences
between adjacent CN segments and short lengths of oscillating copy number. Each
signature varies in the distribution of segment size and in the relative contribution of each
CN category; CN-SIG1 has minimal jumps between adjacent segments and a higher
contribution from larger segment sizes, mostly single chromosomal gains and trisomies.
CN-SIG2 has higher total CN (i.e. multiple chromosomal gains and tetrasomies) and a
higher contribution from small segments without jumps between adjacent segments; and
CN-SIG3 is enriched for low absolute CN (i.e. deletions) with usually isolated events (rare
oscillating events or multiple events on the same arm/chromosome) (Figure 2). In
contrast, CN-SIG4 and CN-SIG5 were characterized by higher numbers of breakpoints
per 10Mb and per chromosome arm, longer lengths of oscillating CN, and a higher

contribution from small segments of CN change. While, CN-SIG4 has contribution from
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each of the 3 categories reflecting longer oscillation lengths, CN-SIG5 was characterized
by a higher contribution from jumps in CN between adjacent segments, and by a higher

contribution from high absolute CN (Figure 2).

CN signatures are strongly predictive of chromothripsis in multiple myeloma

Given the complex CN features noted in CN-SIG4 and CN-SIG5 (Figure 2), we
examined the association of these signatures with known MM genomic features®'4.19-22,
Both signatures were correlated with features of high-risk MM (Figure 3a), including
translocations involving MAF/MAFB (p=0.0005), APOBEC mutational activity (i.e.
mutational signatures?®24; p<0.0001), biallelic TP53 inactivation (p<0.0001), and 1921
gain/amplification (p<0.0001; Figure 3b-e). There was a negative association with
t(11;14)(CCDNT1;IGH) (p<0.0001; Supplementary Figure 1a), consistent with the relative
genomic stability known to be associated with a large proportion of this molecular
subgroup of MM'41%, We show that CN-SIG4 and CN-SIG5 are highly correlated with the
presence of complex structural chromosomal rearrangements (Figure 3a), including the
subgroup of chromoplexy (p<0.0001; Figure 3f), and rearrangements defined as
“‘complex- not otherwise specified” (complex-NOS; p<0.0001; Supplementary Figure
1b; Methods). Interestingly, the largest significant difference was noted with
chromothripsis; with a median contribution of CN-SIG4/5 of 0.33 being seen in those
cases with chromothripsis [inter-quartile range (IQR) 0.20-0.48] compared with 0.05 in

those without (IQR 0.02-0.13) (p<0.0001; Figure 39g).

These data suggest that CN signature analysis has the potential to accurately

predict the presence of chromothripsis from WGS data derived from MM patients (Figure
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4a-b). Evaluation of prediction accuracy of CN signatures by receiver operating curve
(ROC) analysis with 10-fold cross validation confirmed this hypothesis, showing that CN
signatures are highly predictive of chromothripsis; producing an average area-under-the-
curve (AUC) of 0.90 (Figure 4c; Supplementary Table 4; for the full analytical R code,

see Supplementary Data 2).

CN signatures are strongly predictive of chromothripsis in hematological malignancies

Given the low documented prevalence and low complexity of chromothripsis in
hematological cancers’ 1%, we validated our prediction model using an extended dataset
of 269 full coverage WGS from previously published hematological cancer samples,
including data from the Pan-Cancer Analysis of Whole Genomes (PCAWG) study (n=269)
52526 This included 34 NDMM, 92 chronic lymphocytic leukemia, 29 chronic myeloid
leukemia, 104 B-cell lymphoma and 10 acute myeloid leukemia (7 de novo, 3 therapy-
related) (Supplementary Table 5; Methods). Overall, the number of categories extracted
in this series of WGS was smaller compared to the CoMMpass cohort (26 vs 28), likely
reflecting the less impaired cytogenetic profile of non-MM hematological cancers®.
Following the same computational approach reported in Supplementary Data 1 and 2,
de novo extraction on the entire validation cohort identified 4 CN-signatures which were
highly similar to those described in the CoMMpass WGS (Supplementary Figure 2;
Supplementary Tables 6-7). Across the cohort of non-MM hematological malignancies,
(n=235), the resultant ROC analysis had an average AUC of 0.97 for predicting
chromothripsis (Figure 4d, using 5-fold cross validation due to the smaller sample size),

while an AUC of 0.87 was observed when testing only in NDMM (n=34) (Figure 4e).
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These data demonstrate the reproducibility of chromothripsis prediction from CN
signatures, in both a separate set of hematological cancer WGS, and an independent set

of NDMM samples.

CN signatures are strongly predictive of clinical outcomes in multiple myeloma

Survival analysis on the CoMMpass data demonstrates that the presence of
chromothripsis predicts for a shorter PFS and OS compared with those without®; median
PFS of 32.2 months (95% confidence interval [Cl] 25.2-48.3m) in those harboring
chromothripsis compared with 41.1m (95%CI 37.8-47.2m) in those without (p=0.00011;
Supplementary Figure 3a), and median OS of 53.3m with chromothripsis but not
reached [NR] in those without (p<0.0001; Supplementary Figure 3b). Survival
probability according to the CN-signature predictive model mirrored survival according to
chromothripsis, with a median PFS of 29.7m (95%Cl 25.2m- NR) in those demonstrating
a high CN-signature prediction score (CN_pred) compared with 41.8m (95%CI 38.0-
48.1m) in those with a low score (p=0.0017; Figure 5a; Supplementary Table 4;
Methods). Median OS in those with high CN_pred score was also significantly shorter at
53.1m compared with NR in those with a low score (p<0.0001; Figure 5b).

To select most important features from highly correlated genomic risk factors
(Figure 3a) we performed a backwards stepwise cox regression including ISS, age,
ECOG status, biallelic TP53 inactivation, t(4;14)(FGFR3;/GH), 1921 gain/amplification,
increased APOBEC mutational activity and MAF/MAFB translocations. Based on this
approach the final model contained ISS, age, ECOG, APOBEC mutational activity, 1921

gain/amplification, and the CN_pred score. The model is consistent with previous
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published data indicating that APOBEC mutational activity is one of the strongest adverse
prognostic factors in MM?2%2227 and that 1921 gain/amplification is associated with early
relapse?8. The CN_pred score showed a significant association with shorter PFS and OS
after controlling for other variables in the model, producing a hazard ratio (HR) of 1.61
(95% CI 1.13-2.29, p=0.0083, Figure 5c), and 2.22 (95% CI 1.50-3.30, p<0.001, Figure

5d), respectively.

CN signatures compared with other CN-based tools

We next compared the prediction of the presence of chromothripsis by CN
signatures with other CN-based algorithms recently used in MM to identify high-risk
disease: a loss-of-heterozygosity index (LOH_index)'#?° and the genomic scar score
(GSS)?"30 (see Methods). Results from each of these CN assessment approaches
showed a right-skewed distribution across the CoMMpass 752 NDMM, [LOH_index;
median 2, (range 0-27), Supplementary Figure 4a, and GSS; median 7, (range 0-39),
Supplementary Figure 4b], with the GSS distribution closely resembling that of

previously published data in NDMM?”.

Each of the LOH_index and the GSS demonstrated a lower average AUC for
predicting the presence of chromothripsis in MM WGS (0.69 and 0.78 respectively,
Supplementary Figure 4c-d). The difference in chromothripsis prediction between CN
signatures and the LOH_index is quantitated as a statistically significant difference of 0.21
in AUC [based on bootstrap analysis, standard deviation(SD)=0.006, p<0.0001,

Supplementary Figure 4e] while the difference in prediction between CN signatures and
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the GSS is quantitated as a statistically significant difference of 0.13 in AUC (based on

bootstrap analysis, SD=0.005, p<0.0001, Supplementary Figure 4f).

In order to compare the effect of these different CN models on PFS and OS in
multivariate analysis, the CN-signature prediction data was used as linear variable, which
after correction for the previously included risk factors was associated with shorter PFS
(HR=1.87, 95%CI 1.16-3.01, p=0.0106; Supplementary Figure 5a) and OS (HR=3.1,
95%Cl 1.84-5.4, p<0.001, Supplementary Figure 5b). Performing multivariate analysis
for PFS with correction for the same risk factors showed that neither the LOH_index (PFS
HR=1.03, 95% CI 0.99-1.08, p=0.19; Supplementary Figure 5c¢) nor the GSS (PFS
HR=1.02, 95% CI 1.0-1.04, p=0.12; Supplementary Figure 5e) retain a significant
association. Each model has a slightly increased HR for OS in multivariate analysis;
(LOH_index HR=1.1, 95% CI 1.02-1.1, p=0.008, Supplementary Figure 5d; GSS
HR=1.0, 95% CI 1.02-1.1, p=0.001, Supplementary Figure 5f). Overall, CN-signatures
perform significantly better at predicting poor outcomes in comparison with either the
LOH_index or the GSS, suggesting that a more accurate prediction of chromothripsis is

a better tool for identifying prognosis using CN-based information.

CN signatures predict chromothripsis and clinical outcomes in whole exome sequencing

data

Any prognostic assessment for MM would ideally be applicable in non-WGS
assays, as WGS is currently both expensive and computationally intensive, making its
clinical application outside of a research setting difficult. We performed de novo signature

extraction using WES data from 677 NDMM CoMMpass samples, all of which also had
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WGS. The presence of these data enabled us to compare results in WES with the gold-
standard method for chromothripsis-detection on WGS. The CN feature profile extracted
from WES data was highly analogous to that obtained from WGS data (cosine
similarity=0.99 for corresponding matrix columns), with a smaller contribution from the
oscillation CN categories due to the lower data resolution overall, and in particular of focal
and small lesions (Supplementary Figure 6a). De novo extraction using hdp produced
5 exome-based CN signatures (eCN), similar in their CN feature distribution to the
signatures defined in WGS (Supplementary Figures 6b-c; Supplementary Tables 7-
8). ROC analysis based on 10-fold validation produced an average AUC of 0.82 for

predicting chromothripsis (Supplementary Figure 7; Supplementary Table 4).

The exome CN signature-based chromothripsis prediction score (eCN_pred) was
associated with a significantly shorter PFS; median 26.0m (95%CI 18.0-48.3m) in those
with a high eCN_pred score compared with 41.1m (95%CI 36.7-50.0m) in those with a
low score, (p=0.0031; Figure 6a). OS was also significantly shorter; median 52.3m with

a high eCN_pred score but NR in those with a low score, (p<0.0001; Figure 6b).

In the exome data, backwards stepwise regression demonstrated that the best
model for predicting survival was that comprising age, ISS, APOBEC-activity and the
eCN_pred score. Multivariate analysis again produced a significant and independent
association of eCN_pred with a shorter PFS (HR=1.66, 95%CI 1.16-2.37, p=0.0055;
Figure 6¢), and shorter OS (HR=2.19, 95%CI 1.46-3.29, p<0.001; Figure 6d)
recapitulating both the results obtained from WGS CN signature based chromothripsis

prediction (Figure 5), and those obtained by manual data curation®.
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Discussion

We recently carried out a comprehensive analysis of the landscape of SVs in MM,
showing their critical role in disease pathogenesis and confirming the importance of WGS
for deciphering the genomic complexity of these events 21931, We demonstrated a high
prevalence of complex structural events such as chromothripsis in MM (24%) which is
comparable to that detected in other malignancies; recent data across 38 cancer types
from the PCAWG consortium described high-confidence calls for chromothripsis events
occurring in 29% of all samples, and above 50% in several cancer types (melanoma,
sarcoma, lung adenocarcinoma)'. Given the adverse prognostic association of
chromothripsis with PFS and OS in MM and other malignancies”%3233, that is
independent of other known prognostic variables, it follows that the integration of complex
SV data has the potential to improve the current prognostic scoring systems.

Current approaches for identifying these complex SVs require expense and time
commitment because of the need for either the manual curation of WGS data or the use
of computational tools requiring both CN and SV data to predict chromothripsis®89:34, In
order to circumvent these issues, we investigated CN signature approach for predicting
the presence of chromothripsis. This approach was initially developed in ovarian cancer
as a potential surrogate for predicting BRCA deficiency'?. We have extended this
approach for use in MM and show that a CN signature analysis of NDMM provides an
accurate prediction of the presence of chromothripsis that outperforms other CN
assessment algorithms?”2°. The survival probability identified using a CN signature-
based prediction of chromothripsis closely mimics PFS and OS curves observed with the

presence / absence of chromothripsis®. Using a validation set of WGS containing multiple
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hematological malignancies, we provide proof-of-principle that CN signature analysis can
predict for chromothripsis across different hematological cancer types and can, therefore,
be used as surrogate for these variants to further address the role of chromothripsis in

these blood cancers.

The primary objective was to test whether WGS-based CN signatures can reliably
predict chromothripsis and its poor impact on clinical outcomes. Another critical aspect of
this study was to expand our investigations using non-WGS (i.e. exome-based) data. In
WES data, multivariate analysis revealed a significant association between CN signatures
and shorter PFS and OS. Indeed, the clinical impact of CN signatures was similar in WGS
and WES data. This is important from a translational perspective because it provides an
easier pathway towards clinical application in the standard of care setting of NDMM

patients.

In conclusion, CN signature analysis can accelerate our ongoing quest to
accurately define high-risk MM, and to translate WGS-based prognostication into the

clinic.
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Methods

Samples

All the raw data used in this study are publicly available. Somatic CN profiles for
the definition of CN signatures in MM were generated from 752 NDMM patients with low-
coverage long-insert WGS (median 4-8x) from the CoMMpass study. The CoMMpass
study is a prospective observational clinical trial (NCT01454297) with comprehensive
genomic and transcriptomic characterization of NDMM patients, funded and managed by
the Multiple Myeloma Research Foundation (MMRF)3. The study is ongoing, with data
released regularly for research use via the MMRF research gateway,

https://research.themmrf.org. In this study, we used Interim Analysis (IA) 13.

The validation dataset of hematological cancer WGS was compiled from several
sources. Data from the Pan-Cancer Analysis of Whole Genomes (PCAWG) study®2526

was accessed via the data portal http://dcc.icgc.org/pcawg/, comprising 92 chronic

lymphocytic leukemia, 29 chronic myeloid leukemia, 104 B-cell lymphoma and 7 acute
myeloid leukemia. An additional 3 therapy-related AML were included, with the WGS data
available from European Genome-phenome (EGA) under the accession code
EGADO00001005028. Together, these samples formed the non-MM validation WGS set
(n=235). The MM validation dataset (n=34) comprised 28 NDMM, 4 monoclonal
gammopathy of uncertain significance (MGUS), 2 smoldering MM (SMM) and 1 plasma
cell leukemia (PCL). It was compiled from 3 studies which can be accessed from
European Genome-phenome (EGA) and the database of Genotypes and Phenotypes
(dbGAP) with accession codes EGADO00001003309, EGAS00001004467 and

phs000348.v2.p1.
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WES from 677 NDMM patients were accessed from the CoMMpass study as

above, with each patient having concurrent WGS available for comparison.

CNV signature analysis

Genome-wide somatic copy number (CN) profiles were generated from 752
NDMM patients with long-insert low-coverage WGS available from the CoMMpass study.
Paired-end reads were aligned to the human reference genome (HRCh37) using the
Burrows Wheeler Aligner, BWA (v0.7.8) and CN variation and loss-of-heterozygosity

events were identified using tCoNuT (https://github.com/tgen/tCoNuT), with verification

performing using controlFREEC'*'5. We minimized the inclusion of artefacts by removing
all CN changes smaller than 50kB and excluding the regions corresponding to IgH, IgL

and IgK, as well as the X chromosome from analysis.

The optimal number of categories in each of the 6 CN features detailed in Figure
1 were established using a mixed effect model with the mclust R package, producing a
CN category matrix with defined limits for each feature (Supplementary Table 2). Given
the lower complexity of MM CN changes compared to the original CN signature definition
in ovarian cancer'?, fixed criteria for copy number status were introduced (#1 = bi-allelic
deletion; #2 = monoallelic deletion; #3 = diploid; #4 = single gain; 5# = two or more gains,

Supplementary Data 1). De novo CN signature extraction was performed from this

matrix via the hierarchical Dirichlet process (hdp, https://github.com/nicolaroberts/hdp).
The extracted CN signatures were then correlated with publicly available clinical data and

manually curated SV data as detailed below to allow the calculation of prediction metrics.
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The accuracy of chromothripsis prediction from CN signatures was assessed by the area-
under-the-curve (AUC) from receiver operating characteristic (ROC) curves via 10-fold
cross validation, using all extracted CN signatures as input. The sensitivity and specificity
of chromothripsis prediction from varying levels of probability (i.e. AUC) were compared,
(Supplementary Table 4), with a prediction level = 0.6 defining a high CN_pred (WGS)
and eCN_pred (WES) score. This score provided the highest level of sensitivity for
chromothripsis prediction while still keeping the specificity level at / above 95% for both
WGS- and WES-based prediction.

Somatic variant calling was performed using DELLY (v0.7.6)'® and Manta
(v.1.5.0)"7. The final catalogue of high-confidence SVs was obtained by integrating
DELLY and Manta calls with copy number data and applying a series of quality filters®.
Briefly, all SVs called and passed by both callers were included and SVs called by a single
caller were only included in specific circumstances: (i) SVs supporting copy-number
junctions, (ii) reciprocal translocations, and (iii) translocations involving an

immunoglobulin locus (i.e., IGH, IGK, or IGL).

SV single and complex events definition was according to the most recent
consensus criteria’>. Chromothripsis was defined by more than 10 interconnected SV
breakpoint pairs associated with oscillating CN across one or more chromosomes;
definition included: (i) clustering of breakpoints, (ii) randomness of DNA fragment joins,
and (iii) randomness of DNA fragment order across one or more chromosomes.
Chromoplexy was defined by interconnected SV breakpoints across >2 chromosomes
associated with CN loss. Templated insertions were defined as a concatenation of

translocations usually associated with focal CN gain; if >2 chromosomes were involved
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these events were classified as complex. Patterns of 3 or more interconnected breakpoint
pairs that did not fall into the above categories were classified as “complex”, not otherwise

specified®.

The majority of the clinical association data was obtained directly from the

CoMMpass data portal (https://research.themmrf.org). The definition of high APOBEC

activity was obtained from single-base substitution (SBS) signature analysis; a mutational
signature fitting approach using the R package mmsig,

(https://github.com/evenrus/mmsig) was applied to single nucleotide variant calls from

WES data?>2¢. High APOBEC mutational activity was defined by an absolute contribution
of APOBEC-associated signatures (SBS2 and SBS13) in the top decile, among patients

with evidence of APOBEC activity®26.

CN variation data from the validation dataset of hematological cancers was utilized
for de novo CN signature extraction (hCN-SIG, Supplementary Table 6) without
reference to the CoMMpass WGS-derived CN signatures. Fixed criteria for copy number
status were introduced as detailed above. The presence of chromothripsis was confirmed
by manual inspection of SV and CN data. The accuracy of chromothripsis prediction from
was assessed by AUC from ROC curves using all extracted hCN signatures as input. 5-
fold cross validation was used for the non-MM cohort prediction, which was then used as
the training model for testing the prediction from the MM validation cohort.

CN variation and loss-of-heterozygosity events from the CoMMpass WES
sequencing data was assessed using FACETS (Fraction and Allele specific Copy number

Estimate from Tumor/normal Sequencing, https:/github.com/mskcc/facets)®. Fixed

criteria for copy number status were introduced as detailed above, then de novo CN
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signature extraction, and clinical / genomic correlation were all performed without

reference to the WGS-derived CN signatures.

Comparison with alternate CN assessment approaches

The LOH_index and the GSS were calculated from allele-specific CN files, with the
methods being applicable to either WGS or WES data. The LOH_index was calculated

using the R package signature.tools.lib®37  (https://github.com/Nik-Zainal-

Group/signature.tools.lib), while the GSS was calculated using the R package scarHRD?°

(https://github.com/sztup/scarHRD). The scarHRD output is 3 separate CN features (loss-

of-heterozygosity, telomeric allelic imbalance, and number of large-scale transitions)

which are summed to produce a final score.

To compare chromothripsis-prediction from CN signatures with each of the
LOH_index and the GSS, we first calculated with difference in average AUC between two
methods estimated from 10-fold cross-validation. Then, standard deviation of the
difference in AUCs was estimated by performing a bootstrap resampling. On each new
bootstrap sample, we estimated difference in the average AUC between two methods
using 10-fold cross-validation. This procedure was repeated 1000 times (Supplementary

Data 3).

Software and statistics

Analysis was carried out in R version 3.6.1. The analytical workflow in R for the de

novo extraction of CN signatures is provided in Supplementary Data 1, the code for
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predicting chromothripsis from CN signatures is detailed in Supplementary Data 2 and
the approach to comparing 2 methods for predicting chromothripsis is presented in
Supplementary Data 3. Key software tools noted throughout the workflow (including
mclust, hdp, survminer, pROC, mmsig, signature.tools.lib, and scarHRD) are publicly
available. Unless otherwise specified, we used the Wilcoxon rank sum test to test for
differences in continuous variables between two groups and Fisher’s exact test for 2x2

tables of categorical variables.

Data availability

Sequencing files are available at the EGA and dbGaP archives under the following
accession codes:

. EGAD00001003309 and phs000348.v2.p1 WGS: 24 NDMM and 1 high risk
smoldering multiple myeloma patient

. phs000748.v1.p1: WES and low coverage/long insert WGS sequencing data
from 752 NDMM patients (CoMMpass trial; IA 13)

. EGAS00001004467: WGS data from 3 MM, 1 SMM, 1 PCL and 4 MGUS
patients

. EGADO00001005028 WGS data from 3 therapy related AML patients.

. Pan-Cancer Analysis of Whole Genomes (PCAWG) study®2%2¢ was accessed

via the data portal: https://dcc.icgc.org/
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Figure legends.

Figure 1. A schema demonstrating the definition of copy-number (CN) features
from multiple myeloma whole genome sequencing data. a) Input genome-wide copy
number gain and loss data from 752 newly diagnosed multiple myeloma whole genomes.
b) Measure copy number as classified by 6 key features. ¢) Define the optimum number
of categories for each copy number feature by a mixed-effects model (mclust). d) Tally
the number of CN variation for each of 28 CN categories to produce a matrix of key CN
features. This comprises the input matrix for the hierarchical Dirichlet process (hdp) for

de novo extraction of CN signatures.

Figure 2. De novo extraction from whole genome sequencing data produces 5
copy-number (CN) signatures in 752 newly diagnosed multiple myeloma. The 5 CN
signatures extracted comprise varying contribution across the 28-CN-feature matrix. The
2 chromothripsis-associated signatures are CN-SIG4 and CN-SIG5. (CN-SIG: copy-

number signature).

Figure 3. Clinical data demonstrates the correlation of copy number (CN)
signatures with high-risk multiple myeloma prognostic features and complex
genomic change. a) A heatmap of MM mutational and structural features demonstrates
that contribution from CN-SIG4 and CN-SIGS cluster with features of high-risk MM.
Presence of biallelic TP53 inactivation and chromosome 1921 amplification (i.e. >3

copies) are annotated in dark red; presence of chromothripsis in purple; all the other


https://doi.org/10.1101/2020.11.24.395939

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.24.395939; this version posted November 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

genomic features are in bright red when present. b-g) There is a significantly higher
median contribution from CN-SIG4 and/or CN-SIG5 on the samples having translocations
involving (b) MAF/IMAFB, (c) increased APOBEC mutational activity, (d) biallelic TP53
inactivation, (e) 1921 gain/amplification, (f) chromoplexy and (g) chromothripsis. Each
boxplot shows the median and inter-quartile range (IQR) contribution of CN-SIG4 and
CN-SIG5 across all patients, with whiskers extending to 1.5 * IQR. (Neg; lacking the

feature; pos: containing the feature, WT: wild type).

Figure 4. Copy number (CN) signatures in newly diagnosed multiple myeloma are
strongly predictive of chromothripsis. a) An example of chromothripsis from the
CoMMpass dataset (MMRF_1646_1_BM; chr: chromosome). The horizontal black line
indicates total copy number; the dashed orange line minor copy number. Vertical lines
represent SV breakpoints for deletion (red), inversion (blue), tandem-duplication (green)
and translocations (black). b) the CN category profile from the same example patient
(MMRF_1646_1 BM). c¢) Receiver operating curve (ROC) for the prediction of
chromothripsis from CN signature analysis of CoMMpass whole genome sequencing
(WGS) data (n=752). d) ROC for the prediction of chromothripsis from the validation set
of other hematological cancers (n=235). For c-d: blue lines represent individual ROC
(from 10-fold cross validation in ¢ and 5-fold validation in d), red lines represent the mean
of individual ROC, AUC: mean area-under-the-curve. e) ROC for the prediction of
chromothripsis from the newly diagnosed multiple myeloma subset of the validation WGS

(n=34).
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Figure 5. Copy number (CN) signatures in newly diagnosed multiple myeloma are
independently predictive of clinical outcomes. a) Progression-free survival (PFS)
probability in the CoMMpass dataset according to high (blue) or low (red) CN-prediction
score for chromothripsis (CN_pred). b) Overall survival (OS) probability in the CoMMpass
dataset according to high (blue) or low (red) CN_pred. ¢) Multivariate analysis of the effect
of CN_pred on PFS after correction for International Staging Score (ISS), age, Eastern
Cooperative Oncology Group (ECOG) score, 1921 gain/amplification, and APOBEC
mutational activity. d) Multivariate analysis of the effect of CN_pred on OS after correction

for the same factors.

Figure 6. Copy number (CN) signatures extracted from whole exome sequencing
(WES) in newly diagnosed multiple myeloma are highly predictive of clinical
outcomes. a) Progression-free survival (PFS) probability in the CoMMpass dataset
according to high (blue) or low (red) exome CN-prediction score (eCN_pred) for
chromothripsis. b) Overall survival (OS) probability in the CoMMpass dataset according
to high (blue) or low (red) eCN_pred. ¢) Multivariate analysis of the effect of eCN_pred
on PFS after correction for International Staging Score (ISS), age and APOBEC
mutational activity. d) Multivariate analysis of the effect of eCN_pred on OS after

correction for the same factors.
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