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Abstract

Our ability to ascertain which person a pronoun refers to is a central part of human language un-
derstanding. Toward a process-based understanding of the brain’s pronoun-resolution abilities,
we evaluated four computational models against brain activity during naturalistic comprehen-
sion. These models each formalizes a different strand of explanation for pronoun resolution that
has figured in the cognitive and linguistic literature. These include syntactic binding constraints,
discourse coherence and principles of memory retrieval. We also examined a deep neural net-
work model that has shown high performance in Natural Language Processing. We collected
both functional Magnetic Resonance Imaging (fMRI) and magnetoencephalography (MEG) data
while English and Chinese speakers listened to an extended narrative in the scanner. We applied
univariate and multivariate analyses to correlate model predictions with brain activity patterns
time-locked at each third person pronoun in the narratives. Our combined results all favor the
memory-based model, suggesting a domain-general mechanism for pronoun resolution that
resembles memory retrieval.

Introduction

One unique machinery of human language is reference, that is, using a linguistic symbol such as
pronouns to pick out certain entities in the discourse context. Pronouns cannot be interpreted
by themselves and depend their meanings on an antecedent expression. We typically have no
difficulty linking a pronoun to its antecedent during language comprehension, yet the neural
computations underlying this linking process remain elusive. To achieve a detailed, process-
based understanding of pronoun resolution, we utilize computational models that lay out
specified and carefully thought-out steps to achieve pronoun resolution. By evaluating the
cognitive validity of these models against human brain activity, we provide insights on the
constituting elements and their interactions during the cognitive process of pronoun resolution.

We selected three symbolic models each formalizing a different strand of explanation for
pronoun resolution that has figured in the cognitive and linguistic literature. The syntax-based
Hobbs model1 implements the classic Binding Theory2 in formal linguistics, which states that
pronouns cannot be coindexed with antecedents in the same clause. For example, in “Mary
loves her”, the pronoun “her” cannot refer back to the “Mary". The discourse-based Centering
model3 implements the Centering Theory4 that views pronominalization as a means to achieve
discourse coherence, such that the most prominent entity is maintained through the use of
pronouns in connected sentences. The memory-based ACT-R model5 conforms to the salience
account for pronoun resolution, and selects the most highly-activated entity in the working
memory as the antecedent of the pronoun. In addition to the knowledge-based models, we also
included one data-oriented deep neural network model that has shown high performance in
Natural Language Processing. The neural network model6,7 (henceforth the NeuralCoref model)
considers all spans of words in a document as possible mentions and learns a distribution over
possible antecedents for each mention in a labeled dataset.

We correlated the model predictions with brain activities during pronoun resolution. We
recorded the blood-oxygen-level-dependent (BOLD) signals while participants listened to a
100-minute audiobook of “The Little Prince” in the fMRI scanner. This naturalistic setting is
ideal for comparing computational models for pronoun resolution in an extended narrative.
We collected data from both English and Chinese speakers using the exactly same paradigm to
further test whether linguistic typology would influence the strategies for pronoun resolution.
To explore the temporal dynamics of the model fit, we also collected an MEG dataset while
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English speakers listened to a 12-minute audio excerpt from the YouTube channel “SciShow
Kids”. We applied both multivariate representational similarity analyses (RSA)8 and univariate
general linear model (GLM) analyses to compare the four models’ relatedness to the BOLD
responses and the source-localized MEG data time-locked at each third person pronoun in the
narratives (see Figure 1). We found that the memory-based ACT-R model best explains the
neural signatures for third person pronoun processing, primarily localized at the left middle
temporal gyrus (LMTG) at around 320-350 ms after the onset of the pronouns. Our results
suggest a domain-general mechanism for pronoun resolution that resembles memory retrieval.
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Figure 1: Schematic illustration of the analyses pipeline. a Complexity metrics for all the third person pronouns in
the narratives are calculated based on different computational models for pronoun resolution. Participants listened
to the narrative in the fMRI/MEG scanner. b GLM analyses to localize third person pronoun processing. c RSA
analyses to compare model relatedness to brain activity pattern within the fROIs derived from the GLM analyses.
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Results

Model comparisons. The Hobbs model1 traverses the parsed syntactic tree of the sentence in a
left-to-right, breadth-first order and searches for an antecedent that is matched in gender and
number. It incorporates the locality constraints of the Binding Theory as it always searches for
the antecedent in the left of the noun phrase (NP) and does not go below any NP or S(entence)
Node on the tree. The Centering model9 formalizes the Centering theory4 for pronoun resolution.
In the Centering framework, entities that link an utterance to others utterances are referred
to as “centers". Centers of an utterance are ranked according to their relative prominence,
which is mainly determined by the centers‘ grammatical roles. Pronouns are used when the
most prominent centers of adjacent sentences are the same and form the preferred transition
relation. Based on this assumption, the Centering algorithm tracks the relation between the
centers in adjacent pairs of sentences and finds the antecedent-pronoun pair that has the most
preferred transition relation. The memory-based ACT-R model5 is specifically intended as a
rigorous cognitive model for pronoun resolution. In the modular system of ACT-R10, declarative
memories of past events are stored as “chunks" in the buffer of the declarative module. The
chunks have activation levels that determine the speed and success of their retrieval. The
activation level is dependent on the frequency and recency effects of memory retrieval: the
more often and more recent a chunk occurs, the more likely it is to be retrieved. In addition,
spreading activation from other chunks can temporarily boost a chunk’s activation: Chunks
that are currently being processed spread activation to other, connected chunks in declarative
memory. The ACT-R model for pronoun resolution uses the same primitives of the memory
module in ACT-R. It calculates the activation levels of previous entities in the discourse context,
and selects the most salient entity as the antecedent of the pronoun. The NeuralCoref model6,7

learns the statistical pattern for clustering the mentions. At the core of the model are vector
representations of each mention span, which are determined by the context surrounding each
mention span and the internal structure of the span. The model uses bidirectional LSTMs to
capture the contextual information with an attention mechanism to learn a notion of “syntactic
headedness". Vector representation of each word is also crucial for the mention span, and
contributed significantly to the full model performance as shown in the ablation experiment6.
(see Figure 2 for an illustration of the four models applied to an example English sentence from
“The Little Prince”).
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Figure 2: Illustration of the Hobbs1, Centering3, ACT-R5 and NeuralCoref6,7 algorithms using an example sentence
in the English The Little Prince. a Waveform of the example sentence from the English audiobook. The blue numbers
indicate the offset time in seconds for each word in the whole audiobook. b Hobbs model applied to the English
example sentence. Blue arrows indicate the steps performed to get to the first proposed antecedent, and the orange
arrows indicate the steps performed to get the second proposed antecedent. Hobbs distance is the number of
proposals till the correct antecedent. c Centering model applied to the English example sentence. Cb equals Cb−1
and Cp equals Cb, so the transition type is Continuing and the transition ordering is 1. d The formula for calculating
the activation level for the antecedent “a sheep". e The architecture of the NeuralCoref model6. The NeuralCoref
score is the softmax of the final layer. 5
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Since the features used by each model vary across pronouns in the narratives, the models
predict different “processing difficulty" for each pronoun. For example, pronouns that are
far apart from its antecedents on a syntactic tree and are intervened by another candidate
antecedent are hard for the Hobbs model; pronouns do not refer to the most prominent entity
in the discourse context are hard for the Centering model; pronouns refer to entities that are
mentioned only a few times a long time ago are hard for the ACT-R model, and pronouns
surrounded by nouns with similar word meanings are hard for the NeuralCoref model (See
Methods for a detailed description of the four models).

To connect properties of the four models to the observed brain data, we defined a “com-
plexity metric" for each model to quantify how difficult it is for the model to find the correct
antecedent. For the Hobbs model, we used the “Hobbs distance"11, namely, the number of
proposals that the Hobbs algorithm has to skip before the correct antecedent is found. For the
Centering model, we used the rank of the transition type from the previous sentence to the
current sentence containing the pronoun. For the ACT-R model, we used the negative of the
activation level for the antecedent of each pronoun, and for the NeuralCoref model, we used
the negative of coreferential probability of the antecedent for each pronoun. These complexity
metrics allow us to estimate model-derived brain states for comparison against observed brain
data.

Figure 3a shows the distribution of the standardized complexity metrics derived by the
four models applied to all the third person pronouns in “The Little Prince" in English and
Chinese and the “SciShow Kids" audio excerpts. We focused on third person pronouns as
the three symbolic models are mainly concerned with third person pronoun resolution. In
addition, the underlying neural mechanisms may differ for first, second and third person
pronoun processing as first and second person pronouns have been suggested to mark proximity
in space while third person pronouns are further away12. The distribution of the complexity
metrics are very similar for the English and Chinese fMRI stimuli, where the complexity metrics
are all right-skewed with more positive values of 2 or 3 z-scores. This suggest that texts contain
more difficult pronouns for all the four models. For the MEG stimuli, the complexity metrics are
left-skewed with more negative values, suggesting more easier pronouns for the models. This is
expected as the “SciShow Kids" program is designed for kids and the narratives are kept simple
and easy to understand.

To ensure that the four models can indeed predict the correct antecedents of the pronouns,
we calculated the accuracy of the four models applied to all the third person pronouns in the
narratives (see “Model performance" in Methods for details). We allowed some degree of ambi-
guity in the reference and permitted the correct answer to rank within a model’s top 3 choices.
This is the SUCCESS@N metric13 where the gold answer occurs within a system’s first N choices.
All the models performed well with an accuracy at SUCCESS@3, with an accuracy well above or
near 70% (Figure 3b).
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Figure 3: Comparison of the four models applied to the fMRI and MEG stimuli. a Distribution of the standardized
model metrics. We took the negative of the ACT-R and the NeuralCoref metrics to indicate the processing difficulty
of the pronouns, aligning with the Hobbs and the Centering metrics. All the metrics are z-scored. b The accuracy of
the Hobbs, ACT-R and NeuralCoref model based on SUCCESS@N (N=1,2,3)13, i.e., the proportion of the correct
antecedent occurs within the model’s first three choices.

Localizing third person pronoun processing. In order to compare the four models‘ relatedness
to brain data, we need to first localize the regions involved in pronoun processing. Prior fMRI
studies have suggested a number of regions relevant for pronoun processing, including the
superior and middle temporal gyrus (STG, MTG), the inferior frontal gyrus (IFG), the angular
gyrus (AG) and the Precuneous cortex (PC). The left STG, MTG and IFG have been shown to elicit
increased activation with increased linear distance between pronouns and their antecedents14,15,
and the left AG and PC have been implicated in backward anaphora processing16. The MEG
literature has mainly localized reference resolution to the medial parietal lobe17,18. However, no
consensus has been reached on the exact location of third person pronouns, which are the focus
of the current study.

To find brain regions showing increased activation during third person pronoun process-
ing for both the English and Chinese participants in our fMRI study, we conducted a GLM
analysis with a binary third person pronoun regressor, time-locked at the offset of each third
person pronoun in the audiobook. We also included the root mean square (RMS) intensity and
f0 of the audio, word rate and word frequency for each word in the story as control variables
(Figure 1b; see “Localise brain regions for third person pronoun processing: fMRI data” in
Methods for details). The results showed a significant cluster correlated with the occurrence of
third person pronouns in the LMTG (p = 0.001 FWE, k = 294) and the RMTG (p = 0.022 FWE,
k = 40; see Figure 4a-d).

The same regression model with the binary third person pronoun regressor was applied to
the source-localized MEG data for each word at each source and each timepoint for each subject.
Significant clusters for the β coefficient over space and time were identified by a cluster-based
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spatiotemporal permutation test19 with 10,000 permutations (Figure 1b; see “Localise brain
regions for third person pronoun processing: MEG data" in Methods for details). We found
one significant cluster of 401 sources for the third person pronoun regressor from 150 to 250
ms (p=0.033) after the onset of the pronoun. The cluster covered regions including the left
posterior temporal lobe (LPTL) and the left medial parietal lobe (Figure 4e,g). Figure 4f,h show
the timecourses of the mean activation for third person pronouns and all other words averaged
over the lateral and the medial parts of the cluster. The direction of the interaction is positive,
which means that third person pronouns elicited higher activity compared to other words.

Both our fMRI and MEG results showed significant LMTG activity, consistent with pre-
vious literature14,15,20 on pronoun resolution. Our MEG results showed additional activity in
the left medial parietal lobe, which also replicated previous MEG results17,18. We extracted
the LMTG and the RMTG clusters from the fMRI results as the functional regions of interests
(fROIs) for further representational similarity analyses on the fMRI data. Similarly, we split the
significant cluster from the MEG results into a lateral part and a medial part and used them as
the fROIs for RSA on the MEG data.

8
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Figure 4: GLM results for third person pronoun processing for the fMRI and MEG data. a The LMTG cluster
derived from the fMRI data. b Coronal slices of the significant clusters. c The RMTG cluster derived from the fMRI
data. d MNI coordinates, cluster size and their peak level statistics, thresholded at p<.05 FWE and k>20.e Lateral
part of the significant cluster derived from the MEG data. f Timecourses of response for third person pronouns and
all other words averaged over the lateral cluster. g Medial part of the significant cluster derived from the MEG data.
h Timecourses of response for third person pronouns and all other words averaged over the medial cluster. Shaded
region indicates the significant time window from 150-250 ms after the word onset (p = 0.033).

Comparing model predictions within the fROIs of the fMRI data. We performed an RSA8

for each model within each fROIs to compare the model predictions with the brain activity
patterns during third person pronoun resolution. RSA characterizes a representation in a brain
or computational model by the representational dissimilarity matrix (RDM) of the brain activity
patterns or the model predictions. A model is tested by comparing the RDM it predicts to that
of a measured brain region. We computed the Hobbs distance, the Centering transition, the
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ACT-R activation level, and the NeuralCoref score for each pronoun in the English and Chinese
fMRI stimuli. We then constructed the representational dissimilarity matrix (RDM) for each
model using the euclidean distance between each pronoun‘s model predictions. Each cell of the
RDM represents the dissimilarity of a pronoun compared to other pronouns based on model
predictions (Figure 1a). Figure 5a,c show the four model RDMs for the English and Chinese
stimuli, ranked transformed and scaled into [0,1]. Spearman‘s rank correlation (rho) revealed
low correlation among the model RDMs for both populations, with the highest rho value being
0.18 for the Centering and NeuralCoref RDMs of the English stimuli (Figure 5b,d). We then
correlated each model RDM with the fMRI data RDM within each fROI for each subject within
each group. The fMRI data RDMs are computed as 1 minus Pearson‘s r correlation among all
the fMRI scans aligned with the occurrence of a third person pronouns in the audiobook. Each
cell in the fMRI data RDM reflects dissimilarity of brain activity patterns among the fMRI scans
containing a pronoun. Statistical significance was tested using a one-sided signed-rank test21

across each subject‘s correlation values. (see “RSA within the fROIs: fMRI data” in Methods for
details).

The correlational results showed similar patterns for both the English and Chinese speak-
ers (Figure 5e,f). For English speakers, the ACT-R model showed the highest Spearman‘s
rank correlation with both the LMTG and RMTG activity patterns, averaged across subjects
(rho = 0.054, p < .0001 and rho = 0.053, p < .0001, respectively). The Hobbs model was also
significantly related to both fROI activities (rho = 0.032, p < .0001 and rho = 0.031, p < .0001,
respectively). The Centering and the NeuralCoref model RDMs were not significantly correlated
with either of the fROI activities. For Chinese speakers, the ACT-R model also had the highest
mean correlation with both the brain regions (rho = 0.084, p < .0001 and rho = 0.093, p < .0001,
respectively). The Hobbs model was also significant for both fROIs with a rho value of 0.023
(p < .0001) and 0.031 (p < .0001), respectively. The NeuralCoref model showed a significant
but very low correlation with the LMTG activity (rho = 0.0008, p = 0.02). The Centering model
was not significant for either of the fROI activities. A two-sample t-test between the English and
Chinese speakers revealed a significantly higher correlation of the ACT-R models to the brain
data in Chinese (t(82) = 4.81, p < .0001), suggesting a better fit of the ACT-R model for pronoun
resolution in Chinese.

Given that the four models focus on different aspects of pronoun resolution, it may well
be the case that they are distinctively correlated with different brain regions in a broad network
for pronoun processing. To search for regions associated with each model, we conducted a
searchlight RSA within a mask covering regions that have been previously reported for pronoun
processing, including the STG, MTG, IFG, AG and PC14,15,16,17,22 (see “Searchlight RSA: fMRI
data” in Methods for details).

The searchlight results showed a significant correlation between the ACT-R model and all
the brain regions in the searchlight mask for both English and Chinese speakers. For English
speakers, the peak correlation was localized at the left and right IFG (MNI[-52,28,12], p < .0001
FWE and MNI[42,6,42], p < .0001 FWE, respectively). Chinese speakers had a peak correlation
for the ACT-R model at the LIFG (MNI[-44,12,28], p < .0001 FWE). Group comparison between
the correlation maps revealed a significant cluster at the LIFG where the ACT-R model has a
better fit for the Chinese data than for the English data (MNI[-44,12,28], p < .0001 FWE, k = 51).
The other three models did not show any significant correlation with the BOLD response patterns
in the searchlight mask for both English and Chinese speakers.
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Figure 5: ROI-based and searchlight RSA results for the fMRI data. a The RDMs for the Hobbs, Centering, ACT-R
and NeuralCoref model in English. Each RDM was separately rank-transformed and scaled into [0,1]. b Spearman’s
rank correlation matrix for the four model RDMs in English. c The model RDMs in Chinese. d Spearman’s rank
correlation matrix for the four model RDMs in Chinese. e Relatedness of the four model RDMs to the brain data
RDM within the LMTG fROI, averaged across subjects in each group. f Relatedness of the four model RDMs to
the fMRI data RDM within the RMTG fROI, averaged across subjects in each group. * below the model names
indicates significant correlation. * above the bars indicates significant group difference. FDR correction was applied
for multiple comparisons across fROIs and models. *** p<.0001.g The selected anatomical regions based on the
Harvard-Oxford cortical atlas23 for searchlight RSA. h Regions showing significant correlation for the ACT-R model
from the searchlight analyses. Significance was determined by a one-sided t-test at the group level with FWE
p < .005 and cluster size > 20. aMTG/pMTG: anterior/posterior Middle Temporal Gyrus; IFGop/IFGtri: Inferior
Frontal Gyrus pars opercularis/pars triangularis; aSTG/pSTG: anterior/posterior Superior Temporal Gyrus; AG:
Angular Gyrus; PC: Precuneous Cortex. 11
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Whole-brain GLM analyses for the fMRI data. Our multivariate RSA methods selected the
fMRI scans that are aligned with the occurrence of third person pronouns in the audiobook, yet
given the fMRI time resolution of 2 seconds per volume, the words surrounding the pronouns
are likely included in the selected scans too. Although we tried to remove the effects of other
words by regressing out the intensity, f0, word rate and word frequency effects, there is still
a concern of contamination from other words. To complement the multivariate approach, we
also conducted a univariate GLM analysis with the four models‘ predictions as regressors. The
GLM approach has been well-established to examine neuro-computational models of language
processing in prior fMRI studies using naturalistic stimuli24,25,26. Same with the GLM analysis
for localizing third person pronouns, we modeled the timecourse of each voxel‘s BOLD signals
for each of the nine sections by the model regressors, time-locked at the offset of each third
person pronoun in the audiobook (see “Whole-brain GLM analyses: fMRI data" in Methods for
details).

The results of the GLM analyses were shown in Figure 6. Consistent with the searchlight
RSA results, the ACT-R model was significant for a temporal-frontal network for both English
and Chinese speakers, while the other three models were associated with much smaller and
isolated clusters across the two groups. For English speakers, the peak clusters for the ACT-R
activation were at the LIFG (p < .0001 FWE, k = 4440), LMTG (p < .0001 FWE, k = 2451) and
RMTG (p < .0001 FWE, k = 547). For Chinese speakers, the peak clusters were at the LAG
(p < .0001 FWE, k = 517), LMTG(p < .0001 FWE, k = 281), LSFG (p < .0001 FWE, k = 426),
and LIFG (p = 0.001 FWE, k = 72; see Figure 6c). Direct comparison of the contrast maps for
the ACT-R model showed no significant cluster between the English and Chinese groups. The
Hobbs model was correlated with a significant cluster in the RMTG (p < .0001 FWE, k = 428)
for English speakers and the LSMA (p = 0.001 FWE, k = 109) for Chinese speakers (Figure 6a).
English speakers showed significant higher activation than Chinese speakers in the RMTG
(p < 0.0001 FWE, k = 201). The Centering model was associated with two small clusters in the
RSFG (p < .0001 FWE, k = 74) and the PC (p = 0.005 FWE, k = 60) for English speakers. No
significant cluster was found for the Centering model for Chinese speakers (Figure 6b). Group
comparison revealed greater activation for the Centering model in the PC (p = 0.01 FWE, k = 68)
for English speakers. The NeuralCoref model was correlated with significant clusters in the
LSTG (p < .0001 FWE, k = 1273), RMTG (p < .0001 FWE, k = 305), LAG (p = 0.002 FWE,
k = 120) and LSFG (p = 0.002 FWE, k = 134) for English speakers. Chinese speakers also
showed a significant cluster in the LSTG for the NeuralCoref model (p < .0001 FWE, k = 144;
see Figure 6d). Supplemental Table 1 lists the MNI coordinates and the statistics for the peak
clusters for the four models.
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Figure 6: GLM results with the four models as regressors for the fMRI data. a 3D visualisation and the coronal slices
showing the significant clusters for the Hobbs model in English and Chinese. b 3D visualisation and the coronal
slices showing the significant clusters for the Centering model in English. c 3D visualisation and the coronal slices
showing the significant clusters for the ACT-R model in English and Chinese. d 3D visualisation and the coronal
slices showing the significant clusters for the NeuralCoref model in English and Chinese.
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Comparing model predictions within the fROIs of the MEG data. We computed the Hobbs
distance, the Centering transition, the ACT-R activation level and the NeuralCoref score for each
pronoun and calculated the model RDMs using the euclidean distance metric (see Figure 7a,b
for the model RDMs and the correlation matrix between the model RDMs). We then extracted
the source estimates for each pronoun within the lateral and medial fROIs, and calculated the
MEG data RDMs as 1-Pearson’r correlation between each source estimate. We calculated the
Spearman’s rank correlation between each model RDM with the MEG data RDM within each
fROI at each timepoint. Statistical significance was tested using a cluster-based permutation test
over time19 (Figure 1c; see “RSA within the fROIs: MEG data” in Methods for details).

We observed a significant temporal cluster for the ACT-R model from 320 to 350 ms after
the onset of the pronouns for both the lateral fROI (p = 0.049) and the medial fROI (p = 0.038).
The other three models were not significantly correlated with the MEG data patterns within the
two fROIs (see Figure 7).

To further examine the models’ relatedness to the MEG data in other brain regions, we
also conducted a searchlight RSA within the same mask used for the fMRI searchlight RSA
(see “Searchlight RSA: MEG data” in Methods for details). Figure 8 showed the t-values of the
statistical tests on the correlation maps for each model on the left hemisphere, thresholded at
t>1. Similar to the ROI-based RSA results, the ACT-R model showed similar posterior LMTG
and LPC activation at around 300-400 ms. The Hobbs model showed the highest correlation at
the left prefrontal cortex at around 200 ms, the Centering model showed the highest correlation
with the LPC at around 200 ms, and the NeuralCoref model showed the highest correlation at
the meidal prefrontal cortex at around 100 ms. Although none of these clusters survived the
cluster-based permutation test with the cluster-level threshold of p < .05, the LMTG cluster for
the ACT-R model has the smallest p-value of 0.29.
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Figure 7: ROI-based RSA results for the MEG data. a The RDMs for the Hobbs, Centering, ACT-R and NeuralCoref
model metrics for the MEG stimuli. Each RDM was separately rank-transformed and scaled into [0,1]. b Spearman’s
rank correlation matrix for the four model RDMs. c Functional ROI in the left lateral lobe derived from the regression
analyses for third person pronouns. d Timecourse of the relatedness of the four model RDMs to the brain data RDM
within the lateral temporal fROI, averaged across subjects in each group. ACT-R model is significantly correlated
with the MEG data pattern in the lateral fROI from 320-350 ms (p = 0.049). e Functional ROI in the left medial wall
derived from the regression analyses for third person pronouns. f Timecourse of the relatedness of the four model
RDMs to the brain data RDM within the lateral temporal fROI, averaged across subjects in each group. ACT-R
model is significantly correlated with the MEG data pattern in the medial fROI from 320-350 ms (p = 0.038). Shaded
region indicates significant temporal cluster. * p<.05.
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Figure 8: Searchlight RSA results for model RDMs and the MEG data RDMs. a Spatiotemproral pattern of the
t-values from the permutation t-test for correlation maps of the Hobbs model RDM and the MEG data across
subjects in the left hemisphere, thresholed at t > 1. b Spatiotemproral pattern of the t-values for the Centering
model. c Spatiotemproral pattern of the t-values for the ACT-R model. d Spatiotemproral pattern of the t-values for
the NeuralCoref model.
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Discussion

Computational models for pronoun resolution provide a viable way of specifying complex and
detailed theories of the underlying cognitive process. Consequently, they make quantitative
predictions that can be rigorously tested against human brain activity. Here, we tested three
knowledge-based symbolic models and one data-oriented neural network model for pronoun
resolution against both fMRI and MEG data. Our results all favor the ACT-R model5: For the
fMRI data, the ACT-R model showed the highest correlation with the BOLD response patterns
within the bilateral MTG fROIs, and the searchlight RSA revealed significant correlation of
the model against all the brain regions previously reported for pronoun processing; the GLM
analyses also showed a network of regions associated with the ACT-R model; for the MEG data,
the ACT-R model is the only model that showed significant correlation with the source-localized
MEG data within the LPTL and the LPC fROIs. The significant time window is around 320-350
ms after the onset of the pronouns.

Built using the primitives of the memory module in the cognitive architecture ACT-R10,
the ACT-R model views pronoun resolution as the process of retrieving the most salient entities
from declarative memory. It incorporates the frequency and recency effects of memory decay,
with a boost of activation spread from previous mentions of the entities that occupy the subject
position of a sentence. Although the Hobbs and the NeuralCoref model also incorporate a notion
of recency, and the Centering model contains the feature of subjecthood, the parameters for the
ACT-R formula was directly developed using relevant fMRI data10. Our correlational results
suggest that this algorithm indeed traces the states of computation of the brain better than other
non-brain-inspired models.

Both the fMRI and the MEG data showed significant correlation of the ACT-R model
with the LMTG, which has been previously associated with biological and syntactic gender
processing during pronoun resolution14,15,20. Lesions in LMTG also led to aphasic patients with
selective difficulty to access nouns27,28. We also showed an LIFG activation for the ACT-R model
under the whole-brain GLM analyses on the fMRI data, consistent with previous findings that
longer distance between a back anaphora and its referent leads to increased activity in the LIFG.
In addition, the original proposal from ACT-R also states that the memory module is associated
with the left prefrontal region10.

The NeuralCoref model were associated with significant LSTG activity for both English
and Chinese under the GLM analyses for the fMRI data, but the RSA results did not show
significant correlation of the model with either the fMRI or MEG activity patterns. Deep learning
models have led to significant advances in many aspects of natural language processing, yet
many of these models are not intended to match human cognitive process. Here we show
that memory retrieval principles formalized in the ACT-R model may be incorporated into the
architecture of of a neural coreference model that is based on human cognition.

To sum up, we show that computational models can be leveraged to understand the fine
details of the neural mechanisms underlying pronoun resolution. By testing computational
models rigorously against neuroimaging data, we also hope to provide insights on designing
machines that learn and think like human. We call for a joint force of cognitive neuroscience and
artificial intelligence to explicate the intricate details of the human mind.

Methods

Participants. The English fMRI data were taken from a published study26, collected at the
same time with the Chinese data. Participants were 49 young adults (30 female, mean age =
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21.3, SD=3.6) with no history of psychiatric, neurological or other medical illness that might
compromise cognitive functions. They self-identified as native English speakers, and strictly
qualified as right-handed on the Edinburgh handedness inventory29. All participants were paid,
and gave written informed consent prior to participation, in accordance with the IRB guidelines
of Cornell University.

Chinese participants of the fMRI study are 35 young adults (15 female, mean age=19.3,
SD=1.6) with with normal hearing and no history of psychiatric, neurological or other medical
illness that might compromise cognitive functions. They self-identified as native Chinese
speakers, and strictly qualified as right-handed on the Edinburgh handedness inventory29. All
participants were paid, and gave written informed consent prior to participation, in accordance
with the IRB guidelines of Jiangsu Normal University.

Participants for the MEG study were 13 young adults (7 female, mean age=19.9, SD=1.3)
with normal hearing and no history of psychiatric, neurological or other medical illness that
might compromise cognitive functions. They self-identified as native English speakers, and
strictly qualified as right-handed on the Edinburgh handedness inventory. All participants were
paid, and gave their written informed consent prior to participation, in accordance with New
York University Abu Dhabi IRB guidelines.

Stimuli and annotation. The English fMRI stimulus is an audiobook version of Antoine de
Saint-Exupéry’s The Little Prince, translated by David Wilkinson and read by Nadine Eckert-
Boulet. The Chinese fMRI stimulus is a Chinese translation of The Little Prince30, read by a
professional female Chinese broadcaster hired by the experimenter. The MEG stimulus is an
audio excerpt taken from the YouTube channel “SciShow Kids"31. It consists of 4 short audios
that introducing scientific fun facts to kids: “Use your brain!", “Why do we get dizzy?", “Why
do we need sleep?" and “Why do we get goosebumps?"

All mentions in the three texts were first identified using the Stanford Named Entity Rec-
ognizer (NER)32. They were then manually checked and linked with their coreferential mentions
using the annotation tool brat33. Supplemental Figure 1 demonstrates sample annotations for
the three texts. We identified 4882 mentions in the English fMRI stimulus, 4732 mentions in the
Chinese fMRI stimulus, and 701 mentions in the MEG stimulus. We further removed possessives,
reflexives, cleft and extraposition “it”, pleonastic “it”and pronouns with sentential antecedents.
The final English fMRI stimulus contain 647 third person pronouns, the Chinese fMRI stimulus
contains 524 third person pronouns, and the MEG stimulus contains 51 third person pronouns
(Supplemental Figure 2).

Speech segmentation. Word boundaries in the fMRI audios were identified and aligned to
the transcript using the Penn Phonetics Lab Forced Aligner34 and were manually checked by
native English and Chinese speakers. The MEG audio was aligned to the transcript using the
Forced Alignment and Vowel Extraction (FAVE)35 and were manually checked by native English
speakers.

The Hobbs model. The Hobbs model for pronoun resolution1 depends on a syntactic parser
plus a morphological gender and number checker. The input to the Hobbs model includes
the target pronoun and the parsed trees for the current and previous sentences. The model
searches for a gender and number matching antecedent by traversing the trees in a left-to-right,
breadth-first order, that is, it starts at the tree root and explores the neighboring nodes at the
present depth prior to moving on to the nodes at the next depth level. If no candidate antecedent
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is found in the current tree, the algorithm searches on the preceding sentence in the same order.
The steps of the Hobbs algorithm are as follows:

1 Begin at the NP node immediately dominating the pronoun.

2 Go up the tree to the first NP or S node encountered. Call this node X, and call the path
used to reach it p.

3 Traverse all branches below node X to the left of path p in a left-to-right, breadth-first
fashion. Propose as the antecedent any NP node that is encountered which has an NP or S
node between it and X.

4 If node X is the highest S node in the sentence, traverse the surface parse trees of previous
sentences in the text in order of recency, the most recent first; each tree is traversed in a
left-to-right, breadth-first manner, and when an NP node is encountered, it is proposed as
antecedent. If X is not the highest S node in the sentence, continue to step 5.

5 From node X, go up the tree to the first NP or S node encountered. Call this new node X,
and call the path traversed to reach it p.

6 If X is an NP node and if the path p to X did not pass through the N̄ node that X immediately
dominates, propose X as the antecedent.

7 Traverse all branches below node X to the left of path p in a left-to-right, breadth-first
manner. Propose any NP node encountered as the antecedent.

8 If X is an S node, traverse all branches of node X to the right of path p in a left-to-right.
breadth-first manner, but do not go below any NP or S node encountered. Propose any NP
node encountered as the antecedent.

9 Go to step 4.

The Hobbs algorithm conforms to the Binding Theory as it always searches the antecedent
in the left of the NP (Principle B: Step 3) and do not go below any NP or S node encountered
(Principle A: Step 8). When applied to the Chinese fMRI stimulus, the Hobbs no longer contains a
gender and number agreement checker because pronouns in spoken Chinese do not distinguish
gender and Chinese NPs usually do not mark plurals.

We use the “Hobbs distance"11 metric to represent the processing complexity of the pro-
nouns derived by the Hobbs model. Hobbs distance refers to the number of proposals that the
Hobbs algorithm has to skip, starting backwards from the pronoun, before the correct antecedent
NP is found. Figure 2c,d illustrate the Hobbs model for one example sentence in English and
Chinese. For the English sentence, the model first proposes the noun phrase (NP) “everything"
as the antecedent of “it", which is incorrect, so the Hobbs distance is 2.

The Centering model. The Centering model for pronoun resolution3 (also known as the BFP
algorithm) formalizes the Centering Theory4, which argues that certain entities mentioned in an
utterance were more central than others, and this property leads the speaker to use pronouns.
In the Centering framework, entities that link an utterance to others utterances are referred
to as “centers”. Centers of an utterance are ranked according to their relative prominence,
which is mainly determined by the centers‘ grammatical roles. In particular, SUBJECTS of a
sentence ranks higher than OBJECTS, and OBJECTS rank higher than other grammatical roles.
Each utterance (Un) has a set of forward-looking centers (C f ) and a single backward-looking
center (Cb). C f (Un) contains all the entities in Un and Cb is the highest-ranked entity among
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the entities in the previous utterance (C f (Un−1)). The transition relations between the forward-
and backward-looking centers in an adjacent pair of sentences are classified into three types:
CONTINUING, RETAINING and SHIFTING. In the CONTINUING transition, propositions of the
current entity are maintained, that is to say, Cb(Un) is the same entity as the backward-looking
center of the previous utterance (Cb(Un) = Cb(Un−1)), and Cb(Un) is also the preferred center
of the current utterance (Cp(Un)), i.e., the highest-ranked entity in C f (Un) (Cb(Un) = Cp(Un)).
In the RETAINING transition, a related entity is introduced to the context, thus Cb(Un) is the
same as Cb(Un−1), but it is not the highest-ranked entity in C f (Un) (Cb(Un) = Cb(Un−1) and
Cb(Un) 6= Cp). In the SHIFTING transition, a new entity becomes the center of the discourse,
therefore, Cb(Un) is not the same entity as Cb(Un−1) (Cb(Un) 6= Cb(Un−1)). For a discourse
segment to be coherent, CONTINUING transitions are preferred over RETAINING transitions,
which are preferred over SHIFTING transitions. Frequent SHIFTING leads to a lack of discourse
coherence and substantially affects the processing demands made upon a hearer during discourse
comprehension.

The Centering Theory claims that pronominalization serves to increase discourse co-
herence and eases the hearer’s processing difficulty of inference. Based on this assumption,
the Centering model3 tracks the relation between the forward- and backward-looking centers
in adjacent pairs of sentences and finds the antecedent-pronoun pair that has the highest-
ranked transition types. The model further divides the SHIFTING transition into SHIFTING
where Cb(Un) 6= Cb(Un−1) and Cb(Un) = Cp, and SHIFTING-1, where Cb(Un) 6= Cb(Un−1) and
Cb(Un) 6= Cp. The coherence ordering of the transition types is CONTINUING > RETAINING >
SHIFTING > SHIFTING. The algorithm consists of three basic steps. In the first step, it constructs
all possible Cb – C f pairs for the pronoun in the current utterance (Un). These pairs are called
“anchors" and they represent all the coreferential relationships available for this utterance. Next,
the model filters the anchors based on the Centering rule that Cb must be pronominalized if
any C f is pronominalized. Finally, the algorithm ranks the remaining pairs by the transition
ordering and select the pair that has the most preferred transition types. Rank of the entities in
C f is determined by their grammatical roles, which is parsed using the Stanford dependency
parser for English36 and Chinese37.

We used the rank of the transition types for each correct antecedent-pronoun pair gen-
erated by the Centering model to indicate the processing difficulty of the pronouns. Figure 2c
illustrates how the model classifies the transition type for the example discourse segment in “The
Little Prince". The current utterance (Un) “A sheep eats everything it finds" has a set of C f (Un):
(“a sheep", “everything”, “it”); the preferred center (Cp(Un)) is “a sheep" as it is the subject of
the sentence. The backward-looking center of the current (Cb(Un)) and the previous utterance
(Cb(Un−1)) is also “a sheep" as it is the subject of the Un−1 (highest-ranked entity in C f (Un−1)).
Since Cb(Un) = Cb(Un−1) and Cb(Un) = Cp(Un), the transition type is CONTINUING and the
rank is 1.

The ACT-R model. The ACT-R model for pronoun resolution5 uses the same primitives of the
memory module in the cognitive architecture ACT-R38. The formula for the activation level for
the antecedent i of a pronoun is as follows:

Ai = log(
n

∑
k=1

tk
−d) +

m

∑
j=1

Wj × Sji
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The first part of the equation log(∑n
k=1 tk

−d) computes the inherent strength, or the base-
level activation of entity i, which reflects the past usage of entity i in the text. tk is the time passed
since the kth mention of i, and each mention decays over time as a negative power function tk

−d.
The parameter d is set to 0.5 as the default value in ACT-R based on a range of experiments to
model human performance in memory retrieval tasks38. Different mentions of the entity i adds
up to reflect the effect of practice. We calculated the base-level activation of each pronoun in
English and Chinese based on the offset time of each pronoun and their previous mentions in
the whole audio.

The second part of the equation ∑m
j=1 Wj × Sji reflects the associative activation that entity

i receives from the mentions of i which is a subject of its sentence. Sji is the strength of association
reflecting how much the presence of each subject mention j of entity i makes i more salient. The
value of Sji is set to 2 in our implementation. Wj is the attentional weighting which equals to
W/n where n is the number of all the previous mentions of i, as the total value of associative
activation cannot be infinite. The attentional weight W is set to 1. Subjecthood of each mention
in the English and Chinese texts was annotated using the Stanford dependency parser36,37.

The effects of frequency and recency are folded into the calculation of the base activation
for antecedent i, such that the more mentions it has, and the more recent the mentions occur,
the higher the base activation. Conversely, if antecedent i has been mentioned only once, or
if its last mention was a long time ago, its activation level will be low, and it will rank lower
on the activation list for all the candidate antecedents. Subjecthood of the previous mentions
of antecedent i gains an associative activation in addition to the base activation. Overall, the
amount of activation value of an entity in the discourse context is computed based on recency,
frequency and grammatical role of the entity, and the entity that has the highest activation level
is predicted to be the antecedent of the pronoun. Figure 2d shows how the ACT-R activation
level for a pronoun in the English example sentence is calculated.

The NeuralCoref model. The NeuralCoref model6,7 is an end-to-end coreference resolution
system that predicts all clusters of coreferential mentions given a text document and its speaker
and genre metadata. The model considers all possible spans in a document D containing T words
as potential mentions. The total number of possible text spans in D is N = T(T + 1)/2. The task
for the model is to assign an antecedent yi for each span i with a start and end index of START(i)
and END(i) for 1 ≤ i ≤ N. The possible assignments of each yi is Y(i) = {ε, 1, ..., i− 1}. The
model then learns a conditional probability distribution over the possible antecedents using the
pairwise score s(i, yi) for each antecedent-span pair:

P(y1, ..., yN|D) =
N

∏
i=1

P(yi|D)

=
N

∏
i=1

exp(s(i, yi))

∑y‘∈Y(i) exp(s(i, y‘))

The architecture of the model can be divided into two parts. In the first part, the model
encodes every word in its context using bidirectional LSTMs39:
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ft,δ = σ(W f [xt, ht+δ,δ] + bi)

ot,δ = σ(Wo[xt, ht+δ,δ] + bo)

c̃t,δ = tanh(Wc[xt, ht+δ,δ] + bc)

ct,δ = ft,δ ◦ c̃t,δ + (1− ft,δ) ◦ ct+,δ

ht,δ = ot,δ ◦ tahn(ct,δ)

x∗t = [ht,1, ht,−1]

The model then assigns weights to the word vectors to represent the notion of syntactic
head using an attention mechanism40:

αt = wα · FFNNα(x∗t )

ai,t =
exp(αt)

END(i)
∑

k=START(i)
exp(αk)

x̂i =
END(i)

∑
t=START(i)

ai,t · xt

The context-dependent word embeddings and their weighted sum are concatenated to
produce the span representations. In the second part, the model assigns a mention score to
each span representation and a antecedent score to each antecedent-span pair via standard
feed-forward neural networks. The antecedent scoring function incorporates a feature vector
encoding speaker and genre information and the distance between the two spans. The mention
score and the antecedent score are concatenated to produce the coreference score between the
candidate antecedent and the mention span. During training, the model optimizes the marginal
log-likelihood of all correct antecedents in the correct clustering GOLD(i) (see Figure 2e for the
architecture of the model):

log
N

∏
i=1

∑
ŷ∈Y(i)∩GOLD(i)

P(ŷ)

The input layer of the model consists of a fixed concatenation of 300-dimensional GloVe
embeddings41, 50-dimensional Turian embeddings42 and 8-dimensional character embeddings.
The hidden layers in the LSTMs have 200 dimensions, and the two hidden layers in the feed-
forward neural network have 150 dimensions. The speaker, genre information and the span
distance and span width are represented as 20-dimensional embeddings. To maintain computing
efficiency, the the maximal span width were set to 10, the maximal number of antecedent were
set to 250 and the maximal number of sentences in the document was set to 50. The model was
trained on the English data from the CoNLL-2012 shared task43, which contains mainly news
articles. The model achieved an average F1 score of 75.8 for a single model on the test set of
the English data, outperforming previous neural network models for coreference resolution44,45
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by 1.5 F1. The model was implemented in Tensorflow46 and the codes are freely available. We
took the pretrained English model to generate the softmax of the coreference scores for all the
pronouns in the English fMRI and MEG stimuli. We then trained the model on the Chinese
data from the CoNLL-2012 shared task43. We removed the Turain embeddings which are not
available for Chinese, and used only the 300-dimensional word2vec embeddings for Chinese47

trained on Baidu Encyclopedia. The model achieved an average F1 score of 63.1 for a single
model on the test set of the Chinese data from the CoNLL-2012 shared task. We then took the
trained Chinese model to generate the softmax of the coreference scores for all the pronouns in
the Chinese fMRI stimulus.

Model performance. To evaluate the performance of the four models applied to the three texts,
we first computed the model predictions. For the Hobbs model, we computed the Hobbs distance
for each of the third person pronouns. Hobbs distances of 1, 2 and 3 indicates correct prediction
of the model within three proposals. For the Centering model, we computed the transition type
for each entity including the pronoun in the current sentence, and ranks the pronoun’s transition
type among the transition types for all the entities. For the ACT-R model, we calculated the
activation levels for the preceding 20 entities for each third person pronoun. We then ranked the
potential mentions according to their ACT-R activation levels; for the NeuralCoref model, we
computed the softmax of coreference scores for all the entities from the current sentence contain-
ing the pronoun to five sentences preceding the sentence containing the correct antecedent. We
then ranked the potential mentions according to the coreference scores. The Centering, ACT-R
and the NeuralCoref model are considered correct if the correct antecedent is ranked within the
top 3 of the list. This is the SUCCESS@N metric (N = {1, 2, 3})13. SUCCESS@N is the proportion
of instances where the gold answer—the unit label—occurs within a system’s first N choices.
SUCCESS@1 is standard accuracy. The SUCCESS@N metric allows some degree of ambiguity in
selecting the the referents, which parallels human performance during pronoun resolution.

Experiment procedures. fMRI experiments: After giving their informed consent, participants
were familiarized with the MRI facility and assumed a supine position on the scanner. Auditory
stimuli were delivered through MRI-safe, high-fidelity headphones (English: Confon HP-VS01,
MR Confon, Magdeburg, Germany; Chinese: Ear Bud Headset, Resonance Technology, Inc,
California, USA) inside the head coil. The headphones were secured against the plastic frame
of the coil using foam blocks. An experimenter increased the sound volume stepwise until
the participants could hear clearly. The English and Chinese audiobooks lasted for 94 and
99 minutes, respectively. They were both divided into nine sections, each lasted for about
ten minutes. Participants listened passively to the nine sections and completed four quiz
questions after each section (36 questions in total). These questions were used to confirm their
comprehension and were viewed by the participants via a mirror attached to the head coil and
they answered through a button box. The entire session, including preparation time and practice,
lasted for around 2.5 hours.

MEG experiment: After giving their informed consent, each participant’s head shape
was digitized using a Polhemus dual source handheld FastSCAN laser scanner (Polhemus, VT,
USA). Participants then completed the experiment while lying supine in a dimly lit, magnetically
shielded room. MEG data were recorded continuously using a whole-head 208 channel axial
gradiometer system (Kanazawa Institute of Technology, Kanazawa, Japan). Auditory stimuli
were delivered through MEG-safe, high-fidelity earphones inside the head coil. The headphones
were secured against the plastic frame of the coil using foam blocks. An experimenter increased
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the sound volume stepwise until the participants could hear clearly. The audio lasted for about
12 minutes. Participants listened passively to the audio and completed four picture-matching
task. This task was used to confirm their comprehension and were completed by the participants
outside the MEG scanner. The entire session lasted for around 30 minutes. All presentation
scripts were written in PsychoPy248.

Data acquisition and preprocessing. fMRI data: Both English and Chinese brain imaging
data were acquired with a 3T MRI GE Discovery MR750 scanner with a 32-channel head
coil. Anatomical scans were acquired using a T1-weighted volumetric Magnetization Prepared
RApid Gradient-Echo (MP-RAGE) pulse sequence. Blood-oxygen-level-dependent (BOLD)
functional scans were acquired using a multi-echo planar imaging (ME-EPI) sequence with online
reconstruction (TR=2000 ms; TEs=12.8, 27.5, 43 ms; FA=77◦; matrix size=72 x 72; FOV=240.0 mm
x 240.0 mm; 2 x image acceleration; 33 axial slices, voxel size=3.75 x 3.75 x 3.8 mm). Cushions
and clamps were used to minimize head movement during scanning.

All fMRI data were preprocessed using AFNI version 1649. The first 4 volumes in each
run were excluded from analyses to allow for T1-equilibration effects. Multi-echo indepen-
dent components analysis (ME-ICA)50 were used to denoise data for motion, physiology and
scanner artifacts. Images were then spatially normalized to the standard space of the Montreal
Neurological Institute (MNI) atlas, yielding a volumetric time series resampled at 2 mm cubic
voxels.

MEG data: MEG data were recorded continuously at a sampling rate of 1000 Hz with an
online bandpass filter of 0.1-200 Hz. The raw data were first noise reduced via the Continuously
Adjusted Least-Squares Method51 and low-pass filtered at 40 Hz. Independent component
analysis (ICA) was then applied to remove artifacts such as eye blinks, heart beats, movements,
and well-characterized external noise sources. The MEG data were then segmented into 500 ms
epochs at the onset of each word in the stimulus. No baseline correction was applied. Epochs
containing amplitudes greater than an absolute threshold of 2000 fT were automatically removed.

Cortically constrained minimum-norm estimates52 were computed for each epoch for
each participant. To perform source localization, the location of the participant’s head was
coregistered with respect to the sensor array in the MEG helmet using FreeSurfer‘s53 “fsaverage"
brain, which involved first rotation and translation and then scaling the average brain to match
the size of the head scan. A source space of 2562 source points per hemisphere was generated on
the cortical surface for each participant. The Boundary Element Model (BEM) was employed
to compute a forward solution, explaining the contribution of activity at each source to the
magnetic flux at the sensors. Channel-noise covariance was estimated based on the whole epoch.
The inverse solution was computed from the forward solution and all the epochs. To lift the
restriction on the orientation of the dipoles, the inverse solution was computed with “free”
orientation, meaning that the inverse operator places three orthogonal dipoles at each location
defined by the source space. When computing the source estimate, only activity from the dipoles
perpendicular to the cortex were included. The same inverse operator was applied to each single
trial to yield the dynamic statistical parameter maps (dSPM) units54 using an SNR value of 3.
All data preprocessing steps were performed using MNE-python (v.0.19.2)54.

Localise brain regions for third person pronoun processing. fMRI data: A GLM analysis was
conducted to localize the active brain regions during third person pronoun processing in both
English and Chinese. We first aligned the word boundaries in the English and Chinese fMRI
stimuli with the transcripts (see Figure 2a,b for an example). We then modeled the timecourse
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of each voxel‘s BOLD signals for each of the nine sections by a binary third person pronoun
regressor, time-locked at the offset of each third person pronoun in the audiobook. We included
four control variables: the root mean square intensity (RMS intensity) for every 10 ms of each
audio section, the f0 of each audio section extracted using the Voicebox toolbox55, the binary
regressor time-locked to the offset of each word in the audio (word rate), and the unigram
frequency of each word (frequency), estimated using the Google ngrams and the SUBTLEX
corpora for English56 and Chinese57. These regressors were convolved with SPM12’s58 canonical
HRF function and matched the scan numbers of each section.

At the group level, the contrast image for third person pronouns for both English and
Chinese were examined by a factorial design matrix. An 8 mm full-width at half-maximum
(FWHM) Gaussian smoothing kernel was applied on the contrast images from the first-level
analysis to counteract inter-subject anatomical variation. The statistical threshold was set at
p ≤ 0.05 FWE, with an adequate cluster size greater than 20 voxels.

MEG data: A similar two-stage regression analyses was conducted to find the significant
spatiotemporal clusters that are correlated with third person pronoun processing. We applied
the same regression model to each for each participant’s single-trial source estimates for each
source at each timepoint of the whole 500 ms time window. This resulted in a β coefficient for
each variable at each source and each timepoint for each subject. The source estimates were
resampled to 100 Hz.

At the second stage, we performed a one-sample t-test on the distribution of β value
for the binary third person pronoun regressor across subjects, again at each source and each
timepoint, to test if their values were significantly different from zero. The t-tests are one-tailed
such that t-values with the same polarity are clustered together as separate regions. Clusters
were then formed based on the t-values that were contiguously significant through time and
space, at a level of p < .05. Only clusters that contained a minimum of 10 sources and spanned
at least 10 ms were entered into a cluster-based spatiotemporal permutation test19. This involved
randomly shuffling 0 and the β coefficient for each participant, repeating the mass univariate
one-sample t-test and cluster formation within the 0-500 ms analysis window. This procedure
was performed 10,000 times, resulting in a distribution of 10,000 cluster-level statistics. Each of
the observed clusters was subsequently assigned a p-value based on the proportion of random
partitions that resulted in a larger test statistic than the observed one. The regression analyses
were performed with MNE-python (v.0.19.2)54 and Eelbrain (v.0.25.2)59.

RSA within the fROIs. fMRI data: The significant LMTG and RMTG clusters from the GLM
analyses were used as the fROIs to compare the four models‘s relatedness to the brain data.
The LMTG fROI contains 294 voxels and the RMTG fROI contains 40 voxels (see ??c. For each
subject in each group, we first extracted all the brain scans after the occurrence of each pronoun
by aligning them with the offset of each pronoun in the audiobook. We added 5 seconds to the
offset to capture the peak of the hemodynamic response function. The resulting English dataset
contains 588 fMRI scans and the Chinese dataset contains 493 fMRI scans. We then regressed
out the effects of intensity, f0, word rate and word frequency by subtracting from the brain data
the four regressors multiplied by their beta values derived from the GLM analyses. Next, we
calculated the RDMs between the brain activity patterns using 1 minus the Pearson’s correlation,
computed across voxels.

The complexity metrics derived from the Hobbs, Centering, ACT-R and NeuralCoref
model for each pronoun in the English and Chinese fMRI stimuli were used to construct the
model RDMs, computed as the euclidean distance between each metric value. If multiple
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pronouns occur within one fMRI scan, the metrics were summed up. The English model RDMs
are 588×588 matrices and the Chinese model RDMs are 493×493 matrices. Figure 5a,c show the
four model RDMs, each separately rank-transformed and scaled into [0,1].

To compare the four models‘ ability to explain the fMRI data RDM within the two fROIs,
we calculated the Spearman‘s rank correlation between the data RDMs and each model RDM for
each subject in each group. Statistical significance was tested using a one-sided signed-rank test21

across each subject‘s correlation values. Pairwise comparison between each model‘s relatedness
to the brain data was also tested using a one-sided signed-rank test. FDR correction was applied
for multiple comparisons across fROIs and model pairs.

MEG data: We subset the source estimates of the pronouns within the lateral and medial
clusters derived from the regression analyses for third person pronoun processing. At each
timepoint, we computed the a MEG data RDM for each pronoun as 1-Pearson correlation
between the MEG data patterns.

The complexity metrics derived from the Hobbs, Centering, ACT-R and NeuralCoref
model for each pronoun in the MEG stimuli were used to construct the model RDMs, computed
as the euclidean distance between each metric value. The model RDM is a 51×51 matrix.
Figure 7a shows the four model RDMs, each separately rank-transformed and scaled into [0,1].

We calculated the Spearman‘s rank correlation between the MEG data RDM and each
model RDM at each timepoint for each subject. Statistical significance was tested using a cluster-
based permutation t-test19 across each subject‘s correlation map.

Searchlight RSA. fMRI data: Searchlight RSA was carried out with a spherical cluster (radius=8
mm) for each voxel within a bilateral mask. The mask covered anatomical regions including the
superior and middle temporal gyrus (STG, MTG), the inferior frontal gyrus (IFG), the angular
gyrus (AG) and the Precuneous cortex(PC) based on the Harvard-Oxford cortical atlas23 (see
Figure 5g). These regions have been previously implicated in pronoun processing.

In each iteration of the searchlight, a brain data RDM and four model RDMs were con-
structed the same way as in the ROI-based RSA, and the Spearman‘s rank correlation were
calculated between the data RDM and each model RDM. After iterating the searchlight across
the searchlight mask, we obtained four maps of Spearman‘s rank correlation per participant,
representing how well the representational geometry in different voxels conforms to the four
model‘s predictions. Statistical inference was examined using one-sided t-test across subjects
and the resulting rho maps were thresholded at p ≤ 0.05 FWE with a cluster size greater than 50
voxels (see Figure 5g,h). Both the ROI-based and the searchlight RSAa were performed using
the RSA toolbox60.

MEG data: Similar process was applied to the MEG data. The searchlight covers a hexag-
onal cortical patch (radius = 20 mm) and extends in time for 20 ms. Statistical inference was
examined using a cluster-based permutation t-test. Clusters were then formed based on the
t-values that were contiguously significant through time and space, at a level of p < .05. Only
clusters that contained a minimum of 10 sources and spanned at least 10 ms were entered into a
cluster-based spatiotemporal permutation test. The analysis time window is the whole 0-500 ms.
All the RSA analyses for the MEG data were conducted using the python men-rsa package61

and the permutation tests were performed with Eelbrain (v.0.25.2)59.

Whole-brain GLM analyses fMRI data: To supplement the RSA methods, we also conducted
GLM analyses with the metrics derived from the Hobbs, Centering, ACT-R and NeuralCoref
model as regressors. Same with the GLM analysis for localizing third person pronouns, we
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modeled the timecourse of each voxel’s BOLD signals for each of the nine sections by the model
regressors, time-locked at the offset of each third person pronoun in the audiobook. Under the
assumption that increased hemodynamic response of a brain region indicates increased effort
related to the task, we took the negative of the ACT-R activation level and the NeuralCoref
score to represent the processing difficulty of the pronouns predicted by the model. The control
variables include RMS intensity, f0, word rate), frequency, and the binary third person pro-
noun regressor(pronoun3rd. These regressors were convolved with SPM12’s58 canonical HRF
function.

At the group level, the contrast image for each model regressor was examined by a
factorial design matrix. An 8 mm FWHM Gaussian smoothing kernel was applied on the
contrast images from the first-level analysis to counteract inter-subject anatomical variation.
The statistical threshold was set at p ≤ 0.05 FWE, with an adequate cluster size greater than
20 voxels. The GLM analyses was performed separately for both English and Chinese using
SPM1258.
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Supplementary Information

Supplementary Figure 1: Sample annotations of pronouns and non-pronoun mentions in The Little Prince in English
and Chinese, visualized using the annotation tool brat33.

Supplementary Figure 2: Counts for third person pronouns in the English and Chinese The Little Prince and the
SciShow Kids text.
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Supplementary Table 1: MNI coordinates, cluster size and their peak level statistics for the significant clusters
derived by the GLM analyses
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