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Abstract: Detecting epistatic drivers of human phenotypes remains a challenge. Traditional approaches

use regression to sequentially test multiplicative interaction terms involving single pairs of genetic variants.

For higher-order interactions and genome-wide large-scale data, this strategy is computationally intractable.

Moreover, multiplicative terms used in regression modeling may not capture the form of biological interactions.

Building on the Predictability, Computability, Stability (PCS) framework, we introduce the epiTree pipeline

to extract higher-order interactions from genomic data using tree-based models. The epiTree pipeline first

selects a set of variants derived from tissue-specific estimates of gene expression. Next, it uses iterative random

forests (iRF) to search training data for candidate Boolean interactions (pairwise and higher-order). We derive

significance tests from interactions by simulating Boolean tree-structured null (no epistasis) and alternative

(epistasis) distributions on hold-out test data. Finally, our pipeline computes PCS epistasis p-values that evaluate

the stability of improvement in prediction accuracy via bootstrap sampling on the test set. We validate the epiTree

pipeline using the phenotype of red-hair from the UK Biobank, where several genes are known to demonstrate

epistatic interactions. epiTree recovers both previously reported and novel interactions, which represent forms

of non-linearities not captured by logistic regression models. Additionally, epiTree suggests interactions between

genes such as PKHD1 and XPOTP1, which are unlinked to MC1R, as novel candidate interactions associated

with the red hair phenotype. Last but not least, we find that individual Boolean or tree-based epistasis models
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generally provide higher prediction accuracy than classical logistic regression.

Introduction

Epistasis between genetic alleles describes a non-additive relationship between different loci governing

a single trait. Despite the fact that epistatic interactions have been widely hypothesized to provide

biological insights into the underlying functional mechanism between genotype and phenotype [39, 5],

most large-scale studies on polygenic contributions to date have focused on discovering additive effects.

Discovering epistatic interactions at work in human biology has been a slow and small-scale process with

relatively modest or minimal evidence from large-scale studies [44, 35]. Several definitions of epistasis

have co-existed since the term arose more than a century ago [2]. The most commonly accepted statistical

form goes back to [16], who defined epistasis as the “deviation from the addition of superimposed effects

(...) between different Mendelian factors.” However, deviation from additivity does not specify a unique

mathematical model for either the null hypothesis of no-epistasis or the alternative of epistasis. First,

the notation of additivity depends on the particular scaling of the response (e.g., penetrance for a binary

trait) — for example, a multiplicative function becomes additive on a log-scale. This is particularly

problematic for standard statistical approaches that model epistasis using a logit transform of penetrance

(e.g., in logistic regression). Second, for a fixed scaling there are many ways to write an additive model

of individual components — for example taking the inverse normal or other transformation of each

feature before running logistic regression. Stated succinctly, Fisher’s original definition of epistasis does

not specify unique models for the null and the alternative hypotheses. Although this has been noted

repeatedly in the literature [45, 11, 37, 38, 40], its consequences for interpretation of statistical results

are often not highlighted.

The most common approach to date for statistical modelling of epistasis is via linear (continuous re-

sponse) or logistic (binary response) regression for two genetic variants (possibly incorporating covariates

for population structure and genetic-linkage) [51, 43, 22, 34]. In this setting, the null (i.e. no-epistasis)

model has linear additive components for the two involved genes and the alternative (i.e. epistasis) model

has an additional multiplicative interaction term. However, complex phenotypes can involve many more

than two genes and the functional translation between genes and phenotype can be highly complex. As

a result, interactions identified as highly significant by brute-force, pairwise searches with logistic/linear

regression can correspond to models that provide a poor fit to the data, particularly when trying to gener-

alize to new/unobserved samples. Moreover, statistical hypothesis testing based on heavily mis-specified

null or alternative models are often unstable and can lead to irreproducible results [49, 33, 24, 14].

In addition to the challenges of modeling complex interaction forms, classical approaches face several
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computational barriers. Brute force searches become computationally intractable for genome-scale data,

in particular, beyond pairwise interactions. Models limited to pairwise interactions provide a poor fit for

complex traits involving many genes. Moreover, the standard approach of modeling a single interaction

at a time may lead to further model misspecification by failing to take the entire genetic background

into account. Finally, analyses typically limit their focus to marginally important variants due to high-

dimensional genomic data. As a result, interactions involving variants with weak marginal effects cannot

be detected.

In this paper, we propose a new approach, the epiTree pipeline, to detect polygenic, epistatic inter-

actions in genome-scale data, validated by a re-analysis of the red hair phenotype in UK biobank data.

The epiTree pipeline divides data into training and test sets (often through a random split when external

test set is not available), and then takes the following three steps:

Using the training set, we conduct a two-step biologically inspired dimension reduction for interaction

screening. First, we use tissue-specific estimates of gene expression [18] to select a subset of variants

for analysis, which improves computational efficiency and stabilizes recovered interactions. We note

that other methods could be used for dimension reduction but will not necessarily share the gene-level

interpretation. Second, we use iterative random forests (iRF) [1] to search for epistatic interactions of

arbitrary size and Boolean forms on a genome-wide scale.

Using the training set, we construct tree-based statistical models for both epistasis and no-epistasis.

These models evaluate deviations from additivity – as considered in Fisher’s definition of epistasis –

directly on the penetrance scale and capture data-driven forms of both individual additive and non-

additive interaction components. More specifically, these models make use of classification and regression

trees (CART) [8], which can capture flexible forms of non-linearity and Boolean-type behavior. Such

a thresholding relationship, as captured by CART functions but not by linear/multiplicative functions,

has been empirically observed in many biological processes, in particular, in genetics [30, 25, 29, 28].

Moreover, the interaction behavior captured by a decision tree can be visualized easily and thus, provides

direct insights into the directionality of effects. In our data analysis, we generally found that CART

models give better prediction accuracy on hold-out test data than linear/multiplicative models as used

e.g., in logistic regression.

Based on these tree-based models in 2, we devise an inference or testing procedure, called epiTree

test, that builds on the recently proposed predictability, computability, and stability (PCS) framework

for veridical data science [54]. Importantly, epiTree test builds on our random sample split (of data into

training and test sets), which separates the discovery from the inference stage. In addition, the procedure

uses prediction error on the test set to screen models before testing to arrive at (PCS) p-values. Further,

epiTree test does not rely on any chi-square distributional approximations, as, e.g., logistic regression,

but instead directly evaluates p-values based on bootstrap sub-sampling from the test data. This makes
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our approach more robust to model-misspecification, which can result in unrealistic small p-values from

poor distributional tail approximations [41]. It is worth noting that epiTree test is a stand-alone test

that can be used for any given candidate interaction of genes (or variants) relative to a given phenotype.

Finally, we present results using our epiTree pipeline for the phenotype of red hair in the UK biobank.

We rediscover previously reported pairwise interactions surrounding MC1R and discover new interactions,

for example pairwise interactions that include genes that were not associated previously with red-hair or

even hair color more generally (e.g. UPF3A, SIAH2 ); pairwise interactions between genes that individ-

ually have been associated with hair color but have not been reported as interacting previously; as well

as high-order (up to order-4) interactions which other methods cannot typically detect.

Material and Methods

Phenotype and genotype data from the UK Biobank:

As both an illustration of, and positive control for, our approach epiTree, we re-analyzed epistatic in-

teractions for a well-studied, genetically-driven phenotype – that of red hair [34]. Our study is based

on self-reported hair color from the UK Biobank (Data field 1747). We consider a set of 337,535 unre-

lated White British individuals: 15,326 with “Red” hair and 322,209 individuals with “Blonde”, “Light

Brown”, “Dark Brown”, “Black”, or “Other”. For our analysis we focused on a balanced sample, incor-

porating a random subset of 15,000 red hair individuals with an equally sized random subsample of the

controls. To help assess the generalizability of our results to unobserved data, we performed a random

stratified sample split into training and test sets with 26K training samples and 4K test samples. We

note that, in general, one might prefer non-randomly to randomly sampled test sets, e.g., a data set from

an external experiment. Such an external data set was non available to us for this analysis so we use a

random sample split here.

We model hair color using ∼ 15, 000, 000 common variants imputed to the Haplotype Reference

Consortium (HRC) and UK10K reference panels from 800,000 directly genotyped variants, which were

obtained by UK Biobank using one of two similar arrays [9]. Details regarding the ascertainment and

quality control of these genotypes have been previously described [9, 34]. In brief, genotyped variants

were subject to outlier-based filtration on effects due to batch, plate, sex, array, as well as discordance

across control replicates. Samples with excess heterozygosity or missingness were excluded from the

data release. Imputed variants were further subject to filtration based on Hardy-Weinburg equilibrium,

missingness in white British individuals, minor allele frequency (> 10−4), and imputation quality.
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Two-step procedure for interaction screening with biologically inspired di-

mension reduction:

We used a two-step procedure for screening interactions to improve computational efficiency and ensure

the stability of results. For the first step, we estimated tissue-specific gene expression derived from

PrediXcan [18]. The PrediXcan approach includes a set of elastic net models trained to predict tissue-

specific gene expression levels on GTEx v7 data [31]. Analysis of gene-expression reduced the number of

genetic features by several orders of magnitude, from ∼ 107 variants to ∼ 104 genes. For the phenotype of

red hair we selected the estimates of gene expression derived from skin, which best captures melanocyte

biology and pigmentation. Using tissue-specific estimates of gene expression, we searched for non-linear

interactions between transcription level and the phenotype of interest using iterative random forests

(iRF) [1] (see below). This analysis generated a set of putative gene-level interactions extracted by

iRF. In the second step of our analysis, variants within 1MB of the start or end of an interacting gene

were selected for identification of variant-level interactions by re-running iRF over a reduced subset

of variants for the phenotype of interest. See Figure S1 for an illustration. Our two-step procedure

identified variant- and gene-level interactions that capture nonlinear dependencies over arbitrary sets of

variants/genes. The ability to model interactions among any set of genes arises directly from our use of

iRF, which models the joint contribution of all genes simultaneously. We also explored a complementary

one-step approach to directly search for variant-level interactions, by pre-filtering variants based on iRF

applied to variant-sub-batches which is discussed in further detail in the Supplementary Information.

iRF non-linear model selection

Given a set of features (either estimated gene expression or individual genetic variants), we applied iRF

[1, 26] as a non-linear model selection step to extract candidate interactions. The iRF algorithm fits

a series of feature-weighted random forests (RF) [7] to iteratively stabilize feature selection along the

decision paths of trees in the forest. After the final iteration, iRF identifies stable candidate interactions

by searching for features that frequently co-occur on decision tree paths using random intersection trees

(RIT) [42] (see Figure S4 and S5 for the data analysis detailed below and also figures in SI). A key benefit

of iRF is that the computational complexity of searching for interactions does not grow exponentially

with the size of an interaction. This allowed us to identify high-order (i.e. beyond pairwise) Boolean

interactions in a computationally tractable manner, provided they appeared frequently (i.e. were stable)

on decision tree paths. We further expanded our set of candidate interactions for PCS epistasis inference

(see below) by taking all inter-chromosome pairwise interactions among the top 50 iRF genes (with

respect to Gini importance).

Recall that prior to running iRF, we randomly divided the data into training and test sets of 26K
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and 4K subjects, respectively. Sample splitting allowed us to search for interactions (on training set)

and conduct inference (on test set) in distinct datasets, helping to mitigate overfitting. Moreover, the

accuracy of iRF on the hold-out test set provides a measure of reproducibility/generalizability for our

non-linear model selection, and correspondingly, the identified interactions.

Predictability, Computability, Stability (PCS) inference for epistatic interac-

tions

Classically, the significance of a candidate interaction for a binary phenotype is evaluated through logistic

regression (see Supplementary Information for a recap). However, the model imposed by logistic regres-

sion, including a rescaling of the phenotype, transformations of gene expression data, and the polynomial

interaction term, does not arise from a known biological observation or mechanism. Additive or mul-

tiplicative forms represent only a subset of biological observations, and may not capture the stochastic

nature of living systems or the threshold effects commonly observed in molecular and cellular phenom-

ena [30, 25, 29, 28]. There are several forms which may capture non-additive relationships other than

a polynomial interaction term. A mathematically inaccurate representation of the biological mechanism

of action between multiple genetic loci may result in unstable and irreproducible results that fit poorly

to data.

Therefore, we evaluated the significance of candidate interactions using a novel PCS epistasis p-value.

The PCS framework, recently proposed in [54], is based on the three core principles of data science: Pre-

dictability, Computability and Stability (PCS). It unifies and expands ideas from machine learning and

statistics by using predictivity as a universal reality (or model) check, appropriate computational strate-

gies for every step of an analysis process including simulating realistic reference/null distributions, and

stability analysis to assess reproducibility at every stage of an analysis – from problem formulation/data

collection, to modeling including inference, and to post-hoc model interpretations. We note that, iRF

can also be viewed as an application of the PCS framework in the modeling stage.

To evaluate the evidence for an interaction, we computed PCS epistasis p-values based on models for

both non-epistasis (null) and epistasis (alternative). Both models were based on decision trees defined

over the set of interacting gene features identified by the iRF. For a given interaction, say between gene

A and B, (or a collection of interacting features in the set), the non-epistasis (null) model was defined as

an additive combination of decision trees fit to individual features using the training set and a backfitting

approach, that is, the null model (no-epistasis) is of the form

H0 : P (y = 1 | a, b) = CARTA(a) + CARTB(b),

where CART denotes a “Classification And Regression Tree”, see [8]. The epistasis (alternative) model fit
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a single decision tree over all features in the interaction also using the training set, that is, the alternative

model (no-epistasis) is of the form

H1 : P (y = 1 | a, b) = CARTAB(a, b).

An example for fitted null and alternative models is shown in Figure S2 for the two genetic features

A = ASIP and B = DEF8, see also the SI figure for the respective response surfaces. A particular

advantage of working with decision trees is that they allow for flexible forms of interactions and additive

components. As a result, our approach is often more agnostic to the underlying biological mechanism

compared with a multiplicative term in logistic regression, as we highlight with several examples in the

Results Section (see also our general discussion on this in the Discussion Section). Moreover, by modeling

responses directly on the penetrance scale, our approach avoids the need for transforming responses as,

e.g., performed in logistic regression. To assess the generalizability of our results, both the epistasis and

no-epistasis models were learned on the training set, using the classification and regression tree (CART)

algorithm, and evaluated on hold-out test data. We refer to the Supplementary Information for a detailed

discussion.

For a given interaction, we compute a PCS p-value using a novel testing framework. Specifically,

we evaluate prediction error (via cross-entropy/log-likelihood) of both the epistasis and the no-epistasis

models, on hold-out test data. Note that the forms of both models are estimated using the training set

only. When the epistasis model has a worse (or equal) prediction error than the no-epistasis model (on

the hold-out test data), we report no significant finding by formally setting the PCS p-value equal to

one. That is, prediction on the test set is used as a screening as stipulated by PCS inference in [54].

Otherwise, we quantify the improvement in prediction error (difference in cross-entropy/log-likelihood

ratio) by calculating a PCS p-value as follows.

We consider B bootstrap-samples (each of size n) of the test data of size n (for the red-hair analysis

the test set has size n = 4K). For each bootstrap-sample, we generate a null-perturbation of simulated

independent samples of its n-tuple response vector by using the no-epistasis distribution and the feature

vectors in the test data set. In fact, for each bootstrap sample, we have a pair of n-vectors of responses,

one from the null distribution and one from a bootstrap subsample of the test set responses. For each

pair of such n-vector responses, we evaluate whether the improvement in prediction error (difference

in cross-entropy/log-likelihood ratio between the no-epistasis and the epistasis model) for the test set

is smaller than for the null-perturbation. The PCS p-value is given by the percentage of bootstrap

sub-samples where the improvement in prediction error for the test set response is smaller than for the

null-perturbation response. In practice, one should choose B sufficiently large such that the PCS p-value

converges. A simple derivation (see Supplementary Information for details), shows that it is easy to
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approximate the PCS p-value (conditioned on the data) as B tends to infinity, which we have done for

the red hair analysis.

We call this new test the epiTree test. As a result, the quality of an interaction is directly related

to its prediction accuracy on hold-out test data. A detailed description of underlying assumptions and

derivation of the PCS p-value is presented in the Supplementary Information. The results presented next

are PCS epistasis p-values for gene level interactions found by iRF. We also present comparisons to the

p-values obtained by a standard logistic regression analysis. We note that PCS inference could also be

used to assess the significance of interaction terms in a logistic regression model, but we do not consider

such an analysis in this paper.

Results

To evaluate how well iRF captures genotype/phenotype relationships for candidate interaction screening,

we evaluated prediction accuracy (Predictability in PCS) on the hold-out test set. Details on parameter

choice and implementation are given in the Supplementary Information. Figure S3 shows ROC curves

for the prediction accuracy of iRF and competitors on the gene level (left) and variant level (right) (all fit

using training data): penalized logistic regression with L1 penalty term and random forests (RF). With

an area under the ROC curve (AUROC) of 0.93 (95% bootstrap confidence interval was [0.922, 0.936])

on hold-out test data, iRF demonstrates high prediction accuracy and outperforms its closest competitor

(penalized logistic regression AUROC = 0.9 and a 95% bootstrap confidence interval of [0.894, 0.913]).

(For ranger we obtained AUROC = 0.88 with a 95% bootstrap confidence interval of [0.871, 0.892].)

Figure S4 shows the list of candidate interactions obtained from our gene-level iRF non-linear model

selector, while Figure S5 reports results on the variant level (see also figure in the SI). To account

for spurious interactions that may arise from linkage disequilibrium [50, 55, 14], we restrict results to

interactions among genes that are not all on the same chromosome.

In total the iRF interaction screening found 18 stable inter-chromosomal interactions (satisfying

filtering criteria described in the Supplementary Information) of up to order-4. This amounts to a

massive dimension reduction step, with respect to all ∼ 1016 possible order-4 interactions among ∼ 104

genes. Interactions primarily center around genes in the MC1R and ASIP regions which corroborates

previously reported epistatic interaction for the red hair phenotype within a well-described biological

pathway, see [34]. We stress that while other works a priori restrict their search to interactions involving

MC1R, our approach does not require such pre-selection.
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Interaction terms contribute to an increase in prediction accuracy:

We evaluated the strength and significance of the individual candidate interactions using PCS epistasis

p-values. The PCS epistasis p-values are shown in the second column of Figures S4 and S5. Com-

parisons with the corresponding classical p-values from logistic regression are shown in Supplementary

Information. The first column reports test-set prediction errors of the CART models for both, epistasis

and non-epistasis. We find that for several interactions, CART tree-based models show a considerable

improvement in prediction error relative to logistic regression (e.g. ASIP, TUBB3 ; ASIP, VPS9D1 ).

For the remaining interactions, prediction accuracy is comparable between logistic regression and CART

models. Moreover, interactions that are significant with respect to the PCS p-value (< 0.05 with Bon-

ferroni correction) correspond to those for which the epistasis model corresponds to a notable decrease

in prediction error relative to the no epistasis model. In contrast, interactions that are significant with

respect to the logistic regression p-value show little improvement in prediction accuracy between the

epistasis and no epistasis models. This finding suggests that the increased flexibility and thresholding

form of the Boolean interactions in CART, which reflect abundance thresholding behavior observed in

biomolecular interactions [30, 25, 29, 28], can capture interaction behavior between genes better than a

polynomial interaction model.

PCS detects different types of epistasis:

The PCS epistasis p-values and the classical logistic regression p-values can differ substantially, reflect-

ing the fact that each captures a different form of interaction and thus different genotype/phenotype

relationships. The PCS p-values, based on CART models, operate directly on the penetrance scale and

capture thresholding-type behavior. Logistic regression, on the other hand, considers epistasis on a logit

scale, and thus describes a different form of non-additivity, and is restricted to polynomial interaction

terms. A key advantage of having CART as the building block for PCS p-values in our epiTree test

is that significant interaction behavior is interpretable and easily visualized via the respective decision

trees (see Figure S2 for an example). We highlight two examples below.

First, we considered the interaction between ASIP and TUBB3, which shows the greatest difference

between PCS and classical p-values (Figure S4). Figure S6 plots the response surfaces, which indicate

P ( red hair ) as a function of interacting features. The top and bottom rows indicate response surfaces

for the logistic regression and CART models respectively, while the columns indicate surfaces for the

non-epistasis (left) and epistasis (right) models. For comparison, we plot these surfaces along with a

smoothed scatter plot of the observed test data. Here, the polynomial interaction term assumed by

logistic regression does not capture the highly non-monotone behaviour observed in TUBB3. On the

other hand, the CART model appears to describe this relationship much better, which is confirmed by

the improvement in prediction accuracy relative to logistic regression (see SI figures). In other words, the
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PCS p-value detects a non-additive, epistatic relation between the two genes that cannot be captured by

the logistic regression model. A similar example for the interaction ASIP - DBNDD1 is shown in the SI.

Note that such non-monotonic behaviour, as it is observed for TUBB3 in Figure S6, is common

among PrediXcan estimated gene expression features. This is due to the fact that estimated expression

of a single gene corresponds to a weighted linear combination of discrete variants. When a small number

of variants are both highly associated with the response and have large PrediXcan weights for a given

gene, the response surface exhibits marked transitions that correspond to different values of the highly

weighted variants. This is exactly the case for TUBB3, with 25% of its weight mass on the variant

rs8048449, which shows strong marginal association with red hair.

Second, we considered the interaction between DEF8 and ASIP, shown in SI. For this interaction,

the classical logistic regression p-value is highly significant (with Bonferroni correction), while the PCS

epistasis p-value is not. The response surfaces indicate that these models differ most in the region where

DEF8 is small and ASIP is large. While the logistic regression model estimates a high probability of

red hair in this region, resulting in a significant interaction term (with Bonferroni correction), there

is limited data in the region to support how responses behave here. Indeed, all four models (logistic

regression non-epistasis, logistic regression epistasis, CART non-epistasis, CART epistasis) achieve nearly

identical prediction accuracy (with average cross entropies of 0.624, 0.620, 0.622, 0.630, see Figure S4).

In other words, there is no evidence with respect to prediction accuracy that a particular model should

be preferred, despite the significance of the classical logistic regression p-value. The SI shows another

example for the interaction ZNF276-RPL36P4 where the PCS p-value is not significant but the logistic

regression p-value is. Here, the data clearly shows a non-linear relationship in one of the variables, which

cannot be captured by the linear components of the null model for logistic regression. CART can capture

such a relation well and outperforms logistic regression with a simple additive relationship. That is, the

logistic regression significant p-values appear to be driven by a main effect that is not captured by the

linear form of main effect in logistic regression.

We provide a similar discussion for the remaining three pairwise interactions for which either the

PCS p-value or the logistic regression p-value was significant (with Bonferroni correction) in the SI.

In summary, we find that CART tree-based models used by our PCS epistasis p-values can capture

different types of interaction, and thus lead to novel insights that are not detectable in standard logistic

polynomial models. Moreover, the CART decision tree structure provides an intuitive, and accessible

visualization of the interaction via the decision tree, which further aids in the interpretation of the results.

Biological findings:

Recapitulation of epistasis between MC1R and ASIP : For the red hair phenotype our epiTree

pipeline recovered several well known epistatic interactions between the MC1R and ASIP region, both on
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the gene and variant levels (Figure S4 and S5). The MC1R gene on chromosome 16 is an evolutionarily

conserved regulator of pigmentation with a strong association with the red hair phenotype in humans. As

a result, other works, studying epistasis related to red-hair, restrict to interactions between variants in the

MC1R region and other marginally associated regions as a pre-filtering step to reduce the overall search

space for interactions, see [34]. We stress that our pipeline does not rely on any such a priori knowledge

and still recovers the MC1R and ASIP interaction, making it particularly valuable for phenotypes that

have not been studied extensively.

Novel higher order interactions: Our epiTree pipeline recovered several higher order interactions,

which is not feasible in most other epistasis pipelines, which typically restrict to pairwise interactions,

with a few exceptions where order three interactions are considered, e.g., in [23]. For example, the top

order three interaction between ASIP, CDK10, and TUBB3 had a significant PCS p-value in 90% of

bootstrap replicates (with Bonferroni correction). Moreover, the respective CART interaction model

showed a strong increase in prediction accuracy, compared to the additive CART model (no-epistasis),

as well as both logistic regression models (epistasis and non-epistasis). We note that CDK10 and TUBB3

are both genes on chromosome 16 which are just 200 kb apart. Thus, in this case, we cannot rule out

the effect of strong genetic linkage which may result in spurious detection of epistasis.

Suggestions of new genes not associated with red hair previously: In addition to recapitulat-

ing well established epistatic interactions between MC1R and ASIP, our pipeline epiTree also provides

new insights for the red hair phenotype. The iRF model selection step identified two genes that were

not previously associated with red hair, namely UPF3A and SIAH2, both in interactions with MC1R

related genes (DBNDD1 + UPF3A and CDK10 + SIAH2 ). However, neither the PCS p-values nor the

logistic regression p-values were significant for these interactions and also the subsequent iRF variant

interaction filtering did not result in any epistasis related to these genes. Consequently, we cannot report

those interactions as significant findings. Nonetheless, we do see some further indication for potential

association of these genes with red hair. First, in the pairwise gene level search of the top iRF genes,

both, UPF3A and SIAH2, appear in interactions that have significant logistic regression p-value in 20%

- 30% of bootstrap replicates (with Bonferroni correction), see SI figure. We note, however, that the

PCS p-value, while providing higher prediction accuracy, was not significant for the same interactions.

Second, among all pairwise interactions between the variants that enter the PrediXcan model for CDK10

and SIAH2, respectively, we find that the SIAH2 variant rs482236 together with another CDK10 vari-

ant shows significant PCS p-value in 20% among bootstrap samples of the test data (with Bonferroni

correction), see SI figure. In summary, with the current data at hand, we cannot report any strong

statistical evidence for the association of UPF3A and SIAH2 with red hair, but these are suggestive of

further investigations with new data.
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Evidence of epistasis amongst previously reported genes: For the pairwise inter chromosome

gene level analysis of the top 50 iRF genes, we found that an interaction between PKHD1 (chr 6) and

XPOTP1 (chr 20) had significant PCS p-value among 10% of bootstrap replicates (of the test data)

after Bonferroni correction, with the CART model from PCS also showing some improvement in terms

of prediction accuracy compared to the logistic regression models. The respective response surface and

interaction CART model, shown in SI, suggests a thresholding of gene expression levels with the red

hair phenotype. In particular, one observes a decrease in red hair penetrance when gene expression of

both, PKHD1 and XPOTP1, are small and an increase when both are large. Otherwise, when one is

small and the other is large, one observes an average red hair penetrance of around 50% (recall that

we consider a balanced sample in this analysis). This interaction behavior is well described by the tree-

based model used in the PCS p-value and results in a significant PCS p-value of ∼ 10−3. Both, PKHD1

and XPOTP1, have been associated with hair color previously. In particular, in the recent work [34]

both genes had reported epistasis with MC1R. However, epistasis between the two genes has not been

previously described.

Discussion:

Summary of findings: Here we introduce the epiTree pipeline, building on a novel tree-based method

and PCS framework, to detect epistasis. epiTree is grounded in a biologically relevant dimensional-

reduction schema derived from tissue-specific gene expression to derive variant-level interactions, and

additionally, may detect interactions of between more than two-loci. Without prior knowledge of the

phenotype of red-hair coloration, our approach detects known interactions between MC1R locus and

nearby genes in the locus related to pigmentation and ASIP, as well as novel interactions between

CDK10 and SIAH2. Our findings may suggest a previously unrecognized relationship between SIAH2

and the red hair phenotype. Interestingly, SIAH2 is known to be associated with breast cancer risk and

cellular response to hypoxia – a phenotype that has been associated with melanoma and pigmentation

in general [4].

Related work: Previous approaches typically screen variants based on main effects due to computa-

tional constraints [10, 12, 23, 34], which may miss interacting genetic variants with weak main effects. The

tree-based approach presented here does not limit analysis to variants with a strong main effect, however

we note that decision tree-based methods have been proposed before in epistasis, e.g., [10, 23, 47, 52].

In [10] and [23] they are used to obtain marginal feature importance for the individual variant fea-

tures from which candidate interactions are extracted either via a brute force search or with the help

of phasing, in particular, independent of the phenotype under consideration. In contrast, going beyond

main effect genes, iRF explicitly exploits the structure of the trees in a forest (at its last iteration) to
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extract Boolean interactions by interpreting frequently co-occurring features along the paths of trees as

interactions. Similar to iRF, [47] and [52] take the joint appearance of features on a decision path as a

measure of interaction. [47] interpret every path in a collection of boosted decision trees as a candidate

interaction. To ensure the set of reported interactions is a manageable size, the authors restrict their

search to interactions among at most d variants (with d = 5 being the default value). In contrast, iRF

employs the stability principle [53, 54] – reporting feature combinations that frequently co-occur rather

than the entire set of decision paths — to filter the set of candidate interactions with no restriction

on size, after soft-dimensionality reduction through iterations of RF. [52], on the other hand, extract

a measure of interaction strength from an RF for a pre-selected interaction. Moreover, their approach

does not provide a way to extract candidate interactions from the trees as is done in iRF via the RIT

algorithm; thus, it also requires a brute force search in practice. We are not aware of any other tree-

based method for epistasis that incorporates stability driven bootstrap sub-sampling into its pipeline for

screening interactions. More importantly, all these previous works do not develop a significance test or

p-value that is based on tree models to evaluate the found interactions.

Limitations and directions for future work: Our application of iRF is based upon biologically-

relevant dimensional reduction in the form of estimated tissue-specific expression values derived from

GTeX via PrediXcan [18]. While this approach detects both known and previously undescribed epistasis

for the red-hair phenotype, it depends on the accuracy of gene expression estimates derived from bulk

RNA sequencing on heterogeneous cell types in skin tissue. In this case, we make the assumption that

tissue-specific data is sufficiently representative of melanocyte biology from which the trait of pigmen-

tation and red-hair is derived. This assumption of representativeness is not likely to hold for traits

deriving from rare cell types or from tissues and cell-types which are not sampled in GTeX in the first

place. Additionally we note that the number of individuals in GTeX is not currently representative of

all population strata which serves to limit the application of our approach for detection of epistasis to

human phenotypes by excluding diverse genetic populations. Nevertheless, our epiTree test is a stand-

alone test for epistasis of any given interaction relative to a phenotype that arises from other knowledge

rather than the PrediXcan.

In principle, iRF can detect interactions of arbitrary order. However, the maximal detectable in-

teraction order depends on tree depth—an interaction corresponds to subsets of features on individual

decision paths, which scales logarithmically with the number of samples. Another potential limitation

of the iRF interaction screening is that it does not explicitly take the genomic location of individual

features into account. Even on the gene expression level, features that are close-by on the genome are

typically highly correlated. Such features might appear exchangeably in interactions, as observed for the

red hair phenotype with MC1R, see Figure S4. More generally, it is well known that for random forest
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based algorithms, correlated features can lead to masking effects, where the effect of a feature might

be hidden by another dominating, correlated feature [32]. Finally, as discussed earlier, genetic features

that are close-by on the genome might show artificial epistasis that is caused by hidden linkage with

unobserved causal variants. In fact, for the red hair phenotype iRF reported various intra-chromosome

interactions that we filtered out subsequently. One idea to overcome these limitations, would be to

analyze by haplotypes of merged close-by genes into a single hyper-feature. However, two correlated

genetic features do not necessarily show the same epistatic behaviour. Thus, there is a general tradeoff.

Aggregating features in this way may increase the ability to detect epistasis by concentrating the forest

on a single feature. On the other hand, aggregation may lead to loss of specificity that decreases the

chance of detecting epistasis.

Although, the CART tree-based model that we propose for the PCS p-value (see Materials and

Method and Supplementary Information) can describe significantly more flexible additive and non-

additive relationships for the epistasis and non-epistasis model than a single linear or multiplicative

term, we also emphasize that not every functional relationship might be well described by a relatively

simple CART model. In particular, when a relationship is truly linear or multiplicative, clearly, working

with a linear model will be more powerful than a CART approximation. The response surface plots,

as shown in e.g., in Figure S6 and discussed in the Results section, are a powerful tool to investigate

whether CART or linear models might be more appropriate for the given data at hand. Moreover, we

stress that PCS p-values are, in principle, not restricted to CART models, but could be combined with

any learning algorithm that appears appropriate for the data. As with any machine learning algorithms

there is typically a tradeoff between interpretability and prediction accuracy. We find the CART tree-

based models provide a good balance between both, being sufficiently flexible and very straight-forward

to interpret, while capturing the thresholding behavior of interactions among many biomolecules.

The sample splitting paradigm that we follow in our approach holds the advantage of separating the

discovery from the inference stage, which prevents overfitting and thus, makes findings more reliable,

in general. We note, however, that compared to classical p-values, the need of a separate training

set, will generally imply that there is less data available to evaluate the p-values, thus, a decrease

in power. However, we note that due to the iRF interaction selection step, in general our approach

requires the testing of orders of magnitude fewer hypotheses than any brute-force p-value approach.

Thus, multiplicity correction of p-values will be much less of a problem in our pipeline, i.e., less stringent

significance thresholds for p-values apply, which can compensate for this effect.

Conclusions: Our new methodology, the epiTree pipeline, represents a novel approach to the identi-

fication of Boolean epistatic genetic relationships. epiTree goes well beyond multiplicative interaction,

is biologically often more meaningful, and is capable of detecting genetic interactions of order three and
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SI includes supplementary text, 17 figures, and one table.
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Figure S1: Illustration of the two-step procedure, from gene to variant level, for extraction of candidate
interactions. First row from left to right: from approx. 107 variants tissue specific transcripts for approx.
104 genes are imputed using the software PrediXcan. Then the epiTree pipeline is applied to extract
interactions for the gene expression features. Second row from left to right: for all genes that appear
in interactions from the first step, variants within 1MB of the start or end of an interacting gene are
extracted. Then the epiTree pipeline is applied to extract interactions for the variant features.

Figure S2: Example for CART based fitted null model (no-epistasis) shown in top row and alternative
model (epistasis) shown in bottom row, for gene expression features A = ASIP and B = DEF8. The
decimal digits at the tip nodes correspond to the predicted probability of red hair. The percentage at
the tip nodes corresponds to the percentage of training observations falling into this tip node.
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Figure S3: ROC curves of iRF prediction model and competitors on hold out test data. “LR with L1
penalty” stands for a logistic regression model with an additive L1 penalty term on the parameter vector,
i.e., a lasso type estimator. The lambda tuning parameter was selected via cross validation using the
cv.glmnet R function from the glmnet R package. The “ranger” competitor corresponds to the random
forest implementation of the R package ranger with default parameters. Left: gene expression features.
Right: Variant features

Figure S4: List of stable gene level interactions found by iRF (stability score > 0.5). The fist column
shows the prediction error (cross-entropy) on the test data of the learned CART models for both, no-
epistasis (NULL, orange) and epistasis (alternative, gray). The second column shows the PCS p-value
on a -log10 scale and the numeric value is shown on the very right, up to two significant digits. The black
vertical line in the first column shows the prediction error achieved by iRF using all the gene features
simultaneously.
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Figure S5: Same as Figure S4 for the top 10 order two variant level interactions.

Figure S6: Response surface for ASIP - TUBB3, right plot: smoothed test data (hexagons are drops
when they contain less than 5 data points), the full test data is shown as blue (red-hair) and black (non-
red hair) dots ; left plot: response surfaces for fitted models; top: logistic regression model, bottom:
CART based model, right: epistasis model, left: non-epistasis model.
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Supplementary Information to manuscript

Learning epistatic polygenic phenotypes with

Boolean interactions

S1 Supplemental Material and Methods

S1.1 epiTree test based on PCS epistasis inference and PCS p-value

Traditional methods of statistical hypothesis testing evaluate uncertainty relative to a null distribution

that describes the hypothesized data generating process. Intuitively, these methods address questions of

the form: how likely is the observed test statistic if data were drawn from the specified null distribution.

A statistic (and hence data) that is not likely under the null provides evidence against the corresponding

null model. In practice, null distributions are often used without justification as to why they are a

“reasonable” baseline for such comparisons. This can lead to small p-values that provide strong evidence

against a “straw-man” null hypothesis — i.e. a null hypothesis that is a priori known or widely believed

to be a poor description of the data generating process.

To address this issue, the PCS inference framework [54] introduced a prediction screening step that

evaluates model accuracy on hold-out test set. This step allows one to filter out “straw-man” null

hypotheses and focus inference on those that provide a reasonable fit to the data. In order to evaluate the

accuracy of red hair phenotype predictions, we split data into training and hold-out test sets, learn models

corresponding to epistasis and non-epistasis on the training set, and carry out statistical hypothesis

testing on the hold-out test set. By splitting our data in this way, we introduce an additional layer of

uncertainty — inference is defined relative to one of many possible sample splits. We address this extra

layer of uncertainty through the PCS inference framework.

Specifically, we build on general PCS inference ideas to assess the strength of an epistatic effect.

Intuitively, our inference framework captures both the uncertainty quantified by traditional statistical

inference and the uncertainty surrounding data perturbations (sample split). In other words, the PCS

p-values we propose consider not only distributional assumptions of a null model — as in traditional

statistical inference — but also uncertainty surrounding the range of sample splits that could have been

considered but were not. By “inflating” p-values to account for a wider range of uncertainty, our approach

helps ensure that evidence for a given interaction is more robust to a broader range of modeling decisions.

We call our approach epiTree test, because it is for epistasis discovery and uses decision-trees for both

epistasis and no-epistasis models.
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S1.1.1 Inference setting

For simplicity, we assume that a candidate interaction consists of two features: A and B. We provide

details for the analogous case of general higher-order interactions in Section S1.1.9. Features A and

B could be either continuous-valued gene expression features or discrete-valued SNP features. In the

following, we focus on the gene expression setting. The case of SNP features is similar and described in

Section S1.1.10. Recall that in our epiTree pipeline, candidate interactions are obtained by running iRF

on the training data. The PCS epistasis inference for these candidate interactions, as outlined below,

uses the same training data to obtain individual (for each interaction), tree-based null (no-epistasis) and

alternative (epistasis) models. On the separate hold-out test data, our aim is to evaluate evidence (i.e.

a p-value) for the null hypothesis

H0 : (A,B) is not epistatic for phenotype Y, (1)

relative to the alternative hypothesis

H1 : (A,B) is epistatic for phenotype Y, (2)

using test data consisting of n sample points Y = (y1, . . . , yn)>, A = (a1, . . . , an)>, andB = (b1, . . . , bn)>.

The individual response values yi and features ai, bi may be continuous valued or discrete. Here, we con-

sider the binary phenotype of red hair, yi ∈ {0, 1}, where yi = 1 indicates red hair, and continuous-valued

gene expression features ai, bi ∈ R.

S1.1.2 Recap of standard logistic regression

The classical translation of Fisher’s original definition of epistasis for binary phenotypes seeks evidence

against null H0 relative to alternative hypothesis H1 under a simple logistic regression model. That

is, the data are assumed to have come from a logistic regression model, which is a strong assumption

that often leads to unrealistic uncertainty assessments in practice, especially for large samples of data.

Models for the null and alternative can be written as,

H0 : logit(P (y = 1|a, b)) = βAa+ βBb+ β0,

H1 : logit(P (y = 1|a, b)) = βAa+ βBb+ βABab+ β0,

(3)

where βj , j ∈ {A,B,AB, 0} represent coefficients describing the contribution of A, B, the interaction

term AB, and an intercept respectively. In some cases, correction for population structure is neces-

sary. Employing standard chi-square approximations for the likelihood ratio test of H0 vs. H1, it is

straightforward to obtain a p-value for the inference problem in (3). This (or some slight variation) is
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the standard p-value typically reported as a measure of an interaction’s significance, e.g., with p-value

< 0.05/number of interactions tested, reported as significant (with Bonferroni correction).

S1.1.3 Scaling of the response variable

The logit scaling in (3) has a considerable influence on the way an interaction is defined. Clearly, a

relation which is multiplicative (non-linear, hence epistatic) on one scale, can be additive (non-epistatic)

in another. For instance, a log transform of a multiplicative interaction becomes additive. Hence, Fisher’s

commonly accepted definition of epistasis critically depends on the selected scaling. In fact, the situation

is even more extreme. It is demonstrated in [19] that any multivariate, real valued function with compact

support can be written as an additive function for some appropriate scaling. In other words, without

fixing a response scale, every function can be rewritten in an additive form. Thus, Fisher’s definition of

epistasis is only well-defined relative to a selected scale.

The intrinsic scaling problem for epistasis has been pointed out by many authors, see e.g., [11, 13, 37,

40]. Out of statistical convenience, logistic regression models still dominate standard analyses. However,

there is no biological justification for the logistic scaling. It has even been reported in empirical studies

that this scaling does not always reflect biological function [37, 17].

Acknowledging that any epistatic results is only well-defined with respect to a specific scaling, it

is natural (see e.g., discussion and references in [11]) to select a canonical scaling for this purpose: the

penetrance P (y = 1 | a, b) itself (instead of a logit scaling that transforms the penetrance via the function

f(x) = log(x/(1−x)) as in logistic regression) [20, 13]. We articulate Fisher’s definition in the penetrance

scale as

H0 : P (y = 1 | a, b) = fA(a) + fB(b) vs. H1 : P (y = 1 | a, b) = fAB(a, b), (4)

where fj : R → [0, 1], j ∈ {A,B,AB} are functions that describe the relationship between genes or

interactions and penetrance.

S1.1.4 Form of additive and interaction models using training data

While raw gene expression data are often represented as counts (e.g. RNA-Sequencing), commonly

available data are typically preprocessed. For example, PrediXcan estimates/imputes inverse normal

transformed gene expression rather than raw expression value. In practice, there are a range of standard

transforms and pre-processing steps, such that the actual scaling of gene features A and B can be rather

arbitrary (see e.g., [3] for some general discussion). These transforms/pre-processing steps are generally

not linear, although they are typically monotonic. As a result, we favor models that are invariant to

monotone transformations of the data (resulting from potential pre-processing steps). In addition, we
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want to allow more flexible mappings beyond linear (as in 3) to account for non-linearities that pervade

biological systems. There are many different forms of non-linear functional relationships, which may

each be useful in describing different epistatic behavior. A particularly flexible class of functions are

decision trees, which have the benefit of being both simple to interpret and invariant to monotone

feature transformations. In addition, as mentioned previously, it is well known that many biological

processes exhibit thresholding dynamics that are mimicked in the Boolean rules used by decision trees

[30, 25, 29, 28]. Moreover, for the classical epistasis model H1 in (3) the multiplicative functional form

lacks biological justification. Collectively, these considerations motivate our use of decision trees in both

the additive, null model H0 and non-additive, alternative model H1. All individual decision trees are

obtained via a CART [8] fit on the training data, using backfitting for the additive model. In summary,

we translate Fisher’s epistasis definition into a (non-parametric) hypothesis inference setting as

H0 : P (y = 1 | a, b) = CARTA(a) + CARTB(b) vs. H1 : P (y = 1 | a, b) = CARTAB(a, b). (5)

Decision trees CARTA, CARTB , CARTAB are fit on the training data set (that is, the same data

that was used in the iRF candidate selection step) via the CART algorithm (using the R Package rpart)

as follows: The complexity parameter (cp max in rpart) (controlling the minimum improvement in the

model needed at each node) for the interaction model CARTAB is chosen adaptively, namely, small

enough such that the interaction model included all genes (but not smaller than 10−3). More precisely,

we start with cp max = 0.01 (which is the default parameter in the rpart implementation) and then, as

long as not all features get split on in the tree, we replace the current cp max value by cp max /1.1. For

the additive components, CARTA and CARTB , the complexity parameter is chosen to be the same as for

the interaction component. In this way it is guaranteed that the tree for the interaction model, CARTAB ,

is sufficiently deep to capture potential interaction behavior. Moreover, we prevent overfitting by not

making cp max smaller than necessary for all features to appear in the tree and generally not smaller than

10−3. At the same time, this guarantees that the complexity of all trees, CARTAB , CARTA, CARTB , is

comparable. To fit the additive regression model in H0, we applied backfitting [21], where one recursively

re-fitts additive components on the respective residuals with the remaining components. We stopped

the recursion when none of the predicted values changed by more than 1% compared to the previous

iteration. Finally, we conduct inference using a hold-out test set, following the prediction principle (see

next section).

S1.1.5 Predictability principle from the PCS framework

Classical p-values, as obtained via logistic regression-tests for model (3), compare the goodness-of-fit

for the null and the alternative hypothesis using all available data. In other words, the null and the
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alternative models are fit on the same data that are used to evaluate the quality of each fit. In contrast,

we learn null and alternative models on one (often randomly sampled) training data set and compare

their prediction accuracy on a disjoint (often randomly sampled) set of test or hold-out data. This sample

splitting approach is an old idea in statistics and has been used recently to deal with post-selection and

so called universal inference problems, see, e.g., [46, 27, 6, 15, 48] and is widely used by the machine

learning community to guard against overfitting.

Fitted null and alternative models correspond to hypotheses for non-epistasis (null, additive) and

epistasis (alternative, non-additive) respectively, which leads to a simple hypothesis testing problem on

the hold-out test data (since we fix both, the null and the alternative model from training data). We

define predictions from the non-epistasis and epistasis models on the test data with gene expression (or

SNP) values (ai, bi), for i = 1, . . . , n, as:

p0(ai, bi) = CARTA(ai) + CARTB(bi) vs. p1(ai, bi) = CARTAB(ai, bi). (6)

For simplicity, we denote p0, p1 ∈ Rn as the n-vectors with components p0,i := p0(ai, bi) for and p1,i :=

p1(ai, bi).

In principle, one could apply a Neyman-Pearson test (with likelihood ratio test statistic) in order to

obtain a p-value (conditioned on p0 and p1). However, the models p0 and p1 will generally be (at least

slightly) mis-specified. For large sample size this can lead to unrealistic extremely small p-values (e.g.,

in the red hair data example as small as 10−100). This astronomically small p-value is due to the fact

that the chi-squared asymptotic distributional approximation to the likelihood ratio test-statistics does

not take into account model misspecification, which cannot be ignored for sufficiently large sample sizes

(as in the UK biobank data).

In the following we use the PCS inference ideas proposed in [54] to explicitly take finite sample vari-

ability into account, via a bootstrapping approach on the test data, and to address the misspecification

problem through prediction error evaluation on the test set. Instead of using the simple null hypothesis

of the Neyman-Pearson test — the underlying penetrance is exactly p0 — we use a more flexible null

hypothesis. Specifically, we inflate the p0 null distribution with the (centered) empirical sample distri-

bution of the test statistic (via bootstrap sampling). As a result, our approach to inference takes into

account the empirical variation in the likelihood ratio test statistic on the test data.

S1.1.6 epiTree test details: computation of CART based PCS p-value with bootstrap

sampling of test data

Classically, p-values in a logistic regression model are calculated using a chi-squared approximation

of the likelihood ratio test statistic under the null distribution, derived without accounting for model
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misspecification. Our approach does not assume a classical probabilistic model. Instead, it generates a

null hypothesis based on the PCS framework, where the null distribution is approximated directly via

bootstrap samples of the test data. To conduct inference using this approach, we need to specify a test

statistic and null distribution, which we detail in the following two paragraphs.

Test statistic. CART models (5) estimate penetrance for both the no-epistasis (null) and epistasis

(alternative) hypotheses (using training data). Given this pair of fitted CART models, we estimate

penetrance in the test data as p0 (no-epistasis) and p1 (epistasis) based on test set genotype features.

Note that both, p0 and p1, are independent of the observed response Y in the test data used for inference.

Given the observed test data (Y,A,B), we consider a canonical test statistic, the log-likelihood ratio

T (Y ) = T (Y,A,B) = ln

(
P (Y | p0(A,B))

P (Y | p1(A,B))

)
, (7)

with

P (Y |p·) =
n∏
i=1

pyi·i (1− p·i)1−yi ,

where p· can be p0 or p1, and we have dropped dependence on A,B in our notation for simplicity. For

given labels Y , T (Y ) measures how much more likely observed labels are under the null (p0) compared

to the alternative (p1). Smaller values of T (Y ) correspond to greater evidence for the epistasis model.

PCS Prediction screening. Note that both, p0 and p1, were obtained from training data only.

Evaluating P (Y | p0) and P (Y | p1) on hold-out test data provides a measure of how accurately the

null and alternative models generalize to new samples. When T (Y ) ≥ 0, or equivalently P (Y | p0) ≥

P (Y | p1), then the alternative model p1 (epistasis) provides no increase in prediction accuracy — as

measured by the likelihood — on the test data compared to the null model p0 (no epistasis). In this case,

we conclude that there is not evidence for epistasis and epiTree formally reports a p-value of 1, that is

PCS p-value = 1 if P (Y | p0) ≥ P (Y | p1). (8)

When T (Y ) < 1, i.e. the epistasis model yields an increase in prediction accuracy, we quantify the

uncertainty surrounding this improvement by pairing a simulated null data perturbation with bootstrap

sub-sampling, as outlined below.

PCS Null perturbation. The PCS framework uses null perturbations to simulate data that respect

known structure and compares observed results to results obtained from these simulated data. Recall

that p0 in (6) denotes our estimated penetrance for the test data under the hypothesis of no epistatic
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CART based PCS p-value logistic regression p-value

Scale for response penetrance scale P (Y | A,B) Logit scale: log
(

P (Y | A,B)
1−P (Y | A,B)

)
Null model (no epistasis) CART (A) + CART (B) βAA+ βBB + β0

Alternativ model (epistasis) CART (A,B) βAA+ βBB + βABAB + β0
Data used for model fitting (separate) training data full data

P-value calculation Bootstrap from null perturbation Distributional approximation (chi-square)

Table S1: High-level summary of comparison between p-value from logistic regression with polynomial
model vs. PCS p-value with CART model for epistasis testing.

interaction. We simulate responses under the no epistasis null hypothesis as

Y0 ∼ Bernoulli(p0), (9)

which we refer to as the null perturbation. Below, we outline our approach for constructing a reference

null distribution of the test statistic.

PCS p-value To obtain a PCS p-value, we use bootstrap re-sampling over the test data to evaluate

PCS p-value = Pbootstrap(T (Y ) > T (Y0)), (10)

where Pbootstrap indicates randomness relative to bootstrap sampling of the test data. More precisely,

we generate bootstrap samples m = 1, . . . ,M , each of size n (= sample size of the test data) drawn i.i.d.

with replacement from the empirical distribution of our observed test data. For each bootstrap sample

we obtain p0|m ∈ [0, 1]n, a vector of estimated penetrance under the null. Using p0|m, we simulate null

responses for bootstrap sample m under the null perturbation (9) as

Y0|m ∼ Bernoulli(p0|m).

In addition to the null responses above, we obtain Y |m ∈ {0, 1}n, an n-vector consisting of the observed

responses for the mth bootstrap sample. The PCS p-value is then given by

PCS p-value =
1

M

M∑
m=1

1{T (Y |m) > T (Y0|m)}. (11)

In practice, one can obtain a simple analytic approximation of (11) as outlined in Section S1.1.8. By

construction, Y and Y0 have the same distribution under the null hypothesis, making our proposed PCS

inference a valid p-value (conditioned on p0). We summarize the general test procedure epiTree in terms

of the computation of the CART based PCS p-values in Figure 7 of the main text. Table S1 shows a

high level comparison of the CART based PCS p-values and p-values obtained from logistic regression.
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Figure S7: Illustration of epiTree pipeline.

S1.1.7 Comparison between PCS p-value and classical p-value calculations

In the following, we provide insights into the major differences between calculations of a PCS p-value and

a classical p-value. For a given test statistic T (Y ), null hypothesis H0 : Y ∼ F0 with null distribution

F0, and alternative hypothesis H1 where smaller values of T correspond to stronger evidence against the

null (as e.g., for T as in (7) for the epiTree test), a classical p-value is given by

p-value = PF0
(T (Y0) < t), (12)

where t = T (Y ) is the observed test statistic and the probability is taken over the randomness of Y0 with

distribution F0. The classical p-value in 12 does not take into account empirical fluctuation of T (Y )

among different subsamples of data — randomness only enters through Y0.

In contrast, the PCS p-value explicitly takes the empirical variability of the test data (Y,A,B) into

account through bootstrap sampling, as in (11). This is necessary because sample splitting leads to a

particular test set. Bootstrap samples of the test set mimic the other possible test sets that could have

been resulted from a different sample split. More precisely, let F̂n denote the empirical distribution of

the test data. As the number of bootstrap samples M in (11) tends to infinity,

PCS p-value = PF0×F̂n
(T (Y0) < T (Y )). (13)

Thus, asymptotically, when the bootstrap distribution (empirical distribution) converges to the true

underlying distribution of Y , denoted as F , the PCS p-value is equivalent to

PCS p-value ≈ PF0×F (T (Y0) < T (Y )), (14)
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where Y and Y0 are independent. For the given observed value t, as in (12), we can rewrite (14) to obtain

PCS p-value ≈ PF0×F (T (Y0) + (t− T (Y )) < t), (15)

where t is fixed and the probability is taken as in (14) jointly over (Y0, Y ) with distribution F0×F . Note

that the difference between (12) and (15) is that T (Y0) is replaced by T (Y0) + (t − T (Y )). This means

that the effective null distribution of the PCS p-value corresponds to a convolution of the proposed null

distribution, T (Y0), and a centered version of the observed distribution T (Y ). In particular, (15) does not

just take into account the distribution of the probabilistic null model F0, but also the observed sample

distribution of Y . Hence the PCS p-value is more stable with respect to the observed data and possibly

also model mis-specifications. This centered, convoluted null distribution also prevents artificially small

p-values that are often obtained in the classical setting (12) with large n and slightly missspecified null

distributions.

For the CART based PCS p-value, as in the epiTree pipeline, the test statistic T (Y ) as in (7)

corresponds to the log-likelihood ratio statistic for the simple null hypothesis yi ∼ Bernoulli(p0,i) against

the simple alternative yi ∼ Bernoulli(p1,i). A classical p-value in this setting corresponds to a Neyman-

Pearson test for these simple null and alternative hypothesis. In particular, for the classical Neyman-

Pearson p-value the variance of the test statistic T (Y ) under the null distribution H0 : Y ∼ F0 is

completely independent of the actual observed responses Y . In contrast, the PCS p-value considers the

inflated null distribution of T (Y0)− T (Y ), with Y0 ∼ F0 and Y ∼ F̂n. Hence, the PCS p-value does not

just incorporate the distributional variance of F0 but also the observed empirical variance of the response

Y . We stress that the general concept of the PCS p-value does not depend on the particular choice of

statistic T (Y ) in (7). As a result, we can calculate PCS p-values not just for the CART based model

that we employed for the epiTree pipeline, but also for any other hypothesis testing problem, with an

arbitrary test statistic T (Y ) and null distribution F0.

In the supplemental Section S1.5, we provide a detailed toy example of a simple linear regression

model without intercept, where analytic forms of a classical p-value, as in (12), and PCS p-value, as

in (14), can easily be derived analytically. Although this setup is overly simplistic, it provides concrete

analytical insights into situations when a PCS p-value is beneficial compared with the a classical p-value.

As shown in Section S1.5, the classical p-value has higher power when the data are exactly generated

from the hypothetical alternative distribution H1. In this case, the PCS p-value’s lower detection power

originates from the additional uncertainty quantification in the bootstrap sub-sampling — PCS p-value

explicitly takes the empirical variation of the observed data sample into account. However, in arguably

most real data applications (and certainly for epistasis testing, as stressed throughout this paper), the

data generating process cannot be specified exactly for either the null or the alternative model. In such
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settings, the PCS p-value can be more robust towards such misspecification. Specifically, we show (both,

analytically and in simulations) that classical p-values can result in severe false positive rates when the

data are generated from a slight variation of the hypothesised null distribution. On the other hand,

the PCS p-value is generally more robust and, in contrast to the classical p-value, does not result in an

increased type 1 error. Moreover, we also provide an explicit example in Section S1.5 where the data are

generated from a slight variation of the hypothesised alternative distribution. In this case, we observe

that the PCS p-value can have a higher detection power compared to the classical p-value. This originates

form the fact that the PCS p-value explores the full empirical distribution of the observed responses,

and is therefore able to detect deviations from the hypothesized null distribution of the statistic T (Y ),

which typically cannot be detected from the a single observed t, as in the classical p-value. In summary,

while the standard p-values work well in settings where everything is specified correctly, when models

are misspecified PCS p-values can be favorable – they provide more stable type 1 error control and can

have a higher detection power in the presence of outliers.

S1.1.8 Analytic approximation of PCS p-value in the epiTree test

In order to obtain an analytic approximation of (11) note that

T (Y )− T (Y0) = log

(
P (Y |p0)

P (Y |p1)

)
− log

(
P (Y0|p0)

P (Y0|p1)

)
=

n∑
i=1

(yi − y0,i)(log(p1,i)− log(1− p1,i)− log(p0,i) + log(1− p0,i))

=
n∑
i=1

δi,

where p1,i and p0,i denote the ith component of the vectors p1 and p0, respectively, and y0,i denotes the

ith component of the n-vector Y0, and

δi := (yi − y0,i)(log(p1,i)− log(1− p1,i)− log(p0,i) + log(1− p0,i)). (16)

For each bootstrap samplem, we draw n i.i.d. indexes I(m)1, . . . , I(m)n uniformly from the set {1, . . . , n}.

Thus we can write

1{T (Y |m) > T (Y0|m)} = 1

{
n∑
i=1

δI(m)i > 0

}
. (17)

Conditioned on the data (with the only randomness coming from the bootstrap sampling via the ran-

dom indexes I(m)1, . . . , I(m)n), the M different terms in equation (11) are independent and identically

distributed Bernoulli random variables. Hence, by the law of large numbers and using equation (17), we

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 25, 2020. ; https://doi.org/10.1101/2020.11.24.396846doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.24.396846


get that for infinitely many bootstrap samples (M →∞)

PCS p-value = P(I1,...,In)

(
n∑
i=1

δIi > 0

)
, (18)

where randomness is over the n i.i.d. random indexes I1, . . . , In drawn uniformly at random from the

set {1, . . . , n}. Again, conditioned on the data, we have that the n random variables δI1 , . . . , δIn are

independent and identically distributed, each following a uniform distribution on the set {δ1, . . . , δn}.

Thus, they have mean

EI1(δI1) =
1

n

n∑
i=1

δi =: µ (19)

and variance

V ar(δI1) = EI1((δI1 − µ)2) =
1

n

n∑
i=1

(δi − µ)2 =: σ2, (20)

where EI1(·) mean that we take the expectation w.r.t. the random bootstrap sample. Hence, it follows

from the central limit theorem that X :=
√
n( 1

n

∑n
i=1 δIi − µ)/σ converges in distribution to a standard

Gaussian as n→∞ (in our case n = 4K). Thus,

PCS p-value = P (X > −
√
nµ/σ), (21)

with |P (X > −
√
nµ/σ)− Φ(

√
nµ/σ)| → 0, as n→∞, (22)

where Φ denotes the cumulative distribution function of the standard normal distribution. Note that it

follows from (21) that PCS p-value < 0.5 if any only if µ < 0, which is equivalent to T (Y ) < T (Y0). Thus

the PCS p-value can only be significant when the improvement in prediction (of the epistasis model over

the non-epistasis model) for the observed data are greater than for the null perturbation. Further, note

one can upper bound the rate of convergence in (21) using the nonuniform Berry–Esseen theorem:

Theorem 1. [36, Theorem 3] Let Z1, . . . , Zn be i.i.d. random variables with E(Z1) = 0, V ar(Z1) = 1,

and c3 := E(|Z1|3) <∞. Then there exists some constant L such that for all z ≥ 0

∣∣∣∣∣P
(

n∑
i=1

Zi > z
√
n

)
− (1− Φ(z))

∣∣∣∣∣ ≤ Lc3√
n(1 + |z|3)

.

Therefore, from (18) and Theorem 1 we get that when µ < 0

|PCS p-value− Φ(
√
nµ/σ)| =

∣∣∣∣∣P
(

n∑
i=1

(δIi − µ)/σ > n(−µ/σ)

)
− (1− Φ(

√
n(−µ)/σ))

∣∣∣∣∣ ≤ C

n2
, (23)
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with C = L·c3
|µ/σ|3 <∞ and c3 = 1

n ·
∑n
i=1 |δi − µ|3. Thus, the approximation error from the CLT for the

PCS p-value decreases of order n−2. In our case n = 4, 000, i.e., n−2 is of order 10−7. We note, however,

that one also has to take the exact value of C into account (which depends on the data).

Averaging over null perturbation For the PCS p-value approximation above, we conditioned on

both the observed responses Y as well as the (simulated) null perturbation Y0 (see definition of δi in

(16)). In practice, the reported PCS p-value should be independent of any randomness introduced by

Y0. Below, we detail two different ways to achieve this:

1. Average the PCS p-value over infinitely many random realizations of Y0. In other words, when

computing the expectation and standard deviation of δIi in equation (19) and (20), we average

over the randomness of Y0, which is equivalent to replacing the y0,i term with its expectation p0,i.

This gives

EI1,Y0(δI1) =
1

n

n∑
i=1

Eyi,0(δi) =
1

n

n∑
i=1

δi =: µ,

with

δi = (yi − p0,i)(log(p1,i)− log(1− p1,i)− log(p0,i) + log(1− p0,i)), (24)

and

V ar(δI1) = EI1,Y0
((δI1 − µ)2) =

1

n

n∑
i=1

Eyi,0((δi − µ)2) =
1

n

n∑
i=1

(
(δi − µ)2 + ω2

i pi,0(1− pi,0)
)

= σ2,

with

ωi := log(p1,i)− log(1− p1,i)− log(p0,i) + log(1− p0,i),

where EI1,Y0(·) means that we take the expectation w.r.t. the random bootstrap index I1 and the

random null perturbation Y0. The PCS p-value approximation is then given by Φ(
√
nµ/σ).

2. Alternatively, for a given bootstrap sample m in (17), instead of comparing T (Y |m) to T (Y0|m) for

some particular random realization of Y0|m, one can compare T (Y |m) to the average realization of

T (Y0|m), that is, EY0
(T (Y0|m)). This is equivalent to replacing δi by δi from (24) when computing

the mean µ and standard deviation σ in (19) and (20). Note that the only different between δi and

δi is that the random quantity y0,i gets replaced by its expectation p0,i. In particular, conditioned

on the observed data (Y,A,B), the quantity δi is random, as it depends on the random null

perturbation y0,i, and δi is not random.

Note that the only difference between the two different approaches is in the variance term σ2, where the

former approach results in a slightly larger variance via the additional 1
n

∑n
i=1(ω2

i pi,0(1 − pi,0)) term.
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For the red hair analysis, we found that both approaches give the same magnitude for the p-values. The

p-values presented in the results section for the red hair analysis correspond to the latter approximation.

S1.1.9 Higher order interactions

Inference for higher-order interactions is analogous to the pairwise case described above. For example,

with an order three interaction among genesA,B,C the logistic regression hypothesis problem in equation

(3) translates to

H0 : logit(P (y = 1 | a, b, c)) = βAa+ βBb+ βCc+ βBCbc+ βACac+ βABab+ β0,

H1 : logit(P (y = 1 | a, b, c)) = βAa+ βBb+ βCc+ βBCbc+ βACac+ βABab+ βABCabc+ β0.

The CART model in equation (5) becomes

H0 : P (y = 1 | a, b, c) = CARTAB(a, b) + CARTBC(b, c) + CARTAC(a, c),

H1 : P (y = 1 | a, b, c) = CARTABC(a, b, c)

Otherwise, the inference remains the same. We stress that the null hypothesis for higher order interactions

allows for lower order interaction between subsets of features of the interaction under consideration. More

precisely, for an interaction of order k, the null hypothesis says that there is an interaction of at most

order k − 1.

S1.1.10 SNP features

Due to the discreteness of SNP features, there is no need to consider different scaling functions fA, fB ,

fAB as in equation (4). This is because any (bijective) scaling will simply map the three different possible

SNP values {0, 1, 2} to some other distinct values. Thus, equation (3) becomes

H0 : logit(P (y = 1 | a, b)) =β0 +
2∑
i=1

βAi1a=i +
2∑
j=1

βBj1b=j

H1 : logit(P (y = 1 | a, b)) =β0 +
2∑
i=1

βAi1a=i +
2∑
j=1

βBj1b=j +
2∑
i=1

2∑
j=1

βABij1a=i,b=j
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and equation (5) becomes

H0 : logit(P (y = 1 | a, b)) =β0 +
2∑
i=1

βAi1a=i +
2∑
j=1

βBj1b=j

H1 : logit(P (y = 1 | a, b)) =β0 +
2∑
i=1

βAi1a=i +
2∑
j=1

βBj1b=j +
2∑
i=1

2∑
j=1

βABij1a=i,b=j

For more than two genes the situation is analog as in Section S1.1.9, where the null model allows for

interactions up to order K−1, when an interaction of order K gets tested. That means, for an interaction

of order K the alternative model (epistasis) has 3K parameters and the null model (no-epistasis) has

3K − 2K parameters.

S1.2 Further discussion on comparison between CART models and logistic

regression for specific red hair interactions

In the results section of the main text we investigated the difference between CART based models and

logistic regression on the response surfaces of the null (no-epistasis) and alternative (epistasis) models

for two exemplary cases: ASIP - TUBB3 and ASIP-DEF8. Here we provide a similar discussion for the

other three pairwise interactions with significant p-values from either PCS or logistic regression.

The response surface for a putative interaction among ASIP - DBNDD1 is shown in Figure S11.

Here, the PCS p-value (= 10−4) is much smaller than the logistic regression p-value (= 10−1). However,

the prediction error for the CART alternative model (epistasis) (cross entropy of 0.528) is slightly worse

than the prediction error of the logistic regression null model (no-epistasis) (cross entropy of 0.516).

Looking at the response surface, we find that the thresholding behavior observed for many of the other

interactions (recall the results section in the main text) is less present for these features. As a consequence

the smooth response surface of the additive logistic regression model provides a similar data fit as the

non-additive CART interaction model, such that overall the interaction behavior is less clear in this

case and would require further investigation on the SNP level. Figure S12 shows the response surface

for ASIP - VS9D1. Here, the data show a clear nonlinear thresholding behavior, which is reflected in

the smaller prediction error of the CART models (cross entropy at around 0.5) compared to the logistic

regression model (cross entropy at around 0.7). The final response surface shown in Figure S13 considers

an interaction among ASIP - GAS8. Here, the logistic regression p-value (= 10−7) is much smaller

than the PCS p-value. However, all four models (CART null and alternative, logistic regression null and

alternative) have a similar prediction error (cross entropy at 0.589, 0.596, 0.589, 0.585, respectively).

From this, we conclude that there is less evidence for epistasis in this case, as the additive CART model

can explain the data just as well as a multiplicative interaction term.
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S1.3 An alternative approach to imputed gene expression dimension reduc-

tion via sub-batching

The extremely high dimensionality of the SNP features prohibited us from running iRF on the SNP data

directly. Therefore, in the epiTree pipeline we followed a biologically inspired dimension reduction step

via imputed gene expression and then first searched for interactions on the gene level, before going back

to the SNP level data. In the following, we describe an alternative approach which we also explored.

We performed an initial screen for important variants across sub-batches of SNPs. First, we parti-

tioned the full dataset into batches of 10,000 SNPs and fit a RF to predict the red hair phenotype from

each batch. We used the RF feature importance – mean decrease in Gini impurity (MDI) – to rank

SNPs and fitted separate iRFs using the top: 100, 500, 1000, and 2500 SNPs. This strategy parallels

marginal screening approaches, which filter a large set of variants based on associations between a single

gene and the target response. However, by using RF feature importance to screen SNPs, we maintain

the possibility of including interacting variants with weak main effects since decision paths reflect the

importance of a feature conditioned on previous splits in the path.

In principle, one advantage of the sub-batch over gene expression screening by iRF is that important

SNPs that do not influence gene expression are more likely to pass the initial screening procedure. That

is, SNPs that are not important in the PrediXcan model have a better chance of being picked up by iRF.

However, we found that regions with particularly strong effects (like MC1R for red hair) tend to mask

SNPs from regions with weaker effects. Aggregating SNPs at the gene level gives weaker SNPs a higher

chance to pass the initial screen. Interpreting interactions directly on the gene level also has practical

advantages. Follow up experiments are much easier to be performed on the gene level then on the SNP

level. Therefore, we focused on the gene-expression approach in our analysis.

S1.4 Details on parameter choices for iRF, ranger, and penalized logistic

regression

In the following, we provide further specific details on the choice of implementation and software param-

eters made in our analysis of the red hair phenotype for UK Biobank data with the epiTree pipeline.

Penalized logistic regression: The penalized logistic regression model was fit with the R package

glmnet, using default parameters for classification. The tuning parameter lambda was selected via cross

validation using the cv.glmnet function of the glmnet R package.

Random forest: The RF model was implemented in the R package ranger with default parameters

for classification. We note that our iRF model was also fit using ranger. As a result, differences

between iRF and RF can be directly attributed to iterative feature re-weighting, which is a form of
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“soft” regularization (see more details below).

iRF: For the iRF model, for k = 10, 50, 100, 500, 1000, 2500, we ran the first iteration with default

parameters for classification. We then applied hard thresholding on the top k features, with k selected by

minimizing out-of-bag error, followed by three iterations of iterative re-weighting (i.e. soft-thresholding).

For the gene level analysis k = 50, while the subsequent SNP level analysis used k = 1, 000. After

the final iteration, we then searched for interactions using RIT, where we grew many shallow trees, in

order to obtain a large set of candidate interactions (ntree = 5, 000, depth = 3, child = 5). To evaluate

stability of candidate interactions, we performed n.bootstrap = 50 bootstrap replicates and only included

candidate interactions that were consistently filtered in at least 50% of the replicates.

S1.5 Illustrative example of PCS p-value for simple linear regression with

one predictor

Here we compare classical and PCS p-values using a toy example: a linear model with a single feature

or predictor variable, given unit variance, and no intercept. In this simple setting, one can easily derive

closed form solutions for the classical p-value and the PCS p-value. We find that in situations where

the data is generated exactly from the hypothesized alternative model, the PCS p-value has reasonable

detection power, but the classical p-value is superior with fewer false negatives than the PCS p-value.

However, when models are misspecified, the PCS p-value is more robust, leading to fewer false positives

under a misspecified null model and fewer false negatives under a misspecified alternative model. In

most practical situations the hypothesised models are misspecified to some extent, especially in the big

data era. This suggests that the PCS p-value is favorable for most real data applications.

We consider a test data set {(y1, x1), . . . , (yn, xn)} with response values yi ∈ R and a single, fixed

covariate xi ∈ R, along with a separate training data set {(ỹ1, x̃1), . . . , (ỹn, x̃n)}, where we have assumed

for simplicity that the training and test data are of the same size. Further, to ease notation, in the

following we assume that
∑n
i=1 x

2
i =

∑n
i=1 x̃

2
i = 1. Our goal is to obtain and compare classical and PCS

p-values for the hypothesis testing problem

H0 : yi
i.i.d.∼ N (0, 1) vs. H1 : yi

ind.∼ N (c xi, 1) for some c > 0. (25)

Test statistic: We consider the test statistic as in a classical z-test, that is

T (Y ) =
n∑
i=1

xiyi, (26)
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with Y = (y1, . . . , yn)>. The classical p-value from the z-test is given by

p-value = Φ (−T (Y )) = Φ

(
−

n∑
i=1

xiyi

)
, (27)

where, again, Φ denotes the cumulative distribution function of the standard normal distribution. In

the following examples we compare this classical p-value to the respective PCS p-value. For the PCS

p-value we first obtain an estimate for both, the hypothesis model and the alternative model, from the

training data. For the alternative H1 we obtain an estimate for the coefficient c from the training data

{(ỹi, x̃i), i = 1, . . . , n} as

ĉ =
n∑
i=1

x̃iỹi. (28)

For the null hypothesis H0 there are no unknown parameters that need to be estimated.

PCS Prediction screening: In the prediction screening step, we use the test data to evaluate the

prediction error from the null model and the alternative model, where here we estimate the alternative

model using the training data as in (28). For the loss function, we consider the negative log-likelihood,

which equals the squared loss in the Gaussian case (25). More precisely, the prediction screening as in

(8) yields

PCS p-value = 1 if

n∑
i=1

y2i ≤
n∑
i=1

(yi − ĉxi)2 ⇔
n∑
i=1

xiyi ≤
1

2
ĉ. (29)

PCS Null perturbation: When the prediction screening does not result in a failure to reject the

null hypothesis, we simulate from the null perturbation. In this simple setting, the null hypothesis

corresponds to i.i.d. Gaussian white noise. Therefore, we perturb our true responses yi as follows:

Y0 = (y0,1, . . . , y0,n)> ∼ N ((0, . . . , 0)>, In×n), (30)

where In×n denotes the n× n identity matrix.

PCS p-value: We obtain a PCS p-value with test statistic T (Y ) as in (26) and null perturbation Y0

as in (30) via bootstrap samples as in (11). Note that in this case we can approximate the PCS p-value

as in (14) such that

PCS p-value ≈ P

(
n∑
i=1

xi (yi − y0,i) < 0

)
. (31)
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S1.5.1 Simulation studies

In the following simulations, we compare the classical p-value as in (27) and the PCS p-value as in

(31) under different probabilistic generating models for the responses yi (and ỹi, respectively). We

note that the PCS p-value requires a separate training data set, which is not required by the classical

p-value. In order to provide a fair comparison in all of our simulations studies , we use all available

data as test data for the classical p-value and for the PCS p-value we randomly split all available data

into a training and a test data sets of equal size. Below, we summarize our results. More details,

as well as further examples, can be found in a supplementary R Markdown file, available at https:

//github.com/merlebehr/epiTree/example_pcs_pvalues_linear_regression.R.

Figure S8: Distribution of classical p-value and PCS p-value for the hypothesis testing problem in (25)
with test statistic as in (26) for n = 1, 000 and a single dependent variables xi drawn independently from
a uniform distribution on [0, 1]. The black solid line corresponds to the PCS p-value, the black dotted
lines to the classical p-value, and the gray solid line to the identity. Results are obtained from 1, 000
Monte Carlo runs. Left: responses yi as in H0 in (25); Right: responses yi as in H1 in (25) with c = 4.

Classical setting – correctly specified model. Here we compare PCS and classical p-values under

the correctly specified model where data are generated exactly as indicated by (i) the null hypothesis

H0 and (ii) the alternative hypothesis H1. In these settings, the classical p-value outperforms the PCS

p-value. That is, the classical p-value has higher power under the alternative and maintains the correct

control over type I error. Of course, we note that in real data settings the “true” model is rarely known

and thus this performance is not expected in practice.

First, we consider the setting where the responses are generated from the H0 distribution as in (25)

with yi ∼ N (0, 1) independent for all i = 1, . . . , n. As seen in the left plot in Figure S8, both, the

classical p-value and the PCS p-value follow a sub-uniform distribution, indicated by the fact that their

cumulative distribution function (cdf) is smaller or equal to the identity line. The PCS p-value is a

bit more conservative than the classical p-value under the exact null distribution, indicated by the fact
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that the cdf of the PCS p-value is smaller or equal to the cdf of the classical p-value. However, for

smaller quantiles (that are of dominant interest in practice) the different between the PCS p-value and

the classical p-value distributions is almost negligible under the exact null distribution. For example, in

our Monte Carlo simulations we found that the PCS p-value is smaller than 0.05 in exactly 5% of cases,

which coincides with the classical p-value.

Second, we consider the situation where the responses follow a model as in H1 in (25) with yi ∼

N (c xi, 1) independent for all i = 1, . . . , n, for some fixed c > 0. The right plot in Figure S8 shows the

respective p-value distributions for c = 4. In this case, we find that the classical p-value outperforms the

PCS p-value, although the PCS p-value has high power. For example, at a nominal level of α = 0.05 the

classical p-value correctly rejects the null hypothesis in 99% of cases, but the PCS p-value rejects in only

64% of cases. Similar, at nominal level α = 0.1 the classical p-value rejects in 99.7% of cases, but the

PCS p-value in only 74.9% of cases. Intuitively, the reason for this is that exploring the full distribution

of the test statistic T (Y ) via the bootstrap sampling results in an additional variance term, which leads

to a weaker detection power when the observed responses exactly follow the specified alternative model

H1.

Misspecified model Here we compare PCS and classical p-values when data are generated under a

model that deviates slightly from the null H0 via a misspecified variance. That is, we assume that the

variance of observations Yi in (25) is not 1 but σ2 > 1. In this setting, we argue that it is preferable not

to reject H0. We find that the PCS p-value is robust to this model misspecification and behaves largely

the same way as in the correctly specified setting. In contrast, the classical p-value is highly sensitive to

this model misspecification, even in the simple linear model considered in our simulations.

Figure S9: Same as Figure S8, but with the right plot such that responses yi
i.i.d.∼ N (0, σ2) with σ = 10.

We let responses follow the null distribution H0 but with a larger variance σ2 � 1. That is, yi
i.i.d.∼

N (0, σ2). The right plot in Figure S9 shows the respective p-value distributions when σ = 10 (results for
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different values of σ are shown in the R markdown file at https://github.com/merlebehr/epiTree/

example_pcs_pvalues_linear_regression.R). In this case, we find that the classical p-value yields

severe false positives due to the model misspecification. For example, at a nominal level of α = 0.05 the

classical p-value falsely rejects the null hypothesis in 42% of cases. In contrast, the PCS p-value, via the

prediction screening as well as the bootstrap sampling, is robust to this misspecification. E.g., at nominal

level α = 0.05 the PCS p-value falsely rejects the null hypothesis in only 5% of cases, as is expected under

the null. Similar, at nominal level α = 0.01 the PCS p-value rejects in %1 of cases, but the classical

p-value still rejects in as much as 40% of cases. We stress that even when the null model is extremely

misspecified with a very large σ remarkably the PCS p-value is robust to this with no increase in the

type 1 error (see the supplementary R markdown file at https://github.com/merlebehr/epiTree/

example_pcs_pvalues_linear_regression.R).

In summary, in our simple simulation set-up, the PCS p-value is found to be more robust to a mis-

specified data generating process as it is almost always the case in practice, even though, as expected,

the classical p-value is found to work better than the PCS p-value when the data generative models

are specified correctly. In particular, the use of PCS p-values results in fewer false positives under the

null. Moreover, as detailed in the supplementary R markdown file at https://github.com/merlebehr/

epiTree/example_pcs_pvalues_linear_regression.R, the PCS p-value can result in fewer false nega-

tives when the alternative is misspecified. Of course, our simulation set-up is very simple. We neverthe-

less believe that the lessons learned hold in general. It is our current research to provide more extensive

evidence to support our belief that in practice the PCS p-value should be preferred over the classical

p-value, unless the very precise forms of H0 and H1 are carefully backed up by domain knowledge and

quantitative empirical evidence.

S2 Supplemental Figures
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Figure S10: Response surface for ASIP - DEF8, otherwise as Figure S6

Figure S11: Response surface for ASIP - DBNDD1, otherwise as Figure S6
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Figure S12: Response surface for ASIP - VPS9D1, otherwise as Figure S6

Figure S13: Response surface for ASIP - GAS8, otherwise as Figure S6
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Figure S14: Response surface for ZNF276 - RPL36P4, otherwise as Figure S6

Figure S15: Response surface for XPOTP1 - PKHD1, otherwise as Figure S6
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Figure S16: Decision trees for XPOTP1 - PKHD1 interaction. The decimal digits at the tip nodes
correspond to the predicted probability of red hair. The percentage at the tip nodes corresponds to the
percentage of training observations falling into this tip node.
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Figure S17: List of stable gene level interactions found by iRF (stability score > 0.5). The first column
shows the PCS p-value (orange) and p-value from logistic regression (gray) on a -log10 scale. The
second column shows percentage of bootstrap replicates of significant p-values (significant level 5% with
Bonferroni correction). The third column shows the prediction error (cross-entropy) on the test data of
the learned CART (orange) and logistic regression (gray) models for both, no-epistasis (light color) and
epistasis (dark color). The black vertical line shows the prediction error achieved by iRF using all the
gene features simultaneously.

Figure S18: Same as Figure S17, but for the variant level.
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Figure S19: Same as Figure S17, but for the top 20 PCS p-values among inter chromosome pairwise
brute force search of top 50 iRF genes (in terms of Gini importance).

Figure S20: Same as Figure S19 but restricted those interactions which are not between chromosome 16
and chromosome 20 genes.

Figure S21: Same as Figure S19 but for top p-values from logistic regression.
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Figure S22: Same as Figure S20 but for top p-values from logistic regression.

Figure S23: Same as Figure S17, but for the top 20 PCS p-value among all pairs of variants that enter
the PrediXcan model for CDK10 and SIAH2.
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