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Abstract

Diffusion-weighted magnetic resonance imaging (dMRI) allows for the in-vivo
assessment of anatomical white matter in the brain, thus allowing the depiction
of structural connectivity. Using structural processing techniques and related
methods, a growing body of literature has illustrated that connectomics is a cru-
cial aspect to assessing the brain in health and disease. The Pediatric Imaging
Neurocognition and Genetics (PING) dataset was collected and released openly
to contribute to the assessment of typical brain development in a pediatric
sample. This current work details the processing of diffusion-weighted images
from the PING dataset, including rigorous quality assessment and fine-tuning
of parameters at every step, to increase the accessibility of these data for con-
nectomic analysis. This processing provides state-of-the-art diffusion measures,
both classical diffusion tensor imaging (DTI) and more advanced HARDI-based
metrics, enabling the evaluation not only of structural white matter but also
of integrated multimodal analyses, i.e. combining structural information from
dMRI with functional or gray matter analyses.

Keywords: diffusion MRI, connectome, tractography, white matter, pediatric
development

1. Introduction

Brain structure & development

Post-natal neural development is characterized by widespread structural
changes of the brain, in both gray and white matter regions [Sowell et al.,
2004; Lenroot and Giedd, 2006; Giedd and Rapoport, 2010]. Microstructural5

changes in brain architecture, such as cortical thickness or myelination, lead to
global morphometric changes detectable by magnetic resonance imaging (MRI)
techniques, including anatomical images (such as T1 or T2? weighted) and
diffusion-weighted imaging (dMRI). Just as these techniques can be used to
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assess differences between health and disease states, they also provide insight10

into underlying microstructural changes in the brain that characterize typical
development in vivo [Lim and Helpern, 2002; Prayer and Prayer, 2003; Qiu
et al., 2015]. Implementing multimodal imaging methods in the assessment of
structural development throughout the lifespan enables a comprehensive per-
spective of anatomical growth and variance across the whole brain. Research15

has shown that a major component of post-natal brain development occurs in
the strengthening or refining of local and whole-brain white matter connections
[Lebel et al., 2008; Jernigan et al., 2011]. Many of these changes are experience-
dependent and causally linked with myelination, synaptogenesis and synaptic
pruning in different areas of the brain at different developmental periods [Shatz,20

1990; Benes et al., 1994; Paus et al., 1999; Stiles and Jernigan, 2010; Deoni et al.,
2011]. Such changes in structural white matter provide a compelling case for
the use of dMRI in assessing brain development.

Diffusion MRI & white matter processing

DMRI is a particular MRI sequence that quantifies water displacement in25

multiple directions. From diffusion-weighted images, local diffusion models
are reconstructed to estimate the underlying characteristics of white matter
anatomy [Jones, 2008; Descoteaux, 2015]. The dynamic changes of this mi-
crostructure in development can be characterized both in structural and func-
tional analyses [Klingberg et al., 1999; Mukherjee et al., 2002; Olesen et al.,30

2003; Sotiropoulos and Zalesky, 2019]. These changes, whether localized or not,
underlie global changes in whole-brain networks, which form the basis of brain
function and behaviour [Nagy et al., 2004]. As such, it is important to eval-
uate these changes in the context of brain connectivity, using techniques such
as dMRI to depict structural white matter changes [Jeurissen et al., 2019]. As35

of yet, we have a limited understanding of how white matter develops during
childhood and adolescence and therefore require more insight into how these
structures change over time.

Though the implementation of dMRI techniques has improved our under-
standing of anatomical white matter structure, processing of such data is known40

to be rife with complex challenges [Jones and Cercignani, 2010]. These chal-
lenges consist of low spatial resolution, noisy acquisition, MRI gradient-related
artifacts and fiber organisation ambiguity (crossing, kissing, fanning) [Jbabdi
et al., 2015; Dell’Acqua and Tournier, 2019; Jeurissen et al., 2019]. As such,
processing dMRI data needs to be reliable and reproducible to improve dMRI45

quality and better depict local and global structure of the human brain [Theaud
et al., 2020].

PING

In order to depict stereotypical changes or patterns in structural develop-
ment, the use of large-scale population-representative datasets is essential. One50

such dataset is the Pediatric Imaging Neurocognition and Genetics (PING)
study: a large-scale developmental cohort of subjects aged between 3 and 22
years, including imaging, cognitive and genetic data. This comprehensive study
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provides a rich multimodal imaging perspective of development, from childhood
to early adulthood, and enables the integration of behavioural and genetic infor-55

mation. PING publicly provides both the raw imaging and demographic data,
as well as some processed derivatives of these data including cortical thickness,
surface area, volumes and some diffusion-tensor measures. However, despite
this notable amount of data made available by PING, structural white matter
connectivity measures were not included, to our knowledge.60

To best take advantage of these large-scale datasets, such data must be
made accessible for use beyond their originating research groups. These types
of open science practices promote scientific collaboration and discovery, such as
the Human Connectome Project (HCP) [Glasser et al., 2013]. The creation and
analysis of large-scale population datasets are arduous tasks best accomplished65

as collaborative efforts. Sharing data encourages better, more transparent re-
search practices and also minimizes the necessity for repetition in laborious data
collection and processing. Therefore, the derivatives of this current processing
will be made publicly available and accessible through the National Database
for Autism Research (NDAR) repository, a database of the National Institute of70

Mental Health Data Archive (NDA), which also hosts the original PING dataset.

2. Methods

In this section, we specify how the initial PING release and dMRI acquisition
were harmonized and formatted [Jernigan et al., 2016]. The pre-processing and
processing applied to dMRIs is detailed, along with any processing applied in75

parallel to the T1-weighted anatomical images. Finally, tractography and con-
nectivity matrix generation are described. As detailed in Jernigan et al. [2016],
written consent was obtained from parental guardians for participants below 18
years of age and from the participants themselves otherwise, in accordance with
IRB protocols. For reproduction purposes, details are listed in the Usage Notes80

and Code availability sections. Figure 1 illustrates a comprehensive overview of
the processing pipeline.

2.1. Input data collection and formatting

Imaging data collection

Original PING data were collected in Digital Imaging and Communications85

in Medicine (DICOM) format across nine sites on four 3T MR machine types:
Siemens TrioTim, GE Discovery, GE Signa, and Philips Achieva. Scanning
protocols were harmonized across all scanners and sites to minimize variance
across scans. From PING, we gained access to a total of 954 subjects with
dMRI scans, 634 of which also have at least 2 or more repeated scans within90

the same session. In total, 1669 unique acquisitions were used as input for the
subsequent processing.
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Anatomical images

Though the PING dataset contains both T1w and T2?w images, only T1w
images are required for the processing described here. T1w images were col-95

lected using a real-time prospective motion correction (3D PROMO) technique
to minimize the effects of motion, which is typically widespread in pediatric
samples. Subjects were processed only if they had both dMRI and T1w images
which passed quality assurance, i.e. minimal motion, no major artifacts, etc.
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Figure 1: Processing pipeline architecture, for diffusion, T1 and T2? weighted images: dMRI
pre-processing (blue), CIVET for WM-GM-CSF tissue maps with surfaces (yellow), T1 tem-
plate reconstruction (green), Registration to align T1 maps from anatomical to diffusion space
(red), diffusion local models reconstruction (purple), and tractography with structural con-
nectivity (cyan).

4

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 25, 2020. ; https://doi.org/10.1101/2020.11.24.396549doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.24.396549
http://creativecommons.org/licenses/by-nd/4.0/


Data conversion: DICOM to NIfTI100

Since most dMRI processing tools cannot directly input DICOM files, a con-
version is necessary. First, DICOM (‘.dcm’) files were converted to Neuroimaging
Informatics Technology Initiative (NIfTI) file format (‘.nii’) using dcm2niix [Li
et al., 2016]. For dMRI volumes, this conversion also generates two accompa-
nying ‘bval’ and ‘bvec’ files which contain acquisition details of the b-values and105

b-vectors for each volume.

Transformation (space) convention

To facilitate the use of common dMRI software, all NIfTI files were modified
to the RAS (left-to-right, posterior-to-anterior, inferior-to-superior) convention.

Diffusion-weighted images (dMRI)110

Each dMRI acquisition is composed of a total of 32 diffusion-weighted three-
dimensional volumes: 30 with diffusion directions and 2 baseline (b0 images).
Of the two b0 images, one is acquired in the anterior-to-posterior (A-P) direc-
tion, which is in alignment with all volumes of the main dMRI (named ‘b0.nii’).
The second b0 is acquired in the reverse direction, posterior-to-anterior (P-A),115

(named ‘b0 rev.nii’). This reverse b0 is used to correct for susceptibility-induced
distortion in dMRI. Each direction measures the signal loss along the chosen
orientation (b-vector) with a single b-value of 1000.

2.2. Diffusion MRI Pre-processing

A preliminary b0 mask (‘bet prelim b0.nii’) is estimated with FSL-bet from the120

‘b0.nii’ dilated with MRtrix-mask filter. This is done to mask voxels determined
to be outside of the brain tissue and to remove unnecessary computation of
invalid voxels. Denoising was performed for all dMRI directions (‘dwi.nii’) inside
the preliminary mask (‘bet prelim b0.nii’) with MRtrix-dMRI denoise[Tournier
et al., 2019].Topup correction map was computed with FSL-topup, to correct125

for common dMRI acquisition deformation, using both oppositely-acquired b0
images (‘b0.nii’, ‘b0 rev.nii’) and applied to all dMRI directions (‘dwi.nii’). Eddy
current correction was also applied using FSL-eddy. FSL-eddy applies both
eddy current and distortion correction (generated from FSL-topup) to all diffu-
sion volumes; it also returns distortion-corrected ‘bval’ and ‘bvec’ files. A new130

brain mask (‘bet b0.nii’) is computed after the deformation correction, minimally
dilated with MRtrix-mask filter. Intensity normalization was employed to estab-
lish spatial uniformity of the signal intensity across the dMRI volume using
ANTs-N4BiasFieldCorrection. Additionally, MRtrix-dMRI normalise was used
to harmonize the diffusion signal across subjects [Tournier et al., 2019]. Each135

diffusion volume was resampled with linear interpolation to an isotropic resolu-
tion of 1mm [Lehmann et al., 1999; Dyrby et al., 2014].

2.3. Diffusion MRI models

DTI. Dipy-TensorModel was used to estimate the Diffusion Tensor Image
(DTI) [Basser et al., 1994] at every spatial position (voxel), with a weighted140
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least squares method. Subsequently, multiple DTI measures were computed
from reconstructed tensors (Figure 2), including the Fractional Anisotropy (FA),
Mean Diffusivity (MD), Apparent Diffusion Coefficient (ADC), Radial Diffu-
sivity (RD), and red-green-blue (RGB) map colored in the x-y-z orientation
(Figure 3).145

FOD. Dipy-csdeconv package was used to compute fiber orientation dis-
tribution (FOD). Initially the “single fiber distribution” is estimated with the
auto response function and afterward the full distribution is computed at each
position using ConstrainedSphericalDeconvModel with the symmetric724

discretized sphere. The FOD represents the estimated orientation distribution150

of fibrous structure at each voxel [Tournier et al., 2007; Descoteaux et al., 2009].
Peaks, representing main diffusion directions, are extracted from local maxima
of each FOD angular distribution, similar to a vector field (Figure 2). This
FOD field is later used to compute the tractography and estimate the structural
connectivity. In addition, some feature maps are estimated from the FOD re-155

construction, illustrated in Figure 3, such as total apparent fiber density (AFD).

2.4. T1w image processing

Segmentation maps for white matter, gray matter, cerebrospinal fluid (CSF)
and subcortical structures (SC) were generated by CIVET 2.1, from the native
T1 anatomical image. A brain mask, also estimated from this segmentation,160

was applied to all T1w images before registration [Zijdenbos et al., 1998; Tohka
et al., 2004]. Cortical surfaces were reconstructed with CIVET 2.1 [Kim et al.,
2005; Lyttelton et al., 2007], similarly to FreeSurfer. Subcortical regions were
estimated with ANIMAL [Collins et al., 1999] and converted into meshes using
a marching cube algorithm, and then combined with cortical surfaces in a single165

file. The anatomical T1 and diffusion volume were co-registered, transform-
ing the T1 volume into native diffusion space. The resulting transformations
(affine matrix and warp) from antsRegistration, are also used to align subse-
quent anatomical maps and cortical surfaces to diffusion space [Avants et al.,
2011; Theaud et al., 2020].170

Template construction

In parallel to the included T1w processing within Tractoflow, a PING specific
T1w template was generated using antsMultivariateTemplateConstruction2.sh
[Avants et al., 2011], which automates an iterative registration process to move
any number of T1w volumes into a common space. Once the template has been175

generated, the resulting transformation files are used to register other template-
aligned volumes into individual subject space. This is applied in subsequent
processes which require aligning atlas segmentation labels into native T1w and
diffusion volume space, as described below in creating voxel-based connectiv-
ity matrices. Averaged tissue maps in the template space can be oberved in180

Figure 4.
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Figure 2: Coronal view of the reconstructed diffusion tensor image (DTI) on the left, and
fiber orientation distribution (FOD) on the right. On the bottom row, a zoomed view of the
Corpus Callosum and Cingulum regions.
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FA MD

RGB Total AFD

Figure 3: Diffusion tensor image (DTI) field measures: fractional anisotropy (FA), mean
diffusivity (MD), and red-green-blue (RGB) map colored from the x-y-z orientation. Total
apparent fiber density (AFD) estimated from the Fiber orientation distribution (FOD).

2.5. Structural connectivity analysis

Tractography

Structural pathways can be reconstructed from dMRI by following the local
orientation of estimated local models with a process called tractography. In185

this work, we used the “particle filtering tractography” (PFT) [Girard et al.,
2014], implemented in Dipy, taking advantage of the sharp orientation from
the FOD field. Resulting streamlines represent estimated pathways of the brain
macrostructure and connectivity. Similarly to anatomically-constrained tractog-
raphy (ACT) [Smith et al., 2012], PFT takes advantage of previously computed190

WM-GM-CSF tissue maps, to define legal and illegal regions.
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The “surface-enhanced tractography” (SET) [St-Onge et al., 2018], an adap-
tation of the PFT algorithm, was also used to initialize and terminate stream-
lines from cortical and subcortical surfaces at the WM-GM boundary. Since
CIVET 2.1 produces a standardized mesh, with a fixed number of vertices and195

triangles for every subject, SET allows for better comparison and individually
variable correlation of connectivity features.

Connectivity matrices

Connectivity matrices were generated using two separate methods: voxel-
and surface-based. Voxel-based matrices were created using a 3D anatomical200

Desikan-Killiany-Tourville (DKT) [Desikan et al., 2006; Klein and Tourville,
2012] segmentation label in each acquisition’s native diffusion space. To regis-
ter the DKT segmentation label to native diffusion space, a number of image
deformation steps were executed. The DKT segmentation label was moved
from MNI space to the PING template space and then inversely warped to205

WM GM

CSF SC

Figure 4: Averaged tissue maps in the template space, axial view.

9

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 25, 2020. ; https://doi.org/10.1101/2020.11.24.396549doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.24.396549
http://creativecommons.org/licenses/by-nd/4.0/


subject-specific T1w native space. Using the transformation affine matrix and
warp image from Tractoflow processing, the DKT label was then aligned from
T1w to native diffusion space. This native-space label was generated for each
diffusion acquisition and used as input with the corresponding tractogram in
SCIL-scil compute robust connectivity matrix.py, which outputs a connectivity210

matrix as a npy file. Depicted in Figure 5, connectivity is represented as the
number of streamlines with endpoints within a region of interest (ROI) label as
delineated by the DKT label.

Using the surface-based method, every streamline generated by SET starts
and terminates within a triangle that makes up the cortical surface mesh. Each215

triangular facet corresponds to a specific cortical label in the CIVET DKT atlas.
Subsequently, the connectivity matrix is computed by counting the number of
streamlines connecting two different cortical regions.

Tractography & atlas Voxel connectivity matrix

Connectivity 3D visualization SET connectivity matrix

Figure 5: Tractography reconstruction visualized over the DKT atlas labels and resulting
connectivity matrices, streamlines count per million in log scale. The connectivity matrix
contains 35 cortical and subcortical labels per hemisphere (left, right) and the brainstem, for
a total of 71 × 71 potential connections.
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3. Technical Validation

3.1. Quality Control220

Data formatting

Once converted to NIfTI and enforced to RAS orientation, each image header
was verified automatically with MRtrix-mrinfo, to correct stride convention and
data formatting.

Anatomical images225

If a subject had multiple anatomical T1 acquisitions, a single best-quality
image was chosen for each subject, validated visually. During initial assessment
of the raw T1 acquisitions, subjects were excluded for severe motion, slicing
artifacts, or missing data.

CIVET230

Brain masks, tissue maps and surfaces from CIVET 2.1 were inspected with
the given alignment QC image. Subjects were excluded from further analysis
post-CIVET processing due to a) failing to complete processing or b) motion
artifacts and incorrectly assigned data.

Eddy & Topup235

Images were visually assessed before and after Eddy & Topup correction
to ensure the correction was applied properly. This also validated that the b0
preliminary mask was not too restrictive.

Pre-processed dMRI and T1 registration

Registered pre-processed T1s (masked, denoised, normalized, resampled)240

were assessed with the fully pre-processed dMRI (prelim masked, denoised,
eddy- plus topup-corrected, normalized, resampled) to ensure that the images
were aligned and properly pre-processed. In addition, anatomical tissue seg-
mentation maps (WM-GM-CSF) were visually inspected in the diffusion space
prior to tractography.245

Template alignment

Anatomical T1 images and tissue map alignment were verified both qual-
itatively and quantitatively with an alignment score. Quantitative scores are
shown in the next sub-section.

DTI & FOD250

Diffusion orientations acquired from the b-vector files and their respective
eddy- and topup-corrected versions were validated by visualizing DTI main ori-
entation in well-known brain structures: the corpus callosum and the cingulum.
A flip in the x axis for b-vector values was required as the images were ac-
quired in LAS orientation, but Dipy is based on RAS reference. Resulting local255

reconstructions were also qualitatively verified for shape, size and orientation
discrepancies (Figure 2). This ensured that computed DTI and FOD values
were correct and well-aligned with the white matter structure.
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Diffusion measures

Diffusion measures were also qualitatively validated using maps for FA, MD,260

RD, RGB and AFD. The variability of these dMRI metrics for this dataset
is presented in the next sub-section. Subjects were removed if their diffusion
maps presented visible artifacts such as motion, poor registration, uncorrected
deformations or signal loss.

Tractograms265

The resulting tractograms, from 100 randomly chosen subjects, were in-
spected with 3D visualization, to ensure no reconstruction artifacts were present.

3.2. Dataset Variability

In addition to standard quality control and visual validation, quantitative
measures and variability were computed after each of the following processing270

steps. This was done to ensure that no major outliers remained in the final
dataset. These variability results could also serve as references for future brain
development studies or comparison with the PING dataset.

Template alignment

After the template reconstruction (Figure 4), an alignment score (dice) to275

this averaged template was computed for each individual probabilistic tissue
map (Figure 6a). This template alignment score (mean; standard deviation)
for WM (0.897; 0.010), GM (0.877; 0.015) and SC (0.930; 0.019) is excellent,
with small variance. The CSF score (0.574; 0.039) is lower, compared to others,
mostly due to brain mask variation. Subjects misaligned to the template were280

easily detected as outliers from the WM dice score (z-score < -5) and confirmed
through visual validation. In general, a data point is considered an outlier
when the z-score is greater than 3 or less than -3. Removing these non-aligned
subjects consistently reduced the dice standard deviation by a factor of 3 for WM
(around 2 for other tissue maps). Almost identical results and corresponding285

outliers were found using other distance measures (L1 and L2) as well.
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Figure 6: a) Dice alignment score to the template, for each subject. White matter measures
of: b) diffusion (AFD, FA, GA) and c) diffusivity in mm2/s (AD, MD, RD).
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Diffusion measures

Measures estimated from dMRI models (DTI and FOD) were also evalu-
ated for each subject. Intensities in each tissue structure were analysed with a
histogram and average value per subject (see Figure 6, Table A.1). From this290

variability analysis, results suggest that some FOD metrics, such as NUFO, are
too variable to measure any group differences in this dataset. Nonetheless, this
limitation could be partially caused by the variable nature of this dataset (age
variation, multiple acquisition site, etc).

FOD model data response (frf)295

Fiber response function (frf) was first estimated for each dMRI acquisition
in the center of the WM structure in high FA values near the corpus callosum.
Results were then compared for each scanner and acquisition site (Figure 7a,
Table A.2). Since all frf were similar across PING, values used to compute FOD
were fixed to 18, 4, 4 (ratio of 18/4), the dataset average.300

Connectivity matrices

Connectivity matrices were employed to measure inter-subject distance. For
subjects with multiple dMRI acquisitions, intra-subject distance was also mea-
sured. In addition, variability analysis was performed over connectivity matrices
to estimate outliers and the differences between acquisition sites and age groups.305

Figure 7b displays L1-distance, from the average connectivity to each subject’s
connectivity matrix, grouped per acquisition site (Table A.3).

Metrics

Dice score and distance equations, in between images A and B at each voxel
position v in the whole 3D volume V is as follows:

Dice score(A,B) :=

∑V
v AvBv∑V

v Av +
∑V

v Bv

a c d f h i j l m
3.50

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

frf
 ra

tio

Estimated frf

a c d f h i j l m
0.0

0.1

0.2

0.3

0.4

0.5

0.6

l1

Voxel Distance to the average subject

a) b)

Figure 7: a) Estimated fiber response function (frf) ratio, b) connectivity matrices distance
to the average subject, across acquisition sites. MRI scanner for each site: Philips Achieva
(a,h), GE Signa HDx (c), GE Discovery MR750 (i) and Siemens TrioTim (d,f,j,l,m).
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4. Conclusion

In this work, we created a processed and quality-assessed set of connectiv-310

ity derivatives of the PING dataset, using a robust dMRI processing pipeline,
Tractoflow [Theaud et al., 2020]. Resulting derivatives were assessed and val-
idated at multiple steps to ensure a high-quality, normative dataset. Using a
state-of-the-art pipeline and openly publishing the dataset will encourage the
use of dMRI metrics within the scope of PING-related connectomic analyses.315

The resulting dataset includes:

- processed T1 and diffusion weighted images, from established software,

- brain tissue segmentation maps along with cortical surfaces from CIVET,

- advanced dMRI processing using fiber orientation distribution (FOD) in
addition to diffusion tensor imaging (DTI),320

- WM pathways reconstruction from cutting edge tractography algorithms,

- structural connectivity matrices, estimated using voxel and surface ap-
proach.

Code availability

An adapted version of Tractoflow for PING processing is available in the325

complementary files on NDA, named Tractoflow-pve. Within this project folder,
both ‘USAGE’ and ‘README.md’ give information about usage, ‘nextflow.config’

contains configuration details, and ‘main.nf’ includes all processing steps and
details. The singularity image ‘tractoflow 2.0.0.img’ contains all requirements
to execute the ‘tractoflow-pve/’ pipeline. A secondary sub-pipeline ‘set-nf/’ is330

provided to compute the “surface-enhanced tractography” and surface-based
measures, using the same file organisation as in ‘tractoflow-pve’ with the addition
of ‘set ping.img’ to execute it. The ‘set ping.img’ is also used to execute the ‘civet-

nf’ pipeline which organizes PVE output files from CIVET 2.1 for ‘tractoflow-pve’.
All code is packaged within the ‘Processing PING’ archive file available on NDA.335

All dMRI and T1w processing software employed in this work are available
online and free of use for researchers: ANTs, CIVET , dcm2niix , FreeSurfer ,
FSL, MRtrix , Nibabel , and Dipy . Processing tools utilized for scripts and
pipelining: Nextflow , Singularity , and Python. Visualisation tools: Fury , MI-
Brain, MisterI , and MRtrix mrview .340

Data Records

Data and research tools used in the preparation of this manuscript were
obtained from the National Institute of Mental Health (NIMH) Data Archive
(NDA). NDA is a collaborative informatics system created by the National Insti-
tutes of Health to provide a national resource to support and accelerate research345

in mental health. Dataset identifier(s): 10.15154/1519178. This manuscript re-
flects the views of the authors and may not reflect the opinions or views of the
NIH or of the Submitters submitting original data to NDA. Information on the
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original PING dataset, including acquisition protocols, is detailed in Jernigan
et al. [2016].350

The processed derivatives described here and the code used to produce
them are all available on the NDA website, study ID #932 titled Diffusion-
weighted derivatives of PING , doi: 10.15154/1519178. All code and file de-
scriptions are found at the study’s page under ‘Data Analysis,’ and result-
ing derivative data are packaged in the ‘Results’ section. Descriptions for all355

derivative files and in which data package they are organized can be found in
ping dwiderivatives ndarinfo.xlxs under ‘Data Analysis.’

Processed anatomical maps

All anatomical 3D volumes and derived maps are saved in NIfTI format,
supported in dcm2niix, ANTs, Nibabel, and MRtrix.360

Processed dMRI

Images at each processing step are saved in 3D or 4D (representing a se-
ries of 3D images) NIfTI : b0 volumes (A-P, P-A), dMRI directions, as well as
upsampled denoised-, eddy- & topup-corrected images.

Diffusion bval & bvec365

Eddy-corrected b-values and b-vectors are saved in the same format as ini-
tially converted by dcm2niix : b-values are listed in a text file (space-separated),
b-vector directions are listed in x-y-z format in distinct rows.

Cortical surfaces

The Visualization Toolkit (VTK) format was used for all meshes, with ver-370

tices saved in world coordinates (LPS). In this format, cortical surfaces can be
visualized and overlaid onto the T1 image with MI-Brain (see Figure 5).

DTI

Tensor images were saved with Dipy and Nibabel in NIfTI format. The
resulting image is a 4D volume: spatially represented in 3D with a fourth di-
mension containing all 6 symmetric tensor coefficients. Tensor coefficients were
saved in this given order along the fourth dimension axis, where: [D00, D01,
D02, D11, D12, D22], where

D =

D00 D01 D02

D01 D11 D12

D02 D12 D22

 .

FOD

FOD fields were saved with Dipy using the default spherical harmonics (SH)375

representation [Descoteaux et al., 2009]. Only even-ordered SH coefficients (cml )
were saved, as computed FOD are symmetric. The SH file is ordered by SH order
(l) first and phase (m) second: [ c00; c-22 , c-12 , c02, c12, c22; c-44 , c-34 , c-24 , c-14 , c04, c14, c24,
c34, c44; c-66 , c-56 , c-46 , c-36 , c-26 , c-16 , c06, c16, c26, c36, c46, c56, c66 ].
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Tractograms380

Tractography reconstructions were saved in TrackVis format (‘.trk’). This
format is well supported in Nibabel, Dipy and MI-Brain.

Connectivity matrices

All resulting connectivity matrices were stored as nummpy array matrices
(‘.npy’) format. The ordered list of labels is given in the ‘labels co matrix.txt’ file.385

Usage Notes

Command lines

Nextflow and Singularity need to be installed; a complete example is given
in ‘PING example.sh’.

nextflow run civet-nf/main.nf --civet path/to/civet˙output/ “390

-with-singularity set˙ping.img

sh civet-nf/tree˙for˙tractoflow.sh -f path/to/data/ -c civet-nf/results/ “
-o tractoflow˙input/

395

nextflow run tractoflow-pve/main.nf --root tractoflow˙input/ “
--dti˙shells ”0 1000” --fodf˙shells ”0 1000” “
-profile civet˙pve -with-singularity tractoflow˙2.0.0.img

nextflow run set-nf/main.nf --tractoflow tractoflow˙nf/results/ “400

--civet path/to/civet˙output/ -profile civet˙DKT “
-with-singularity set˙ping.img

Pediatric Imaging Neurocognition and Genetics (PING)

Data collection and subsequent dataset for this project were obtained from
the Pediatric Imaging, Neurocognition and Genetics Study (PING), National405

Institutes of Health Grant RC2DA029475. PING is funded by the National
Institute on Drug Abuse and the Eunice Kennedy Shriver National Institute of
Child Health & Human Development. PING data are disseminated by the PING
Coordinating Center at the Center for Human Development, University of Cal-
ifornia, San Diego. PING data (nda.nih.gov/edit collection.html?id=2607) and410

Consortium (ping-dataportal.ucsd.edu/sharing/Authors10222012.pdf), detailed
in Jernigan et al. [2016].
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Appendix A. Full Comparison

WM GM SC CSF
AD 0.00111, 0.000033 0.00116, 0.000072 0.00104, 0.000033 0.00160, 0.000146
MD 0.00080, 0.000033 0.00103, 0.000059 0.00082, 0.000032 0.00144, 0.000125
RD 0.00065, 0.000035 0.00096, 0.000054 0.00070, 0.000033 0.00135, 0.000117
AFD 0.332, 0.022 0.332, 0.026 0.360, 0.027 0.244, 0.030
FA 0.340, 0.019 0.129, 0.011 0.254, 0.015 0.114, 0.020
GA 0.529, 0.038 0.191, 0.026 0.375, 0.024 0.190, 0.050
dice 0.897, 0.010 0.877, 0.015 0.930, 0.019 0.574, 0.039

Table A.1: Diffusivity measures (AD, MD, RD) in mm2/s, diffusion measures (AFD, FA,
GA) and tissue maps dice alignment score, average & variance over all subjects, for each
segmentation maps.

first eigenvalue second eigenvalue ratio
a 0.001709, 0.000124 0.000388, 0.000026 4.40, 0.16
c 0.001686, 0.000076 0.000391, 0.000019 4.32, 0.14
d 0.001887, 0.000196 0.000416, 0.000041 4.54, 0.18
f 0.001850, 0.000207 0.000413, 0.000041 4.47, 0.17
h 0.001836, 0.000201 0.000418, 0.000039 4.39, 0.18
i 0.001716, 0.000087 0.000387, 0.000019 4.44, 0.16
j 0.001932, 0.000211 0.000425, 0.000042 4.54, 0.18
l 0.001735, 0.000128 0.000390, 0.000022 4.45, 0.18
m 0.001782, 0.000183 0.000397, 0.000036 4.49, 0.19

Table A.2: Estimated fiber response function (frf) in mm2/s across acquisition sites: first
eigenvalue, second eigenvalue, ratio. Philips Achieva (a,h), GE Signa HDx (c), GE Discovery
MR750 (i) and Siemens TrioTim (d,f,j,l,m).

voxel L1 voxel L2 SET L1 SET L2
a 0.278, 0.027 0.0234, 0.0029 0.385, 0.040 0.0331, 0.0055
c 0.287, 0.026 0.0242, 0.0032 0.382, 0.036 0.0303, 0.0068
d 0.301, 0.028 0.0254, 0.0030 0.375, 0.041 0.0278, 0.0050
f 0.317, 0.024 0.0266, 0.0031 0.417, 0.041 0.0331, 0.0058
h 0.299, 0.026 0.0251, 0.0029 0.435, 0.037 0.0370, 0.0048
i 0.291, 0.024 0.0245, 0.0028 0.358, 0.038 0.0269, 0.0051
j 0.291, 0.033 0.0243, 0.0033 0.378, 0.044 0.0292, 0.0057
l 0.310, 0.031 0.0252, 0.0027 0.429, 0.038 0.0347, 0.0063
m 0.283, 0.023 0.0236, 0.0026 0.363, 0.039 0.0274, 0.0052

Table A.3: Connectivity matrices L1, L2 and χ2 distances, per acquisition site, to the average
matrix. Philips Achieva (a,h), GE Signa HDx (c), GE Discovery MR750 (i) and Siemens
TrioTim (d,f,j,l,m).
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