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Abstract 
 
The use of computational techniques to analyze viral sequence data and ultimately inform public 
health intervention has become increasingly common in the realm of epidemiology. These 
methods typically attempt to make epidemiological inferences based on multiple sequence 
alignments and phylogenies estimated from the raw sequence data. Like all estimation 
techniques, multiple sequence alignment and phylogenetic inference tools are error-prone, and 
the impacts of such imperfections on downstream epidemiological inferences are poorly 
understood. To address this, we executed multiple commonly-used workflows for conducting 
viral phylogenetic analyses on simulated viral sequence data modeling HIV, HCV, and Ebola, 
and we computed multiple methods of accuracy motivated by transmission clustering 
techniques. For multiple sequence alignment, MAFFT consistently outperformed MUSCLE and 
Clustal Omega in both accuracy and runtime. For phylogenetic inference, FastTree 2, IQ-TREE, 
RAxML-NG, and PhyML had similar topological accuracies, but branch lengths and pairwise 
distances were consistently most accurate in phylogenies inferred by RAxML-NG. However, 
FastTree 2 was orders of magnitude faster than the other tools, and when the other tools were 
used to optimize branch lengths along a fixed topology provided by FastTree 2 (i.e., no tree 
search), the resulting phylogenies had accuracies that were indistinguishable from their original 
counterparts, but with a fraction of the runtime. Our results indicate that an ideal workflow for 
viral phylogenetic inference is to (1) use MAFFT to perform MSA, (2) use FastTree 2 under the 
GTR model with discrete gamma-distributed site-rate heterogeneity to quickly obtain a 
reasonable tree topology, and (3) use RAxML-NG to optimize branch lengths along the fixed 
FastTree 2 topology. 
 
Introduction 
 
In molecular epidemiology, phylogenetic analyses are performed on viral sequence data to help 
reconstruct the evolutionary history and patterns of transmission for highly contagious diseases, 
providing valuable insights which may inform intervention strategies (Hall 2013) A standard 
molecular epidemiology workflow typically consists of the following: (1) multiple sequence 
alignment (MSA), (2) phylogenetic inference, (3) rooting, (4) dating, and (5) transmission 
clustering. Since each step in the workflow occurs downstream of other analyses, the accuracy 
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of each step is largely dependent on the accuracy of the steps preceding it. Notably, MSA and 
phylogenetic inference play an integral role in transmission clustering techniques utilized in 
molecular epidemiology. For example, HIV-TRACE is typically considered the best-practice 
method for HIV transmission clustering: pairwise distances are estimated from a MSA of viral 
genomes collected from individuals, and two individuals are considered to be epidemiologically 
“linked” if the pairwise distance between their viral samples is below a user-specified threshold 
(Kosakovsky et al. 2018). TreeCluster (Balaban et al. 2019), Cluster Picker (Ragonnet-Cronin et 
al. 2013), and PhyloPart (Prosperi et al. 2011) are transmission clustering tools that separate 
individuals based on the phylogenetic relationships between viral samples, typically relying on 
tree topology, branch lengths, and pairwise distances. 
 
Both MSA and phylogenetic inference are NP-Hard computational problems (Chatzou et al. 
2016), meaning optimal solutions are computationally infeasible on even relatively small 
datasets. As a result, several heuristic tools have been developed to provide near-optimal 
approximations. Notably, viral MSA is commonly conducted using MAFFT (Katoh and Standley 
2013), MUSCLE (Edgar 2004), and Clustal Omega (Seivers et al. 2011), and viral phylogenetic 
inference is commonly conducted using IQ-TREE (Chernomor et al. 2016), FastTree 2 (Price et 
al. 2010), RAxML-NG (Kozlov et al. 2019), and PhyML (Guindon et al. 2019). As a result, 
researchers have multiple potential phylogenetic inference workflows at their disposal, each with 
a theoretical trade-off between runtime and accuracy, yet the impacts of inherent errors and 
imperfections in these heuristic estimation approaches on downstream molecular 
epidemiological results are poorly understood. 
 
In this manuscript, we execute multiple commonly-used workflows for conducting viral 
phylogenetic analyses on simulated viral sequence data modeling HIV, HCV, and Ebola, and we 
compute multiple methods of accuracy motivated by transmission clustering techniques. 
 
Methods 
 
Our simulated datasets were motivated by curated alignments of real world sequence data: from 
the Los Alamos National Laboratory (LANL), we obtained full genome MSAs of Ebolavirus (710 
total), Hepatitis C Virus (HCV, 471 total), and Human Immunodeficiency Virus Type 1 (HIV-1, 
4004 total). 
 
From each curated MSA, we used IQ-TREE to infer a phylogeny under the General Time 
Reversible (GTR) model of sequence evolution (Tavaré 1986) with invariable sites and 
gamma-distributed site-rate heterogeneity with 20 categories. From the IQ-TREE results, we 
obtained the phylogeny, the GTR substitution model parameters, the proportion of invariable 
sites, and the shape of the gamma distribution. The phylogeny was subsequently rooted using 
minimum variance rooting (Mai et al. 2017), and a tree with 100 leaves was subsampled from it 
(Fig. 1). These parameters were then used to simulate sequence alignments from the 
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subsample of the inferred phylogeny using INDELible (Fletcher & Yang 2009). 10 replicate 
datasets were generated for each virus. 
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Figure 1. Kernel density estimates of the branch length distributions for the Ebola, HIV, and HCV true phylogenies. 
 
We then utilized the true simulated alignment produced by INDELible to evaluate the accuracy 
of the alignments estimated by MAFFT, Clustal Omega, and MUSCLE.  
 
To assess the accuracy of phylogenetic inference tools, we ran FastTree 2, IQ-TREE, 
RAxML-NG, and PhyML  on the true MSAs and compared the results against the tree along 
which the sequences were simulated. All tools utilized the GTR model of sequence evolution. 
FastTree 2 and PhyML utilized discrete gamma-distributed site-rate heterogeneity, whereas 
RAxML-NG and IQ-TREE utilized the FreeRate model (Yang 1995). We also utilized IQ-TREE’s 
ModelFinder Plus functionality (Kalyaanamoorthy et al. 2017). 
 
In addition to the above analyses, in which we allowed each phylogenetic inference tool to 
perform tree search, we also examined a workflow in which a phylogeny is first inferred using 
FastTree 2, and then each of the other inference tools simply optimizes the branch lengths 
using the FastTree 2 phylogeny as a fixed tree topology (i.e., the second tool does not execute 
tree search). Given that FastTree 2 is an order of magnitude faster than the other tools (Tab. 1), 
this could potentially be an effective way to reduce computational time for phylogenetic 
inference workflows. 
 
Lastly, to assess the accuracy of different combinations of tools, we ran each phylogenetic 
inference method on the sequences aligned by each MSA tool and similarly measured the 
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accuracy of each inferred phylogeny. The metrics used to assess accuracy are described 
below. 
 
Mean Squared Error:  
We use Mean Squared Error as a measure of patristic distance matrix similarity 

, 
where n is the total number of sequences and dE(i,j ) and dT(i,j ) are respectively the estimated 
and true pairwise distances between sequences i and j. Because pairwise distances directly 
influence the accuracy of transmission clustering tools like HIV-TRACE, Mean Squared Error 
serves as a valuable indicator for the viability of any given MSA tool. We compute Mean 
Squared Error on pairwise distances computed directly from estimated MSAs under the 
Tamura-Nei 93 (TN93) model of sequence evolution (Tamura & Nei 1993) using the tn93 
component of HIV-TRACE (Pond et al. 2018), as well as from the pairwise distances along the 
inferred phylogenies. 
 
Mantel Correlation: 
We measure the correlation between the estimated and true pairwise distance matrices via the 
Mantel test. We include both Pearson and Spearman correlation, with 1 indicating perfect 
correlation (best), -1 indicating perfect anticorrelation, and 0 indicating no correlation. 
 
Robinson Foulds (RF) Distance: 
We use both normalized unweighted RF (URF) and weighted RF (WRF) distances to measure 
the topological difference between two unrooted trees (Foulds & Robinson 1981), with lower RF 
distances denoting higher accuracy. 
 
Sum of Pairs (SP) Score: 
SP Score measures the number of aligned pairs in the inferred MSA that are shared with the 
true MSA, normalized by the true MSA’s total number of homologies. Higher SP Score indicates 
higher accuracy. MSA SP Scores were computed using FastSP (Mirarab & Warnow 2011). 
 
Total Columns (TC) Score: 
TC Score measures the proportion of successfully-aligned columns out of the total number of 
aligned columns in the inferred MSA (Mirarab & Warnow 2011), which ranges from 1 (best) to 0 
(worst). The TC Score of each MSA was computed using FastSP. 
 
Compression Factor: 
Compression Factor is defined as the number of columns in the inferred MSA divided by the 
number of columns in the true MSA. A perfectly-inferred MSA would have a compression factor 
of 1. MSA Compression Factors were computed using FastSP (Mirarab & Warnow 2011).  
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Results 
 
Multiple Sequence Alignment:  

Figure 2. Metrics of sequence alignment accuracy for MAFFT, MUSCLE, and Clustal Omega on 10 simulated 
replicate datasets of HIV, HCV, and Ebola. Violin plots are shown for Mean Squared Error, Spearman/Pearson 
Mantel Correlation, SP score, TC score, and Compression Factor.  

 
While Clustal Omega performs poorly on the HCV datasets and MUSCLE performs poorly on 
the Ebola datasets, MAFFT consistently performs the best across all three viruses in both 
runtime and accuracy (Fig. 1). Running MAFFT, MUSCLE, and Clustal Omega on the entire 
curated MSA of 2,322 complete HIV-1 genome sequences from LANL took 947 seconds, 
20,343 seconds, and >86,400 seconds, respectively. All estimated MSAs of HIV-1 were slightly 
less accurate than those of HCV and Ebola with respect to all metrics aside from Mean Squared 
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Error and Spearman Mantel correlation. Regardless, our results suggest that MAFFT is the best 
choice of the MSA tools that were tested in terms of both runtime and accuracy.  
 
Phylogenetic Inference: 
Despite the unweighted RF distance of Ebola phylogenies being markedly worse than the 
others, Ebola phylogenies appear to be comparable or better in accuracy according to all other 
metrics (Fig. 3). Additionally, using IQ-TREE under the GTR model performs similarly or better 
than using IQ-TREE with Model Finder Plus (MFP), and with a much lower runtime (Tab. 1), 
though it must be noted that the simulated MSAs were themselves evolved under the GTR 
model, which gives IQ-TREE GTR an inherent advantage over MFP. Phylogenies inferred from 
the HCV datasets have high Mantel correlations despite large Mean Squared Error (Fig. 3). 
 

Figure 3. Metrics of phylogenetic inference accuracy for FastTree, IQ-TREE (GTR), IQ-TREE (MFP), RAxML-NG, 
and PhyML on 10 simulated replicate datasets of HIV, HCV, and Ebola. Phylogenies which result from optimizing 
branch lengths along FastTree topology are also included. Violin plots are shown for URF, WRF, Pearson Mantel 
Correlation, and Mean Squared Error.  
 
As can be seen in Figure 3, FastTree 2 has notably worse accuracy than the other tools 
according to nearly all metrics across all three viruses, with the exception of Unweighted 
Robinson-Foulds, in which FastTree performs similarly. However, for each non-FastTree 
inference tool, the results of simply optimizing the branch lengths of a given FastTree topology 
has indistinguishable accuracy with respect to their counterparts in which tree search is 
performed by the same tool. Additionally, RAxML-NG performs comparably or better than other 
tools in terms of Weighted Robinson Foulds and Mean Squared Error. 
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Combinations of MSA and PI:  

Figure 4. Heat maps comparing the accuracy of phylogenies inferred with FastTree, IQ-TREE (GTR), IQ-TREE 
(MFP), RAxML-NG, and PhyML from the MAFFT, Clustal Omega, MUSCLE, and true MSAs. Each value of 
Unweighted Robinson-Foulds (URF), Weighted Robinson-Foulds (WRF), Pearson Mantel Correlation, and Mean 
Squared Error shown is the average of 10 simulation replicates.  
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As expected, FastTree 2 consistently yields the lowest-accuracy phylogenies across all three 
viruses (Fig. 4). The other phylogenetic inference tools seem to perform similarly on HIV-1. 
Regarding Ebola, however, PhyML in particular struggles with Mean Squared Error and 
Weighted Robinson Foulds. As for HCV, IQ-TREE and RAxML-NG perform notably better than 
other tools. Model Finder Plus also seemed to misidentify the evolutionary model when used on 
HCV datasets, given that it performed markedly worse than IQ-TREE with GTR+I+R specified. 
Generally, the selection of MSA tool did not have a significant impact on the accuracy of the 
resulting phylogeny. 
 
Combinations of MSA and optimized FastTree topologies:  
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Figure 5. Heat maps comparing the accuracy of FastTree topologies inferred from the MAFFT, Clustal Omega, 
MUSCLE, and true multiple sequence alignments with branch lengths optimized by IQ-TREE (GTR), IQ-TREE (MFP), 
RAxML-NG, and PhyML. Each value of Unweighted Robinson-Foulds (URF), Weighted Robinson-Foulds (WRF), 
Pearson Mantel Correlation, and Mean Squared Error shown is the average of 10 simulation replicates. 
 
IQ-TREE MFP struggles when inferring a phylogeny from the HCV datasets, having notably 
worse weighted RF distances and Mean Squared Error than IQ-TREE GTR (Fig. 5). In addition, 
the patristic distance matrices are highly correlated with the true matrix, even in instances where 
the other metrics may indicate poor performance. 
 

Table 1. Total runtime for phylogenetic inference (top row) and runtime of branch length optimization on a fixed 
topology (bottom row) for FastTree 2, RAxML, IQ-TREE (GTR), and IQ-TREE MFP on a curated MSA of 2,322 HIV-1 
whole genome sequences from LANL. PhyML was unable to execute due to high memory consumption. All runs were 
executed sequentially on a 4-core 3.5 GHz Intel i5-6600k with 16 GB of memory, and each tool automatically 
selected an optimal number of threads to use internally. 
 
Using the phylogenetic inference tools to optimize the branch lengths on a fixed topology 
significantly reduces the runtime across the board (Tab. 1), with the largest reduction in runtime 
being from RAxML-NG. IQ-TREE (GTR) and IQ-TREE MFP take notably longer just to optimize 
branch lengths, especially relative to their total runtime. With regard to tree search, FastTree 2 
is several orders of magnitude faster than all the other inference tools.  
 
Discussion 
 
Our results indicate that FastTree 2 consistently runs several orders of magnitude faster than 
other phylogenetic inference tools. With regard to accuracy, however, FastTree 2 performs 
worse than the other inference tools according to nearly all metrics across all three viruses, with 
the exception of Unweighted Robinson-Foulds. This suggests that FastTree 2 is able to infer a 
reasonably accurate tree topology, but that it poorly estimates branch lengths. Optimizing the 
branch lengths along a fixed topology inferred by FastTree 2 results in a phylogeny that is 

 

   

(Seconds) FastTree 2 RAxML PhyML IQ-TREE IQ-TREE MFP 

Total 645 >604,800 memory 84,931 266,399 (142,286 MFP) 

BL optimization  757 memory 1,532 4,885 
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essentially identical to phylogenies inferred solely by a single tool, indicating that this workflow 
could considerably reduce the runtime of viral phylogenetic inference workflows with minimal 
loss in accuracy. It also suggests that each phylogenetic inference tool arrives at roughly 
equally-accurate topologies. 
 
We also observed that phylogenies inferred for Ebola sequences have markedly worse 
unweighted RF distances than the phylogenies inferred for other viruses. However, the 
weighted RF distance for Ebola phylogenies actually measures lower. This is because a 
majority of the branch lengths in the true Ebola phylogeny were near zero, causing the 
weighting of each unique bipartition to be low, even if there were a significant number of unique 
bipartitions. The abundance of zero-length branches also intuitively made the phylogeny 
particularly difficult to infer, explaining the high unweighted RF distance.  
 
Using IQ-TREE under the GTR model performed similarly to using IQ-TREE with Model Finder 
Plus when used on Ebola and HIV sequences, indicating that Model Finder Plus successfully 
classifies the evolutionary model in these instances. However, in HCV, IQ-TREE MFP correctly 
identified the model, transition rates, and proportion of invariable sites, but the relative rates in 
the model of rate heterogeneity were considerably inaccurate despite having the correct number 
of categories, resulting in a noticeable decline in accuracy. MFP also requires significantly more 
runtime, so unless the user has reason to believe that the GTR model is a poor fit for their 
specific virus of interest, the user is best off simply avoiding MFP. 
 
Based on these results, our recommended workflow to obtain the highest-accuracy MSA and 
phylogeny with minimal runtime is to (1) use MAFFT to perform MSA, (2) use FastTree 2 under 
the GTR model with discrete gamma-distributed site-rate heterogeneity to quickly obtain a 
reasonable tree topology, and (3) use RAxML-NG to optimize branch lengths along the fixed 
FastTree 2 topology.  
 
Data Availability 
 
All raw and processed data as well as scripts/tools utilized in this study can be found in the 
following GitHub repository: https://github.com/Cyoung02/Phylogenetic-Inference-Benchmarking 
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Supplementary Materials 
 

 
Supplementary Fig 1. Violin plots of the Spearman Mantel Correlations for the patristic distance matrices of 
phylogenies inferred by FastTree, IQ-TREE, IQ-TREE (MFP), RAxML-NG, and PhyML from 10 simulated replicate 
datasets of HIV, HCV, and Ebola. Phylogenies which result from optimizing branch lengths along FastTree topology 
are also included. 

 

Supplementary Figure 2. Heat maps comparing the average Spearman Mantel Correlations for patristic distance 
matrices of phylogenies inferred with FastTree, IQ-TREE, IQ-TREE (MFP), RAxML-NG, and PhyML from the MAFFT, 
Clustal Omega, MUSCLE, and true multiple sequence alignments. Values shown are the average of 10 replicate 
datasets for each virus. 
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Supplementary Fig 3. Heat maps comparing the Spearman Mantel Correlations for patristic distance matrices of 
FastTree topologies inferred from the MAFFT, Clustal Omega, MUSCLE, and true multiple sequence alignments with 
branch lengths optimized by IQ-TREE, IQ-TREE (MFP), RAxML-NG, and PhyML. Values shown are the average of 
10 replicate datasets for each virus. 
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