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Despite the toxicity and addictive liability associated with cocaine abuse, its mode of 
action is not completely understood, and effective pharmacotherapeutic interventions 
remain elusive. The cholinergic effects of cocaine on acetylcholine receptors, synthetic 
enzymes, and degradative enzymes have been the focus of relatively little empirical 
investigation. Due to its genetic tractability and anatomical simplicity, the egg laying 
circuit of the hermaphroditic nematode, Caenorhabditis elegans, is a powerful model 
system to precisely examine the genetic and molecular targets of cocaine in vivo. Here, 
we report a novel cocaine-induced phenotype in Caenorhabditis elegans, cocaine-
stimulated egg laying. In addition, we present the results of an in vivo candidate screen 
of synthetic enzymes, receptors, degradative enzymes, and downstream components of 
the intracellular signaling cascades of the main neurotransmitter systems that control 
Caenorhabditis elegans egg laying. Our results show that cocaine-stimulated egg laying 
is dependent on acetylcholine synthesis and synaptic release, functional nicotinic 
acetylcholine receptors, and the Caenorhabditis elegans acetylcholinesterases. Further, 
we show that cocaine-stimulated egg laying is not dependent on other neurotransmitters 
besides acetylcholine, including serotonin, dopamine, octopamine, and tyramine. 
Finally, our data show that cocaine-stimulated egg laying is increased in mutants for the 
C. elegans serotonin reuptake transporter as well as mutants for a 5-HT-gated chloride 
channel likely expressed in the locomotion circuit. Together, these results highlight 
serotonergic inhibition of egg laying behavior, functional connectivity between the egg 
laying and locomotion circuits in Caenorhabditis elegans, and possible discrete 
cholinergic and serotonergic effects of cocaine in the egg laying and locomotion circuits, 
respectively.  
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INTRODUCTION 
 

Cocaine abuse is estimated to account for 900,000 cases of substance use 

disorder (1) and over 14,000 overdose deaths in the U.S. each year (2). Despite the 

impact of cocaine abuse on public health, there are no FDA-approved 

pharmacotherapeutic interventions for either the addictive liability or toxicity associated 

with cocaine abuse (3). A major impediment to the development of effective 

pharmacological interventions is the non-specificity of the drug, as pharmacodynamic 

interventions designed to block the canonical monoamine neurotransmitters implicated 

in the mode of action of cocaine dopamine (DA), serotonin (5-HT), and norepinephrine 

(4) have demonstrated limited efficacy in clinical trials (5). Elucidation of the full range of 

neurotransmitter systems and molecular effectors involved in the mode of action of 

cocaine could inform the development of novel pharmacotherapies.  

A growing body of preclinical research demonstrates an important role for 

acetylcholine (ACh) in the pathology of cocaine use disorder. Cholinergic signaling 

influences multiple processes underlying reward and dependence in the mammalian 

brain, including learning and memory (6), attention (7), and motivation and reward (8). 

Pharmacological manipulation of cholinergic signaling alters responses in behavioral 

assays of cocaine reward such as self-administration (9,10), drug reinstatement (11), 

and conditioned place preference (12). To date, the vast majority of empirical 

examination of the effects of cocaine on ACh signaling has focused on the changes it 

induces in dopaminergic efflux (13); however, the direct impact of the drug on the 

molecular components of cholinergic signaling, including ACh synthetic enzymes, 

subtypes of nicotinic ACh receptors (nAChRs) and muscarinic ACh receptors 
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(mAChRs), and ACh degradative enzymes have been the focus of less empirical 

investigation, necessitating further examination of the direct effects of the drug on the 

cholinergic signaling.   

The Caenorhabditis elegans egg laying circuit has served as a tractable genetic 

and molecular model for the mechanistic underpinnings of various neurotransmitters, 

including ACh (14) and biogenic amines, 5-HT, DA, octopamine (Oct), and tyramine 

(Tyr) (15). The circuit consists of two hermaphrodite-specific neurons (HSNs) (16) and 

six ventral type C neurons (VCs) (17), which innervate the 16 egg laying muscles (18).  

ACh plays a crucial and complex role in regulating the egg laying behavior of C. 

elegans (19). The VCs, which are the primary cholinergic neurons in the egg laying 

circuit, innervate both the vulval muscles and the HSNs (17). Through discrete 

mechanisms, ACh chronically inhibits and acutely stimulates egg laying behavior. 

Binding of ACh to nAChRs on the vulval muscles induces their contraction and triggers 

egg laying (20,21) whereas binding of mAChRs on the HSNs by ACh reduces the 

release of 5-HT from these neurons, and thereby reduces egg laying (22).  

Here we characterize a novel cocaine-induced behavior in C. elegans, cocaine-

stimulated egg laying, and present pharmacological and genetic evidence for an ACh, 

nAChR, and (acetylcholinesterase) AChE-dependent mechanism of cocaine-stimulated 

C. elegans egg laying. Crucially, we show that the excitatory effect of cocaine on egg 

laying in C. elegans depends on genes involved in cholinergic neurotransmission, but 

not on genes involved in the other neurotransmitter systems within the egg laying 

circuit, including 5-HT, Oct, Tyr, and DA. In addition, we show that cocaine-stimulated 

egg laying is enhanced in mutants for the C. elegans SERT (mod-5) and a 5-HT-gated 
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chloride channel (mod-1), supporting a previously published report on the effect cocaine 

on C. elegans locomotion (23) and highlighting the connections between ACh, 

locomotion, and egg laying in C. elegans. 

 

RESULTS 
 

ACh is the only neurotransmitter required for the stimulation of egg laying by cocaine in 
hypertonic medium 
 

In an effort to add to the current cocaine abuse models available in C. elegans 

(23–25), we set out to observe any strong phenotypes that may result from acute 

exposure of WT C. elegans to cocaine. Our initial observations determined that WT 

worms cultured on plates containing cocaine overnight showed several behavioral 

differences compared to untreated controls, including a previously reported modulation 

of locomotion (23). Specifically, preliminary experiments showed a reduction in the 

number of eggs in the uterus of WT hermaphrodite animals on plates containing 

cocaine. These initial observations and the amenability of C. elegans egg laying to 

pharmacological and genetic analysis led us to investigate the effect of cocaine on C. 

elegans egg laying behavior as a model for the genetic and molecular mediators of 

cocaine action using a quantitative approach.  

We next quantified any differences in egg laying in C. elegans treated with 

cocaine by assaying induction of egg laying in liquid hypertonic medium, a well-

established method previously used to investigate the stimulation of egg laying by 5-HT 

and pharmacological agents (16,26,27).  
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We show that treatment of WT C. elegans with cocaine significantly stimulates 

egg laying in hypertonic medium (6.334±2.193) compared to parallel equimolar sucrose 

control (0.391±0.600) (p < 0.0001, N = 670). These data confirm our initial observation 

and identify a robust assay for the genetic analysis of cocaine action in worms, cocaine-

dependent egg laying.  

We next used our newly described behavioral output to identify the main 

neurotransmitter systems involved in the egg laying response to cocaine. We screened 

the egg laying response of individual mutants lacking synthetic enzymes for each of the 

neurotransmitters previously implicated in egg laying (28). The genotypes tested include 

tph-1(mg280) (which encodes tryptophan hydroxylase required for 5-HT synthesis) (29), 

tdc-1(n3419) (which encodes tyrosine decarboxylase required for synthesis of Tyr) (30), 

tbh-1(n3247) (which encodes Tyr beta-hydroxylase required for synthesis of Oct) 

(15,27,30), bas-1(ad446) (which encodes an aromatic amino acid decarboxylase 

required for synthesis of 5-HT and DA) (15,31) and cha-1(pp152)  (which encodes 

choline acetyltransferase necessary for ACh synthesis) (15,32–34).  

We show that the choline acetyltransferase (cha-1) is required for cocaine-

dependent egg laying (cha-1(pp152) mean = 0.500±0.332) vs (WT mean = 4.82±1.782) 

(p = 0.0079, N = 50) (Fig. 1A). Surprisingly, tryptophan hydroxylase (tph-1) is not 

required for cocaine-dependent stimulation of egg laying in hypertonic medium, 

suggesting that 5-HT, one of the main modulators of egg laying behavior, is not the 

primary target of cocaine in this model system (tph-1(mg280) mean = 5.200 ±1.811) vs 

(WT mean = 7.147±2.216) (p = 0.0952, N = 50) 
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Additionally, aromatic amino acid decarboxylase mutants (bas-1), tyrosine 

decarboxylase mutants (tdc-1), and Tyr beta-hydroxylase mutants (tbh-1) do not exhibit 

a significant difference in egg laying response to cocaine as compared to WT, 

suggesting that Tyr, DA, and Oct may be ruled out as main targets of cocaine in this 

circuit (Fig. 1C-E).  

 

Cocaine-stimulated egg laying requires pre-synaptic Ach neurotransmission genes 

 

Suppression of the egg laying response to cocaine in choline acetyltransferase 

mutants (cha-1) suggests that presynaptic cholinergic neurotransmission is necessary 

for the egg laying response to the drug. To further examine this possibility, we assayed 

the egg laying of mutants for the transmembrane transporter necessary for packaging of 

ACh within synaptic vesicles during cholinergic neurotransmission (unc-17) (35). We 

found that the egg laying response of transmembrane transporter mutants to cocaine 

(unc-17(e245)) (mean = 0.507±0.109) is suppressed compared to parallel WT control 

(mean = 5.380±1.293) (p = 0.0079, N = 50) (Fig. 2A). The Gαq ortholog egl-30 is 

required for multiple neuronal functions, including ACh release from motor neurons (36). 

We show that the egg laying response to cocaine of Gαq mutants (egl-30(ad806)) 

(mean = 2.165±2.014) is suppressed compared to parallel WT control (mean = 

5.933±0.778) (p = 0.0159, N = 50) (Fig. 2B). Taken together, these results suggest that 

presynaptic ACh is required for the increased egg laying response to cocaine. 
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Genes encoding nAChRs, but not mAChRs, are required for the egg laying response to 

cocaine 

 

To further understand the effect of cocaine on cholinergic signaling in the C. 

elegans egg laying circuit, we tested the egg laying response to cocaine in nAChR and 

mAChR mutants (unc-29 and unc-38, respectively, encode a beta and an alpha subunit 

of nAChRs expressed on the vulval muscles) (21,28). Consistent with our finding that 

cholinergic neurotransmission is required for the egg laying response to cocaine, we 

show that cocaine-dependent egg laying is significantly reduced in unc-29 mutants 

affecting the beta subunit nAChR; (unc-29 (e1072)) (mean = 1.460±0.965) vs WT 

control (mean = 5.960±1.744), (p = 0.0079, N = 50) (Fig. 3A). Similarly, the egg laying 

response to cocaine of alpha subunit nAChR mutants (unc-38) is suppressed compared 

to parallel WT control; (unc-38(e264) (mean = 3.760±1.176) vs WT control (mean = 

6.460±1.835) (p = 0.0238, N = 50) (Fig. 3B). These results suggest that nicotinic 

receptors expressed on the vulval muscle are required for molecular action of cocaine 

on egg laying behavior.   

 To determine if mAChRs are also required for molecular mechanism of cocaine-

dependent egg laying, we assessed the response of mutants in the mAchR encoded by 

gar-2 (22,28,37). We did not observe any difference in egg laying in gar-2 mutants when 

compared to WT controls; (gar-2(ok520) mean = 3.860 ±0.581) vs (WT mean = 

5.080±0.988) (N = 50) (Fig. 3C).  
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AChE-encoding genes are required for the egg laying response to cocaine 

   

AChEs catalyze the hydrolysis of ACh after its binding to cholinergic receptors on 

the postsynaptic membrane (38). Biochemical analysis has revealed multiple genes 

encoding C. elegans AChEs: ace-1, ace-2, ace-3, and ace-4 (39). The AChEs encoded 

by ace-1 and ace-2 are the major hydrolytic enzymes of ACh whereas the AChE 

encoded by ace-3 accounts for a minor proportion of AChE activity and the AChE 

encoded by ace-4 is transcribed but does not result in a catalytically active protein  

(19,39–42). In order to explore all aspects of the relationship between cocaine 

and cholinergic signaling in the egg laying response, we tested the egg laying response 

to cocaine in ace-1;ace-2 and ace-3;ace-4 double mutants. We found that ace-1;ace-2 

double mutants exhibit a suppressed egg laying response to cocaine (mean = 

0.2000±0.187) compared to parallel WT control (mean = 5.2200±2.649) (p = 0.0079, N 

= 50) (Fig. 4A) whereas ace-3;ace-4 double mutants exhibit an egg laying response to 

cocaine that does not differ significantly compared to parallel WT control (Fig. 4B).  

 

Cocaine induces egg laying independently of 5-HT and of the HSNs 

 

ACh inhibits egg laying through the mAChRs (gar-2) expressed on the HSNs by 

reducing release of 5-HT from these neurons (19,22,28,43). Our results show that 

cocaine-dependent egg laying is not affected by a mutation in the mAChR encoded by 

gar-2 (Fig. 3C). Additionally, HSN neurons are the main serotonergic neurons in the 

egg laying circuit, and our results suggest that serotonin is not required for the 
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stimulatory effects of cocaine on C. elegans egg laying behavior (Fig. 1B-C). Taken 

together, our data suggest that the mechanism may be independent of the HSN 

neurons and of the function of serotonin in the egg laying circuit.  

To assess the role of HSN in cocaine-dependent egg laying, we quantified the 

egg laying response to cocaine in animals containing a semi-dominant mutation in the 

gene egl-1 shown to trigger HSN cell death (44). We show that mutants lacking the 

serotonergic HSNs do not exhibit a significant difference in egg laying response to 

cocaine as compared to WT; (egl-1(n487) (mean = 7.225±1.394) vs WT control (mean = 

9.633±4.356) (p = 0.0571, N = 40) (Fig. 5A). Our previous results suggest that the 

serotonergic HSN neurons are not required for cocaine-dependent egg laying but do not 

eliminate a post-synaptic mechanism requiring 5-HT receptors. We tested the egg 

laying response to cocaine in mutants with deficits in the four metabotropic 5-HT 

receptors expressed in the C. elegans egg laying circuit. The genotypes tested include 

ser-5 (which encodes a Gαs-coupled 5-HT receptor) (45), ser-4 (which encodes an 

inhibitory Gαo-coupled 5-HT receptor)(46), a ser-1;ser-7 double mutant (which encode a 

Gαq-coupled 5-HT receptor and Gαs-coupled 5-HT receptor, respectively) (47,48). We 

show that the ser-1;ser-7 double mutant and ser-5, and both exhibit an egg laying 

response to cocaine that does not differ significantly compared to their respective 

parallel WT controls, suggesting that the excitatory post-synaptic effects of 5-HT are not 

required for cocaine-dependent egg laying (Fig. 5B and D). Further, our data suggest 

cocaine does not stimulate egg laying by blocking the inhibitory effects of ser-4 (Fig. 

5C).  
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To investigate all aspects of serotonin neurotransmission, including the 

previously reported inhibitory effects, we examined whether cocaine-dependent egg 

laying requires mod-1, which encodes a 5-HT-gated chloride channel (49,50). We 

observed that mod-1 is required for an inhibitory effect of cocaine, not detected in the 

WT; (mod-1(ok103) mean = 18.398±3.153) cocaine-dependent egg laying is increased 

compared to parallel WT control (mean = 9.760±2.007) (p = 0.0079, N = 50) (Fig. 5E). 

We also screened cocaine-stimulated egg laying in animals carrying a mutation in mod-

5 (which encodes the C. elegans SERT) (51). Notably, the egg laying response to 

cocaine of mod-5 (mean = 14.760±1.305) is elevated compared to parallel WT control 

(mean = 9.760±2.007) (p = 0.0079, N = 50) (Fig. 5F). These results suggest that 

cocaine induces 5-HT-dependent inhibitory effects as well as ACh-dependent excitatory 

effects on egg laying. 

 

Discussion 

 

Despite the severe toxicity and addictive liability associated with cocaine abuse 

(1,52), its mode of action is not sufficiently understood to produce effective 

pharmacotherapeutic interventions (5). ACh plays an important role in the mode of 

action of cocaine (13), but examination of the direct effects of the drug on cholinergic 

signaling is lacking. Here we present a previously unreported cocaine-induced 

behavioral phenotype in C. elegans, cocaine-stimulated egg laying, and through a 

candidate screen of individual molecular effectors in the egg laying circuit show that this 
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phenotype is dependent on ACh signaling genes, namely, unc-29, unc-38, unc-17, egl-

30, ace-1 and ace-2, and cha-1. 

Multiple lines of evidence presented in this paper point to the conclusion that 

cocaine stimulates C. elegans egg laying through an ACh, nAChR, and AChE-

dependent mechanism. First, animals with deficits in the synthesis of ACh by choline 

acetyltransferase (cha-1) and vesicular packaging of ACh by the transmembrane ACh 

transporter (unc-17) exhibit a suppressed egg laying response to cocaine compared to 

their respective parallel WT controls whereas animals with deficits in serotonergic (tph-

1), dopaminergic (bas-1), octopaminergic (tbh-1), or tyraminergic (tdc-1)  

neurotransmission exhibit an egg laying response to cocaine that is not significantly 

different compared to their respective parallel WT controls. Second, animals with 

deficits in nAChRs expressed on the vulval muscles (unc-29 and unc-38) also exhibit a 

suppressed egg laying response to cocaine compared to their respective parallel WT 

controls whereas animals with deficits in HSN-expressed mAChR (gar-2) exhibit an egg 

laying response to cocaine that is not significantly different from parallel WT control. 

Third, the C. elegans AChEs encoded by ace-1 and ace-2 are required for cocaine-

stimulated egg laying.  

In addition, our data show that cocaine-stimulated egg laying is increased in 

mutants for the C. elegans 5-HT reuptake transporter (SERT) (mod-5), as well as 5-HT-

gated chloride channel mutants (mod-1), highlighting serotonergic inhibition of egg 

laying behavior as a consequence of a connection between the C. elegans egg laying 

and locomotion circuits. 
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Cocaine-induced egg laying in C. elegans is dependent on stimulation of nAChRs 

and C. elegans AChEs  

 

The functional role of ACh in C. elegans egg laying is complex, as it has both an 

acute excitatory effect (21) and a chronic inhibitory effect (22). The acute excitatory 

effect of ACh on egg laying is the result of stimulation of nAChRs expressed on the 

vulval muscles, as nicotinic agonists stimulate egg laying (53,54), but fail to do so in the 

absence of vulval muscle expression of genes encoding nAChRs (55). The chronic 

inhibitory effect of ACh on egg laying is a result of negative feedback from the VCs to 

the HSNs, via the HSN-expressed mAChR encoded by gar-2 (22).  

Our finding that the egg laying response to cocaine is suppressed in animals with 

deficits in presynaptic cholinergic neurotransmission (unc-17 and cha-1), as well as 

postsynaptic deficits in nAChRs (unc-29 and unc-38), but not in animals with functional 

deficits in other neurotransmitter signaling pathways, suggests that nicotinic cholinergic 

neurotransmission plays a key role in cocaine-stimulated egg laying.  

 

Interaction between the effect of cocaine on locomotion and egg laying 

 

Our study did not identify any genes involved in serotonergic neurotransmission 

that are required for the stimulatory effects of cocaine on C. elegans egg laying; 

however, we did observe a statistically significant increase in the egg laying response to 

cocaine in two serotonergic mutants, including 5-HT-gated chloride channel mutants 

(mod-1) and SERT mutants (mod-5).  
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We propose that the increased egg laying response to cocaine in these mutants 

may result from interaction between the egg laying and locomotion circuits. Ratiometric 

calcium imaging of the egg laying circuit shows active and inactive phases that are 

coordinated with locomotion (20,56,57). In addition to stimulating egg laying through 

nAChRs expressed on the vulval muscles (19,21,22,28), the VCs slow locomotion 

preceding egg laying events through cholinergic synaptic contacts with the body wall 

muscles (20), which is thought hold to the body of the worm in a position that is 

conducive to egg laying and allow sufficient time for contraction of the vulval muscles. 

MOD-1 and MOD-5 have been suggested to play an inhibitory role in C. elegans egg 

laying behavior through inhibition of interneurons in the locomotion circuit, which 

subsequently decrease the activity of the egg laying neurons (45). Notably, cocaine 

induces a decrease in locomotion speed in C. elegans  that is dependent on mod-1 and 

mod-5 (23). These results align well with our (Fig. E-F) data showing an increased egg 

laying response in mod-1(ok103) and mod-5(n3314) mutants compared to WT and 

suggest that cocaine may have both serotonergic and cholinergic effects on the 

locomotion and egg laying circuits, respectively.  

Finally, we did not observe a change in egg laying in tph-1(mg280) and bas-

1(ad446) mutant animals which are resistant to the slowing of locomotion speed 

induced by cocaine (23), potentially suggesting egg laying circuit plasticity in the 

absence of these enzymes during development.  
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Cocaine stimulates egg laying independently of HSN and serotonin 

 

Cocaine stimulates egg laying in C. elegans independently of serotonergic 

neurotransmission as neither the HSNs (egl-1), 5-HT receptors (ser-1;ser-7, ser-4, mod-

1), 5-HT synthetic enzymes (tph-1 and bas-1), nor the C. elegans SERT (mod-5) are 

required for stimulation of egg laying by cocaine.  

A possible explanation for HSN-independent nAChR-dependent stimulation of 

egg laying by cocaine is silencing of the VCs and HSNs by high osmotic pressure 

(20,58). The HSNs and the VCs each play a related, but distinct, role in the stimulation 

of C. elegans egg laying through their neuromuscular innervation of the vulval muscles. 

5-HT, released from the HSNs, modulates activity of the vulval muscles by increasing 

the frequency of spontaneous calcium transits (59). Conversely, ACh, released from the 

VCs, triggers individual egg laying events by stimulating nAChRs and thereby inducing 

muscle contraction (14). The activity of both the VCs and the HSNs is depressed under 

conditions of high osmolarity (20,58); however, the vulval muscles innervated by these 

motor neurons retain a significant level of activity as measured by calcium transits (58). 

Therefore, under the high osmolarity conditions in which our egg laying assays were 

performed, the osmotic silencing of the HSNs and the VCs may be sufficient to negate 

inhibitory cholinergic feedback while at the same time preserving the potential for 

nicotinic stimulation of individual egg laying events. 
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EXPERIMENTAL PROCEDURES  

 

Nematode strains  

The WT strain was Bristol N2. The following mutant alleles were used in this study: 

MT15434: tph-1(mg280); MT13113: tdc-1(n3419); MT9455: tbh-1(n3247); MT7988: bas-

1(ad446); PR1152: cha-1(p1152); CB933: unc-17(e245); CB1072: unc-29(e1072); 

CB904: unc-38(e264); RB756: gar-2(ok520); GG201: ace-1(p1000);ace-2(g72); 

PR1300: ace-3;ace-4(dc2); MT1082: egl-1(n487); DA1084: egl-30(ad806), DA2109: 

ser-1(ok345);ser-7(tm1325); MT9668: mod-1(ok103); MT9772: mod-5(n3314); RB2277: 

ser-5(ok3087); AQ866: ser-4(ok512). Animals were maintained on NGM agar plates 

with E. coli OP50 as a source of food (60). Temperature was controlled at 20 °C.  

 
Egg laying assays and statistical analysis 

Egg laying assays were performed according to a protocol by Moresco and Koelle (61). 

In this study, the egg laying behavior of C. elegans hermaphrodites in hypertonic M9 

salt solution, which strongly inhibits egg laying in otherwise untreated WT animals (27), 

was quantified. For each experiment, an aqueous stock solution of cocaine 

hydrochloride was diluted to the treatment concentration in M9 buffer solution with an 

equal volume of equimolar aqueous sucrose solution or 5-HT diluted in M9 buffer 

solution in each of the control conditions. Late stage L4 hermaphrodites of the 

respective strains were picked ~24 hours before assaying and continued to be cultured 

on agar plates with an OP50 lawn at 20°C. Day one adult hermaphrodites were isolated 

into single wells on a 96-well plate containing 35 µl experimental or equimolar control 
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solutions. After 60 mins, each well was examined, and the number of eggs laid by each 

animal was recorded. The investigators were blind to both the identity of the treatment 

solution and the genotype. Each experiment included ten subjects per experimental or 

control group unless otherwise indicated and each experiment was independently 

repeated four or five times as indicated. The mean number of eggs laid by each of the 

replicate treatment groups was treated as a single data point. Statistical analysis was 

performed using a Mann-Whitney U-test. 

Data Availability Statement 

The authors affirm that all data necessary for confirming the conclusions of this 

article are represented fully within the article and its tables and figures. 

Chemicals 

Aqueous cocaine hydrochloride was supplied by the National Institute on Drug 

Abuse (Research Triangle Institute, Research Triangle Park, NC, USA). Serotonin 

hydrochloride was purchased from Sigma Chemical Co. (St. Louis, MO). 
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Fig 1: Choline acetyltransferase is required for the egg laying response to 
cocaine. Egg laying behavior of A. cha-1, B. tph-1, C. bas-1, D. tdc-1, and E. tbh-1 in 
62.5 mM cocaine or a 62.5 mM sucrose control compared to WT. We performed 5 
independent experiments with 10 animals in each group. Relevant p values shown for 
significant differences. Error bars represent SD. Significance as compared to WT 
control was determined via a Mann-Whitney U-test. 
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Fig 2: The ACh transmembrane transporter and Gαq are required for the egg 
laying response to cocaine. A. Egg laying behavior of A. unc-17 and B. egl-30 in 62.5 
mM cocaine or a 62.5 mM sucrose control compared to WT. We performed 5 
independent experiments with 10 animals in each group. Relevant p values shown for 
significant differences. Error bars represent SD. Significance as compared to WT 
control was determined via a Mann-Whitney U-test. 
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Fig 3: nAChRs are required for the egg laying response to cocaine. Egg laying 
behavior of A. unc-29, B. unc-38, and C. gar-2 in 62.5 mM cocaine or a 62.5 mM 
sucrose control compared to WT. We performed 5 independent experiments with 10 
animals in each group. Relevant p values shown for significant differences. Error bars 
represent SD. Significance as compared to WT control was determined via a Mann-
Whitney U-test. 
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Fig 4: nAChRs are required for the egg laying response to cocaine. Egg laying 
behavior of A. ace-1;ace-2 and B. ace-3;ace-4 in 62.5 mM cocaine or a 62.5 mM 
sucrose control compared to WT. We performed 5 independent experiments with 10 
animals in each group. Relevant p values shown for significant differences. Error bars 
represent SD. Significance as compared to WT control was determined via a Mann-
Whitney U-test. 
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Fig 5: Neither the HSNs nor serotonin receptors are required for the egg laying 
response to cocaine. Egg laying behavior of A. egl-1, B. ser-1;ser-7, C. ser-4, D. ser-
5, E. mod-1, and F.  mod-5 in 62.5 mM cocaine or a 62.5 mM sucrose control compared 
to WT. We performed 5 independent experiments with 10 animals in each group for 
assays of ser-4, ser-5, mod-1, and mod-5 egg laying. We performed 4 independent 
experiments with 10 animals in each group for assays of egl-1 and ser-1;ser-7 egg 
laying. Relevant p values shown for significant differences. Error bars represent SD. 
Significance as compared to WT control was determined via a Mann-Whitney U-test. 
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