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Abstract

In classical computational neuroscience, transfer functions are derived from neuronal recordings
to derive analytical model descriptions of neuronal processes. This approach has resulted in a
variety of Hodgkin-Huxley-type neuronal models, or multi-compartment synapse models, that
accurately mimic neuronal recordings and have transformed the neuroscience field. However, these
analytical models are typically slow to compute due to their inclusion of dynamic and nonlinear
properties of the underlying biological system. This drawback limits the extent to which these
models can be integrated within large-scale neuronal simulation frameworks and hinders an uptake
by the neuro-engineering field which requires fast and efficient model descriptions. To bridge this
translational gap, we present a hybrid, machine-learning and computational-neuroscience approach
that transforms analytical sensory neuron and synapse models into artificial-neural-network (ANN)
neuronal units with the same biophysical properties. Our ANN-model architecture comprises
parallel and differentiable equations that can be used for backpropagation in neuro-engineering
applications, and offers a simulation run-time improvement factor of 70 and 280 on CPU or GPU
systems respectively. We focussed our development on auditory sensory neurons and synapses,
and show that our ANN-model architecture generalizes well to a variety of existing analytical
models of different complexity. The model training and development approach we present can
easily be modified for other neuron and synapse types to accelerate the development of large-scale
brain networks and to open up avenues for ANN-based treatments of the pathological system.

1 Introduction 1

Following the fundamental work of Hodgkin and Huxley in modelling action-potential generation 2

and propagation [1], numerous specific neuronal models were developed that proved essential 3

for shaping and driving modern-day neuroscience [2]. In classical computational neuroscience, 4

transfer functions between stimulation and recorded neural activity are derived and approximated 5

analytically. This approach resulted in a variety of stimulus-driven models of neuronal firing and 6

was successful in describing the nonlinear and adaptation properties of sensory systems [3–6]. For 7

example, the mechano-electrical transduction of cochlear inner-hair-cells (IHCs) was described 8

using conductance models [7–10], and the IHC-synapse firing rate using multi-compartment 9

diffusion models [11–13]. Such mechanistic models have substantially improved our understanding 10

of how individual neurons function, but even the most basic models use coupled sets of ordinary 11

differential equations (ODEs) in their descriptions. This computational complexity hinders their 12
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further development to simulate more complex behaviour, limits their integration within large- 13

scale neuronal simulation platforms, such as brain-machine interfaces [14, 15], and their uptake in 14

neuro-engineering applications that require real-time, closed-loop neuron model units [16,17]. 15

To meet this demand, neuroscience recently embraced deep-learning [18]; a technique that 16

quickly revolutionised our ability to construct large-scale neuronal networks and to quantify 17

complex neuronal behaviour [19–28]. These machine-learning methods can yield efficient, end- 18

to-end descriptions of neuronal transfer functions, population responses or neuro-imaging data 19

without having to rely on detailed analytical descriptions of the individual neurons responsible 20

for this behaviour. Deep Neural Networks (DNNs) learn to map input to output representations 21

and are composed of multiple layers with simplified units that loosely mimic the integration 22

and activation properties of real neurons [29]. Examples include DNN-based models that were 23

succesfully trained to mimic the representational transformations of sensory input [30, 31], or 24

DNNs that use neural activity to manipulate sensory stimuli [32, 33]. Even though deep-learning 25

has become a powerful research tool to help interpret the ever-growing pool of neuroscience and 26

neuro-imaging recordings [34, 35], these models have an important drawback when it comes to 27

predicting responses to novel inputs. DNNs suffer from their data-driven nature that requires 28

a vast amount of data to accurately describe an unknown system, and can essentially be only 29

as good as the data that were used for training. Insufficient experimental data can easily lead 30

to overfitted models that describe the biophysical systems poorly while following artifacts or 31

noise present in the recordings [36]. The boundaries of experimental neuroscience and limited 32

experiment duration hence pose a serious constraint on the ultimate success of ANN models in 33

predicting responses of neuronal systems. 34

To overcome these difficulties and merge the advantages of analytical and ANN model 35

descriptions, we propose a hybrid approach in which analytical neuronal models are used to 36

generate a sufficiently large and diverse dataset to train DNN-based models of sensory-cells and 37

synapses. A combination of traditional and machine-learning approaches was recently adopted 38

to optimise analytical model descriptions [37], but our method moves in the opposite direction 39

and takes advantage of deep-learning benefits to develop convolutional neural network (CNN) 40

models from mechanistic descriptions of neurons and synapses. We show here that the resulting 41

CNN models can accurately simulate outcomes of traditional Hodgkin-Huxley neuronal models 42

and synaptic diffusion models, but in a differentiable and computationally-efficient manner. The 43

CNN-based model architecture is compatible with GPU computing and facilitates the integration of 44

our model-units within large-scale, closed-loop or spiking neuronal networks. The most promising 45

design feature relates to the backpropagation property, a mathematically-complex trait to achieve 46

for nonlinear, coupled ODEs of traditional neural models. We will illustrate here how normal and 47

pathological CNN models can be used in backpropagation to modify the sensory stimuli such to 48

yield an optimised (near-normal) response of the pathological system. 49

We develop and test our hybrid approach on sensory neurons and synapses within the auditory 50

system. The cochlea, or inner-ear, encodes sound via the inner hair cells (IHCs). IHCs sense the 51

vibration of the basilar membrane in response to sound using their stereocilia, and translate this 52

movement into receptor potential changes. By virtue of Ca2+-driven exocytosis, glutamate is 53

released to drive the synaptic transmission between the IHC and the innervated auditory-nerve fiber 54

(ANF) synapses and neurons [38]. Experimentally extracted IHC parameters from in-vitro, whole- 55

cell patch clamp measurements of the cellular structures and channel properties [39,40] have led to 56

different model descriptions of the nonlinear and frequency-dependent IHC transduction [10,41–43]. 57

Parameters for analytical IHC-ANF synapse models have mainly been derived from single-unit 58

AN recordings to basic auditory stimuli in cats and small rodents [44–50]. Progressive insight into 59
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Fig 1. (a) Overview of the CoNNear model training and evaluation procedure. (b) Architecture
of the CoNNear inner-hair-cell transduction model. (c) Generic architecture used for the
CoNNear auditory-nerve-fiber synapse models.

the function of IHC-ANF synapses over the past decades has inspired numerous analytical model 60

descriptions of the IHC, IHC-ANF synapse and ANF neuron complex [11–13,51–61]. 61

To generate sufficient training data for our CNN-based models of IHC-ANF processing, we 62

adopted a state-of-the-art biophysical model of the human auditory periphery that simulates 63

mechanical as well as neural processing of sound [60]. We describe here how the CNN model 64

architecture and hyperparameters can be optimised for complex neuron or synapse models and 65

we evaluate the quality of our CNN models on the basis of key IHC-ANF complex properties 66

described in experimental studies, i.e., the IHC AC/DC ratio and excitation patterns, ANF firing 67

rate, rate-level curves and modulation synchrony. The stimuli we adopted for the evaluations were 68

not included in the CNN training datasets. We then determine the model run-time benefit over 69

analytical models and investigate the extent to which our methodology is generalisable to different 70

mechanistic descriptions of the IHC-ANF complex. Lastly, we provide two user cases: one in 71

which IHC-ANF models are connected to a CNN-based cochlear mechanics model (CoNNear [62]) 72

to capture the full transformation of acoustic stimuli into IHC receptor potentials and ANF firing 73

rates along the cochlear tonotopy and hearing range, and a second one where we illustrate how 74

backpropagation can be used to modify the CNN model input to restore a pathological output. 75

2 The CoNNear IHC and ANF models 76

Figure 1(a) depicts the adopted training and evaluation method to calibrate the parameters of each 77

CoNNear module. Three modules that correspond to different stages of the analytical auditory 78

periphery model described in Verhulst et al. [60] were considered: cochlear processing, IHC 79
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transduction and ANF firing. The calibration of the cochlear mechanics module (CoNNearcochlea) 80

is described elsewhere [62, 63], here we focus on developing the sensory neuron models (i.e., 81

CoNNearIHC and CoNNearANF). Fig. 1(a) illustrates the training procedure for the CoNNearANfL 82

module that approximates the functioning of a low-spontaneous-rate ANF. Acoustic speech 83

material is given as input to an analytical description of cochlear and IHC-ANF processing, after 84

which simulated ANF firing rates are used as training material to determine the CoNNearANfL 85

parameters. CoNNear modules were trained separately for each stage of the IHC-ANF complex, 86

resulting in one model for IHC transduction and three models for different ANF types: a high- 87

(H; 68.5 spikes/s), medium- (M; 10 spikes/s) and low- (L; 1 spike/s) spontaneous-rate (SR) ANF 88

fiber. We chose a modular approach because this facilitates future simulations of the pathological 89

system, where the IHC receptor potential can be impaired through presbycusis [64], or where 90

selective damage to the ANF population can be introduced through cochlear synaptopathy [65]. 91

Each module was modelled using a convolutional encoder-decoder architecture, consisting of 92

a distinct number of CNN layers, as shown in Figs. 1(b),(c). Within these architectures, each 93

CNN layer is comprised of a set of filterbanks followed by a nonlinear operation [18], except 94

for the last layer where the nonlinear operation was omitted. The parameters of the nonlinear 95

operations were shared across the frequency and time dimensions (first two dimensions) of the 96

model, i.e., weights were applied only on the filter dimension (third dimension). The encoder 97

CNN layers use strided convolutions, i.e., the filters were shifted by a time-step of two such to 98

half the temporal dimension after every CNN layer. Thus, after N encoder CNN layers, the 99

input signal was encoded into a representation of size L/2N × kN , where kN equals the number of 100

filters in the N th CNN layer. The decoder uses N deconvolution, or transposed-convolutional, 101

layers, to double the temporal dimension after every layer to re-obtain the original temporal 102

dimension of the input (L). Skip connections were used to bypass temporal audio information 103

from the encoder to the decoder layers to preserve the stimulus phase information across the 104

architecture. Skip connections have earlier been adopted for speech enhancement applications 105

to avoid the loss of temporal information through the encoder compression [66–69], and could 106

benefit the model-training to best simulate the nonlinear and the level-dependent properties of 107

auditory processing by providing interconnections between several CNN layers [62, 70]. Lastly, 108

we provided context information by making a number of previous and following input samples 109

also available to the CoNNear modules when simulating an input of length L. Because CNN 110

models treat each input independently, providing context is essential to avoid discontinuities at 111

the simulation boundaries and take into account the neural adaptation processes [62]. A final 112

cropping layer was added to remove the context after the last CNN decoder layer. Even though 113

we trained each module using a fixed L, CoNNear models can process input of any length L and 114

NCF once they are trained due to their convolutional architecture. 115

To provide realistic input to the IHC-ANF models for training, acoustic speech waveforms were 116

input to the cochlear model after which simulated cochlear basilar-membrane (BM) outputs were 117

used to train and evaluate the IHC-ANF models. To this end, the IHC transduction model was 118

trained using NCF = 201 cochlear filter outputs that span the human hearing range (0.1-12kHz) 119

and that were spaced according to the Greenwood place-frequency description of the human 120

cochlea [71]. Similarly, simulated IHC receptor potentials of the analytical model cochlear regions 121

(NCF = 201) were used as training material for the different ANF models. The CoNNear model 122

parameters of each module were optimised to minimise the mean absolute error (L1-loss) between 123

the predicted CoNNear outputs and the reference analytical model outputs. It should be noted 124

that even though we trained the models on the basis of 201 inputs, the optimal weights for a 125

single CF-independent IHC or ANF model were determined during the training phase. Thus, 126
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these model units can afterwards be connected to each NCF input to simulate CF-dependent IHC 127

or ANF processing of the entire cochlea. 128

To evaluate the CoNNear IHC-ANF models, it is important to characterise their properties 129

to acoustic stimuli that were not seen during training. Training was performed using a single 130

speech corpus [72], but IHC and ANF processing have very distinct adaptation, and frequency- 131

and level-dependent properties to basic auditory stimuli such as tones, clicks or noise. To test 132

how well the CoNNear modules generalise to unseen stimuli and to other analytical IHC-ANF 133

model descriptions, we evaluated their performance on a set of classical experimental neuroscience 134

recordings of IHC transduction and ANF firing. The six considered evaluation metrics together 135

form a thorough evaluation of the CoNNear IHC-ANF complex, and outcomes of these simulations 136

were used to optimise the final model architecture and its hyperparameters. Additional details on 137

the model architecture, training procedure and IHC-ANF evaluation metrics are given in Methods. 138

In the following sections, we first describe how we optimised the architectures of each CoNNear 139

model. We evaluate how well the trained CoNNear models capture signature experimental IHC 140

and ANF processing properties using stimuli that were not part of the model training. Afterwards, 141

we quantify the run-time benefit of our CoNNear models over the analytical descriptions and 142

show how the modules can be connected to simulate processing of the entire cochlear periphery. 143

To demonstrate the versatility of our method, we describe the extent to which our methodology 144

can be applied to different mechanistic descriptions of the IHC-ANF complex. And lastly, we 145

illustrate how the differential properties of our CoNNear models can be used within a closed-loop 146

backpropagation network to restore the function of a pathological system. 147

3 Determining the CoNNear hyperparameters 148

Table 1 shows the final layouts of all the CoNNear modules we obtained after taking into account: 149

(i) the L1-loss on the training speech material (i.e., the absolute difference between simulated 150

CNN and analytical responses), (ii) the desired auditory processing characteristics, and (iii) the 151

computational load. A principled fine-tuning approach was followed for each CoNNear module 152

architecture on which we elaborate in the following sections. 153

3.1 CoNNear IHC model 154

Fixed parameters: Prior knowledge of fine-tuning a neural-network-based model of human 155

cochlear processing [62] helped us to make initial assumptions about the needed architecture to 156

accurately capture the computations performed by the analytical IHC model [60]. The shorter 157

IHC adaptation time constants [73] enabled us to use fewer convolution layers and shorter filter 158

lengths than were used in the CoNNear cochlea model. Thus, we opted for an architecture 159

with 6 convolution layers and a filter length of 16. In each layer, 128 convolution filters were 160

used and a stride of 2 was applied for dimensionality reduction. Each layer was followed by a 161

hyperbolic-tangent (tanh) nonlinearity. The input length was set to Lc = 2048 + 2 · 256 = 2560 162

samples (102.8 ms). Figure 2 shows that the trained architecture (b) generally followed the 163

pure-tone excitation patterns of the reference model (a), but showed a rather noisy response 164

across CFs, especially for the higher stimulation levels. Although we tried architectures with 165

different layer numbers or filter durations, these models did not show significant improvements 166

over Fig. 2(b) and usually resulted in noisier responses, or responses with a smaller dynamic range. 167
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Fig 2. Comparing IHC excitation patterns. Simulated average IHC receptor potentials
across CF for tone stimuli, presented at levels between 10 and 90 dB SPL. From top to bottom,
the stimulus tone frequencies were 500Hz, 1 kHz and 2 kHz, respectively.

Hyperparameters: The shape of the activation function, or nonlinearity, is crucial to enable 168

CoNNear to learn the level-dependent cochlear compressive growth properties and negative signal 169

deflections present in BM and IHC processing. A tanh nonlinearity was initially preferred for 170

each CNN layer, since it shows a compressive characteristic similar to the outer-hair-cell (OHC) 171

input/output function [74] and crosses the x-axis. To optimise the rather noisy response of the 172

trained IHC model (Fig. 2(b)) different nonlinear activation functions were compared for the 173

encoder and decoder layers. Because the IHC receptor potential is expressed as a (negative) 174

voltage difference, we opted for a sigmoid nonlinear function in the decoding layers to better 175

capture the reference model outputs, while ensuring that the compressive nature present in the 176

tanh could be preserved. Figure 2(c) shows that using a sigmoid activation function instead 177

of a tanh for the decoder layers outperforms the tanh architecture (b) and better predicts the 178

excitation patterns of the reference model (a). 179

Figure 3 furthermore depicts how different combinations of activation functions affected the 180

simulated AC/DC ratios of the IHC responses across CF, and the half-wave rectified IHC receptor 181

potential as a function of stimulus level. The logarithmic decrease of the AC/DC ratio and the 182

linear-like growth of the IHC potential were predicted similarly using both architectures, but the 183

tanh architecture overestimated the responses for high frequencies and levels. Overall, a much 184

smoother response was achieved when using a sigmoid activation function in the decoder layers, 185

motivating our final choice for the CoNNear IHC architecture (Table 1). 186

3.2 CoNNear ANF models 187
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Fig 3. Comparing IHC transduction aspects. (a) Ratio of the AC and DC components of
the IHC responses across CF for 80 dB SPL pure-tone bursts compared against guinea pig
data [73]. (b) Root-mean-square of the half-wave rectified IHC receptor potential V IHC in
response to a 4-kHz pure-tone plotted as function of sound level.

Fixed parameters: Our modular approach enabled the use of the preceding stages to optimise 188

our ANF model parameters. To determine the architecture, we first took into account the 189

slower adaptation time constants (i.e., the much longer exponential decay) of the analytical ANF 190

model description compared to those observed in the cochlea and IHC [12]. The choice of the 191

window size L will thus be important to realistically capture the steady-state ANF response to 192

sustained stimulation, e.g., for acoustic pure tones. Figure 4(a) visualises the exponential decay of 193

simulated ANF firing rates, in response to a 1-kHz pure-tone presented at 70 dB SPL. At the time 194

corresponding to a window size of 2048 samples (∼100 ms), the firing rates of the three ANFs 195

have not significantly decayed to their steady state and hence we chose to use a longer window 196

duration of L of 8192 samples (∼400 ms) for our ANF models. At 400 ms, the firing rates of the 197

HSR, MSR and LSR fibers have respectively reached 99.5%, 95% and 93.4% of their final (1-sec) 198

firing rate (Fig. 4(a)). 199

Another important aspect relates to capturing the experimentally [49] as well as computationally 200

[60] observed slow recovery of ANF onset-peak responses after prior stimulation. Since CNN 201

models treat each input independently, the duration of the context window is crucial to sufficiently 202

present prior stimulation to the CoNNear ANF models. Figure 4(b) shows the exponential 203

recovery of the onset-peak, for simulated responses of the three ANF types, as a function of 204

the inter-stimulus interval between a pair of pure-tones. Two 2-kHz pure-tones were generated 205

according to experimental procedures [49], i.e., 100 ms pure-tones presented at 40 dB above the 206

firing threshold of each ANF (60, 65 and 75 dB for the HSR, MSR and LSR fibers respectively) 207

with an inter-stimulus interval from 0.1 to 1.9 secs. Since the 1.9-sec interval corresponds to 208

38,000 samples (fs = 20 kHz), a compromise was made to select a final context window that was 209

short enough to limit the needed computational resources, but that was still able to capture the 210

recovery and adaptation properties of the ANF models faithfully. We chose 7936 samples for the 211

context window (∼400 ms) which resulted in a total input size of Lc = 7936 + 8192 + 256 = 16384 212

samples. For a 400-ms inter-stimulus interval, the onset-peak of the HSR, MSR and LSR fibers has 213

recovered to the 92.4%, 94.2% and 95.8% of the onset-peak of the 1.9-sec interval tone respectively 214

(Fig. 4(b)). 215

We further illustrate the effect of adding a context window in Fig. 5, by simulating responses of 216

two trained CoNNear ANfL models to a 8192-sample-long 70-dB-SPL speech segment. Considering 217
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Fig 4. Parameter selection for the ANF models. (a) The firing rate of the three ANF
models is shown over time, as a response to a 1-sec long 1 kHz pure-tone presented at 70 dB SPL.
The percentages on the right side correspond to the percent of the steady state value that the
firing rate has reached at 0.4 secs for each fiber. (b) The normalised amplitude of the onset peak
is shown for a pair of 2 kHz pure-tones with interstimulus intervals from 0.1 to 1.9 seconds. Each
time, the maximum value of the response to the second tone is reported, normalised by the
maximum value of the response to the second tone with the longest interstimulus interval (1.9
sec). (c) From top to bottom, the simulated ANF LSR firing rate is shown for the reference ANF
model, a trained model with 8 encoder layers and a trained model with 14 encoder layers, in
response to a 70 dB pure-tone at 70 dB SPL.

an architecture with a short context window (c), the simulated response was unable to reach the 218

onset amplitude of the reference LSR fiber model (b) observed for the high CFs at approximately 219

100 ms (grey dashed box). At the same time, the response for the short context architecture 220

decayed to a more saturated output after the onset peak, compared to the reference model. In 221

contrast, when adopting an architecture with a longer context window (d), the CoNNear ANfL 222

model better captured the onset peak observed after the long inter-stimulus interval while showing 223

an unsaturated fiber response which was similar to the reference model (b). 224

Lastly, the much slower adaptation properties of the ANF responses and the chosen input size 225

of Lc = 16384 samples led us to realise that a larger number of CNN layers might be required 226

to model the ANF stage, compared to the IHC transduction stage. A much deeper architecture 227

might be necessary to simultaneously capture the characteristic ANF onset-peak and subsequent 228

exponentially-decaying adaptation properties of ANF firing rates to step-like stimuli, and this 229

is demonstrated in Fig. 4(c). A trained architecture consisting of 16 layers failed to capture the 230

adaptation properties of the LSR ANF, while the use of 28 layers successfully approximated the 231
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Fig 5. Simulated ANF firing rates for a 8192-sample-long speech stimulus. The
stimulus waveform is depicted in panel (a) and panels (b)-(d) depict the output firing rate (in
spikes/s) of the reference ANF LSR model (b) and two CoNNear ANF LSR architectures, with a
context of 256 samples (c) and 7936 samples (d) included on the left side of the input respectively.
The audio stimulus was presented to the reference cochlear and IHC model and the simulated
IHC receptor potential output was used to stimulate the three ANF models. The NCF=201
considered output channels are labeled per channel number: channel 0 corresponds to a CF of 100
Hz and channel 200 to a CF of 12 kHz.

reference firing rates. By introducing an architecture which encodes the input to a very condensed 232

representation, preferably of a size of 1, we can ensure that the long-term correlations existent in 233

the input can be captured faithfully by the convolutional filters. To this end, we opted for an 234

architecture of 28 total layers and a condensed representation of size 1×NCF (Fig. 1(c)) when 235

using a stride of 2 and an input size of Lc = 8192 + 7936 + 256 = 16384 samples (819.2 ms). Since 236

we adopted a deep architecture for the ANF models, the use of a long filter length was superfluous. 237

Hence, we decreased it from 16 to 8 when compared to the IHC model. The lower number of 238

coupled ODEs in the analytical ANF model description led us to further decrease the filter size 239

used in every layer from 128 to 64 filters per layer. 240

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 26, 2020. ; https://doi.org/10.1101/2020.11.25.388546doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.388546
http://creativecommons.org/licenses/by-nc-nd/4.0/


F
ir
in
g
ra
te

(s
p
ik
es
/s
)

0

500

1000

1500

(a) AN model

HSR

MSR

LSR

(b) CoNNearAN-prelu

HSR

MSR

LSR

(c) CoNNearAN-tanh/prelu

HSR

MSR

LSR

1
kH

z
p
u
re

to
n
e

(d) CoNNearAN-tanh/sigm

HSR

MSR

LSR

0

500

1000
HSR

MSR

LSR

HSR

MSR

LSR

HSR

MSR

LSR

4
kH

z
p
u
re

to
n
eHSR

MSR

LSR

0

500

1000

1500 HSR

MSR

LSR

HSR

MSR

LSR

HSR

MSR

LSR

1
kH

z
S
A
M

to
n
eHSR

MSR

LSR

0 20 40 60 80
0

500

1000

Time (ms)

HSR

MSR

LSR

0 20 40 60 80

Time (ms)

HSR

MSR

LSR

0 20 40 60 80

Time (ms)

HSR

MSR

LSR

0 20 40 60 80

4
kH

z
S
A
M

to
n
e

Time (ms)

HSR

MSR

LSR

Fig 6. Comparing firing rates among the different ANF models. Simulated ANF firing
rate across time for tone stimuli presented at 70 dB SPL. The blue, red and cyan graphs
correspond to the responses of the HSR, MSR and LSR fiber models respectively. From top to
bottom, the stimuli were 1 kHz, 4 kHz pure tones and 1kHz, 4 kHz amplitude-modulated tones.

Hyperparameters: The compressive properties of BM and IHC processing are not retained in 241

ANF processing, so a linear activation function (a Parametric ReLU; PReLU ) was initially used 242

for each CNN layer. Figure 6 shows the responses of the three trained CoNNear ANF models (b) 243

for different tonal stimuli in comparison to the reference ANF model (a). The firing rates of the 244

three ANF models, CoNNearANfH , CoNNearANfM and CoNNearANfL , are visualised in red, blue 245

and cyan respectively. 246

The good match between analytical and CoNNear predictions in Fig. 6 was extended to ANF 247

rate-level growth as well (Fig. 7), and together these simulations show that the chosen architecture 248

and PReLU non-linearity were suitable to model characteristic ANF properties of the three ANF 249

types. Compared to the reference firing rates, the architectures in panel (b) introduced noise, 250

which might be eliminated by using a more compressive activation function (tanh) between the 251

encoder layers. The tanh function was able to transform the negative potential of the IHC stage 252

to the positive firing response of the ANFs (Fig. 6(c)), and yielded similar firing rates for all ANF 253

models. However, for the CoNNearANfH and CoNNearANfM architectures, the tanh non-linearity 254

introduced an undesirable compressive behaviour at higher stimulus levels, as depicted in Fig. 7(a). 255

This was not the case for CoNNearANfL , and hence we also tested using a sigmoid nonlinearity 256

in the decoder layers. This combination of non-linearities (d) compressed the responses of the 257

CoNNearANfH and CoNNearANfM models even more, and negatively affected the onset responses. 258

However, this combination (d) was found to best approximate the LSR ANFs firing rates. Table 259

1 summarizes the final parameters we chose for each of CoNNear ANF architecture based on 260

simulations in Figs. 6 and 7. 261
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Fig 7. Level-dependent properties of the different ANF models. (a) From left to right,
ANF rate-level curves were simulated for the HSR, MSR and LSR ANF models respectively, at
CFs of 1 (dashed colored) and 4 kHz (solid colored). The reference data stemmed from guinea pig
(fibers with SRs of 65 spikes/s, 10 spikes/s and 0 spikes/sec at a CF of ∼1.5 kHz; Fig. 1 in [47])
and mouse recordings (CF of 18.8 kHz for SR of 47.6 spikes/s and CF of 23.7 kHz for SR of 0.1
spikes/s; Fig. 6 in [75]). (b) From left to right, ANF synchrony-level functions were calculated
for the HSR, MSR and LSR ANF models. For each ANF model, 1 kHz and 4 kHz pure tone
carriers were modulated by an fm = 100 Hz pure tone and presented at CFs of 1 (dashed colored)
and 4 kHz (solid colored). For each CF, vector strength to the fm is reported against the
stimulus intensity for the three fiber types. The reference data came from cat ANF recordings
(fibers of 8.1 kHz CF and 2.6 spikes/s, 1.14 kHz CF and 6.3 spikes/s, and 2.83 kHz and 73
spikes/s, respectively; Figs. 5 and 8 in [50]).

4 Evaluating simulated and recorded IHC-ANF properties 262

The excitation patterns of the final CoNNear IHC model (Fig. 2(c)) are generally consistent with 263

the reference IHC model (a). The IHC AC/DC components (Fig. 3(a)) followed the simulated and 264

measured curves well, and showed a slight overestimation for the lower frequency responses. The 265

simulated half-wave-rectified IHC receptor potential (Fig. 3(a)) corroborated the in-vivo guinea 266

pig IHC measurements [76], by showing an unsaturated, almost linear, growth of the half-wave 267

rectified IHC receptor potential (in dB) for stimulation levels up to 90 dB. 268

The properties of single-unit ANF responses were accurately captured by the CoNNear 269
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Table 1. Final parameter selection of the CoNNear architectures. The input length of
each model is Lc = Ll + L+ Lr and the output length (after cropping) is L samples. The
specified lengths L were used during training, but each architecture can process inputs of variable
lengths L after training.

Parameters L Ll Lr Total
Layers

Filters
/Layer

Filter
length

Encoder
activation

Decoder
activation

CoNNearIHC 2048 256 256 6 128 16 tanh sigmoid
CoNNearANfH 8192 7936 256 28 64 8 PReLU PReLU
CoNNearANfM 8192 7936 256 28 64 8 PReLU PReLU
CoNNearANfL 8192 7936 256 28 64 8 tanh sigmoid

architectures, as visualised in Figs. 6 and 7. For each ANF, the final architectures (Table 1) 270

followed the reference model firing rates across time (Fig. 6). As expected, phase-locking to the 271

stimulus fine-structure was present for the 1-kHz ANF response and absent for the 4-kHz ANF. 272

Phase-locking differences between the 1 and 4-kHz CF fibers were also evident from their responses 273

to amplitude-modulated tones. 274

The level-dependent properties of different ANF types were also captured by our CoNNear 275

architectures, as shown in Fig. 7. Compared to the reference data, the 4-kHz simulations captured 276

the qualitative differences between LSR, MSR and HSR guinea pig ANF rates well. The mouse rate- 277

level curves show somewhat steeper growth than our simulations, especially when comparing the 278

lower SR fiber data with the simulated MSR fiber responses. Given that the cochlear mechanics are 279

fundamentally different across species, it is expected that the responses are not overly generalisable 280

across species. The shape of the simulated rate-level curves was different for the different CF 281

fibers (1-kHz dotted lines compared to 4-kHz solid lines) despite the CF-independent parameters 282

of the ANF model. This illustrates that differences in BM processing across CF, given as input 283

to the IHC-ANF model, are still reflected in the shape of ANF rate-level curves. The smaller 284

dynamic range of levels encoded by the BM for the 1-kHz than the 4-kHz CF (e.g., Fig. 2 in [60]) 285

was also reflected, yielding ANF level-curve compression at lower stimulus levels for the 1-kHz CF. 286

Lastly, ANF synchrony-level curves were overall captured well by our final CoNNear ANF 287

architectures, while showing no apparent differences between the different non-linearities (Fig. 7(b)). 288

In qualitative agreement with the reference data, the maxima of the synchrony-level curves shifted 289

towards higher levels as the fibers’ threshold and rate-level slope increased. At the same time, 290

enhanced synchrony for LSR over HSR fibers was observed for medium to high stimulus levels, 291

with the most pronounced difference for the 1-kHz simulations (dotted lines). For MSR and LSR 292

fibers, the CoNNear models were able to simulate modulation gain, i.e., vector strength > 0.5 [50]. 293

5 CoNNear as a real-time model for audio applications 294

The CoNNear IHC-ANF computations can be sped up when run on an AI accelerator (GPU, 295

VPU etc.). Table 2 summarises the computation time required to execute the final CoNNear 296

architectures on a CPU and GPU, for 201-channel and single-channel inputs. A TIMIT speech 297

utterance of 2.3 secs was used for this evaluation and served as input to the analytical model [60] 298

to simulate the outputs of the cochlear and IHC stages. The cochlear BM outputs were then 299

framed into windows of 2560 samples (102.4 ms) to evaluate the CoNNear IHC model and the 300
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Table 2. Model processing time. Comparison of the average time required to calculate each
stage of the reference and the CoNNear model on a CPU (Intel Xeon E5-2620 v4) and a GPU
(Nvidia GTX 1080). For each of the separate stages, the reported time corresponds to the average
time needed to process a fixed-size input of NCF = 201 frequency channels (population response)
and NCF = 1 channel (single-unit response), corresponding to the output of the preceding stage
of the analytical model to a speech stimulus. The same results are shown for the CoNNear
IHC-ANF complex, after connecting all the individual modules. The last row shows the
computation time needed to transform a speech window input to ANF firing rates, after
connecting the CoNNear cochlea and IHC-ANF modules together.

Model Trainable Window CPU (s) GPU (ms)

parameters (samples) 201-CF 1-CF 201-CF 1-CF

IHC model N/A 2560 1.2707 0.6117 N/A
CoNNearIHC 1,317,505 2560 1.0262 0.0102 56.40 2.18
ANfH model N/A 16384 1.0553 0.7197 N/A

CoNNearANfH 1,250,177 16384 2.6792 0.0289 178.25 7.21
ANfM model N/A 16384 1.0508 0.7015 N/A

CoNNearANfM 1,250,177 16384 2.6820 0.0279 175.97 6.95
ANfL model N/A 16384 1.0590 0.7019 N/A

CoNNearANfL 1,248,449 16384 2.2074 0.0243 115.86 4.53

IHC-ANF model N/A 16384 9.7798 4.6532 N/A
CoNNearIHC-ANF 5,066,308 16384 11.8147 0.0676 803.48 16.61

Cochlea-IHC-ANF model N/A 16384 167.4808 N/A N/A
CoNNearcochlea-IHC-ANF 16,756,292 16384 12.6016 N/A 805.83 N/A

IHC outputs into windows of 16384 samples (819.2 ms) to evaluate the CoNNear ANF models. 301

The average computation time is shown for each separate module of the IHC-ANF complex and 302

the respective window size, as well as for the merged IHC-ANF model (CoNNearIHC-ANF) after 303

connecting all the separate modules together (see Methods). Lastly, our previously developed 304

CoNNear cochlear model [62] was connected with CoNNearIHC-ANF to directly transform the 305

speech inputs to ANF firing rates. 306

We did not observe a processing time benefit when running the IHC-ANF stages with 201- 307

channel inputs on a CPU: the CoNNear ANF models actually increased the computation time 308

on a CPU when compared to the reference models. However, the execution of the 201-channel 309

IHC-ANF models on the GPU reduced the computation time 12-fold, when compared to the 310

reference model CPU calculations. At the same time, our modular design choice makes it possible 311

to use CoNNearIHC-ANF modules for only a subset of CFs or for single-unit responses. A significant 312

speed up was seen for the latter case, with an almost 70-times faster CPU computation than for 313

the reference model and a 280-times speed up when executed on the GPU. ANF firing rates can 314

thus be simulated in ∼800 ms on a CPU, and less than 20 ms on a GPU for a stimulus window of 315

more than 800 ms. 316
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Fig 8. Comparison of different IHC analytical descriptions. (a) The ratio of the AC
and DC components of the IHC responses is compared between different IHC analytical models
across CF for 80-dB-SPL pure-tone bursts. (b) The IHC receptor potential output of the CNN
approximation is compared against the baseline Dierich et al. IHC model [10], in response to a
1-kHz pure-tone of 70 dB SPL.

6 Generalisability of the framework to other analytical model 317

descriptions 318

Here, we test whether our CNN-based IHC-ANF architectures can be used to approximate other 319

analytical model descriptions of auditory neurons and synapses. This attests to the generalisability 320

of our method for analytical model descriptions with varied levels of complexity. In Fig. 8, 321

simulated AC/DC ratios are compared between responses of CoNNearIHC and two other state-of- 322

the-art IHC analytical descriptions, the Zilany et al. [57] and Dierich et al. [10] models. The tonal 323

stimuli described in Methods were used as inputs to the Zilany et al. cochlea-IHC model, while 324

their extracted cochlear responses were used for the Dierich et al. IHC model. To demonstrate 325

that the presented neural-network framework is generalisable to different Hodgkin-Huxley and 326

diffusion-store model desciptions, we applied the IHC training approach (presented in Methods) 327

to the Dierich et al. model. In the same fashion, the cochlear outputs we used for training 328

CoNNearIHC were now used as inputs to the present model, and the same CNN architecture 329

(Table 1) was trained using the new datasets. Figure 8(a) shows that the trained CNN model was 330

able to accurately simulate the steady-state responses of this detailed IHC description, as reflected 331

by the AC/DC ratio. However, a property that was not fully captured by our architecture was 332

the adaptation of the responses after the stimulus onset, as shown in Figure 8(b). Due to the 333

higher number of non-linearities comprised in this analytical model (i.e., 7 conductance branches 334

in the Hodgkin-Huxley model), the CNN architecture might need to be adapted to include an 335

additional layer or longer filter durations to yield more accurate simulations. 336

Figure 9 compares the ANF rate-level and synchrony-level curves between the responses of 337

CoNNearANF and two other state-of-the-art ANF descriptions, included in the Zilany et al. [57] and 338

Bruce et al. [58] models. For both models, the auditory stimuli described in Methods were used as 339

inputs to the respective cochlea-IHC and ANF descriptions and the results were computed from 340

the post-stimulus time histogram (PSTH) responses using 100 stimulus repetitions. Once again, 341

we applied the training approach of the CoNNearANF architectures (see Methods) to approximate 342

the HSR, MSR and LSR fiber models present in the Zilany et al. AN description. The same 343

speech sentences were used as inputs to the Zilany et al. cochlea-IHC module to extract the IHC 344
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Fig 9. Comparison of different ANF analytical descriptions. (a) Rate-level curves for
the HSR, MSR and LSR models of different ANF analytical descriptions, in response to
tone-bursts at CFs of 1 (dashed colored) and 4 kHz (solid colored). (b) Synchrony-level functions
for the HSR, MSR and LSR models of different ANF analytical descriptions, in response to
modulated tones with carrier frequencies of 1 (dashed) and 4 kHz (solid) presented at CF. (c) For
each fiber type, the ANF mean firing rate outputs of the CNN approximations are compared
against the baseline Zilany et al. ANF model [57], in response to a 1-kHz tone-burst and a 1-kHz
SAM tone of 70 dB SPL (fm=100Hz).

potential responses, and the IHC outputs were subsequently given as inputs to the ANF module 345

to extract the mean firing rates for each fiber type. The resulting datasets were used to train 346

the CNN models, thus omitting the additive Gaussian noise and the subsequent spike generator 347

due to the noisy and probabilistic character which is beyond the scope of our model architectures. 348

However, after training the CNN models, the outputs can be fed to the spike generator present in 349

the analytical ANF model to simulate PSTH responses. 350

The trained CNN models accurately approximated mean firing rates of the different ANF 351

types, as shown in response to two different tonal stimuli (Fig. 9(c)). With the predicted outputs 352

given as inputs to the spike generator model, the simulated PSTH responses were used to compute 353

the ANF rate- and synchrony-level curves of the different types of ANFs (Fig. 9(a),(b)). The 354

predicted curves show a similar trend to the Zilany et al. ANF model, however it is not possible 355

to directly compare the resulting curves due to the inherent noise of the non-deterministic spike 356

generator model in the reference analytical model. 357

7 CoNNear applications 358

Apart from the execution-time speed-up, an important benefit of CNN models over their respective 359

analytical descriptions is given by their differentiable character. As a result, backpropagation 360

algorithms can be computed from the outputs of these models to train new neural-networks. An 361
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Fig 10. Training using CoNNear outputs. (a) The audio-signal processing DNN model is
trained to minimise the difference of the outputs of the two CoNNear IHC-ANF models (orange
pathway). (b) When processed by the trained DNN model, the input stimulus results to a firing
rate output for the second model that closely matches the firing rate of the first model.

example user case is presented in Fig. 10(a), where a DNN model was trained to minimise the 362

difference between the outputs of two IHC-ANF models: a normal and pathological model. Each 363

model comprised the CoNNearIHC and CoNNearANfH modules, and the firing rates of each model 364

were multiplied by a factor of 10 and 8 respectively, to simulate innervations of a normal-hearing 365

human IHC at 4 kHz (Fig. 5 in [77]), and a pathological IHC that has a 20% fiber deafferentation 366

due to cochlear synaptopathy [65]. The DNN model was trained based on the responses of these 367

two CoNNear models to modify the stimulus such to restore the output of the pathological model 368

back to the normal-hearing model output. Training was done using a small input dataset of 4 kHz 369

tones with different levels and modulation depths, normalised to the amplitude ranges of IHC 370

inputs, and the DNN model was trained to minimise the L1 loss between the time and frequency 371

representations of the outputs. After training, the DNN model provides a processed input x̂ to the 372

8-fiber model to generate an output r̂F that matches the normal-hearing firing rate rF as much as 373

possible. The result for a modulated tone stimulus is shown in Fig. 10(b), for which the amplitude 374

of the 8-fiber model response is restored to that of the normal-hearing IHC-ANF. This example 375

demonstrates the backpropagation capabilites of our CNN models and their application range can 376

be extended to more complex datasets such as a speech corpus, to derive suitable signal-processing 377

strategies for speech processing restoration in hearing-impaired cochleae. 378

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 26, 2020. ; https://doi.org/10.1101/2020.11.25.388546doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.388546
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 Discussion 379

Analytical descriptions of IHC-ANF processing have evolved over the years, with the IHC 380

transduction shifting from simplified low-pass filter implementations [13, 51, 56, 57, 59, 78] to 381

detailed models of basolateral outward K+ currents [7–10]. State-of-the-art IHC-ANF models 382

estimate the vibrations of the IHC stereocilia based on the mechanical drive to the IHC and 383

often describe the ANF spikes or instantaneous firing rate resulting from the depletion and 384

replenishment of different neurotransmitter stores [57, 58, 60, 79]. While such sensory models 385

have progressed to accurately capture the nonlinear properties of human hearing, they typically 386

comprise ”hand-constructed” mechanistic descriptions that incorporate coupled sets of ODEs to 387

describe small neuronal systems. 388

We presented a hybrid framework to develop a DNN-based model of IHC-ANF auditory process- 389

ing, CoNNearIHC-ANF. Different from pre-existing IHC-ANF models, the CoNNear architectures 390

are based on DNNs that are differentiable and computationally efficient to accelerate and facilitate 391

future studies of complex neuronal systems and behaviours. Our general framework for modelling 392

sensory-cells and synapses consists of the following steps: (i) Derive an analytical description of 393

the biophysical system using available neuroscience recordings. (ii) Use this analytical description 394

to generate a training dataset that contains a broad and representative set of sensory stimuli. 395

(iii) Define a suitable DNN-based architecture and optimise its hyperparameters on the basis of 396

the training dataset and its performance on known physiological characteristics. (iv) Train the 397

architecture to predict the behaviour of the biophysical system and evaluate using unseen data. 398

Apart from requiring an analytical description that accurately describes the system, we showed 399

that a careful design of the DNN architecture and a broad range of sensory input stimuli are 400

essential to derive a maximally generalisable model. 401

The resulting IHC-ANF complex models were trained to apply the same operations to each 402

frequency channel, such that they can be used for either single-unit or population response 403

simulations across the cochlear partition. Simulating all NCF = 201 frequency channels on the 404

same CPU negatively impacted the required computation time compared to analytical descriptions, 405

but nevertheless resulted in a biophysically-plausible, and rather versatile, model description. 406

Single-channel CoNNearIHC-ANF CPU simulations did offer a 70-fold speed-up compared to their 407

analytical counterparts, and can be executed with latencies below 20 ms when simulating ∼800 ms 408

inputs on a GPU. This holds promise for the future uptake of our models within audio-processing 409

pipelines that require real-time processing capabilities. At the same time, our models offer 410

a differentiable solution that can directly be used in closed-loop systems for auditory feature 411

enhancement or augmented hearing. 412

The trained DNN models can be further optimised using normal or pathological experimental 413

data via transfer learning [63], or can be retrained on the basis of large neural datasets, when these 414

become available. Approximately 3 and 8 days were needed to train each CoNNear ANF model and 415

IHC model, respectively. To improve these training durations, a different scaling of the datasets, 416

or batch normalisation between the convolutional layers, could prove beneficial [80]. Lastly, when 417

considering their use for real-time applications, where ANF adaptation and recovery properties 418

may be of lesser importance, it is possible to further reduce the context and window sizes of the 419

ANF CoNNear models and bring execution times below 10 ms. However, this will always result in 420

saturated, steady-state responses, rendering the models blind to long inter-stimulus intervals and 421

unable to fully capture recovery properties, as visualised in Figs. 4 and 5. A different approach 422

could be the use of recurrent layers (e.g., LSTM) within the CoNNear architectures to capture 423

the dependency to prior stimulation without requiring long context windows. 424
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We demonstrated that the proposed framework and architectures generalises well to unseen 425

stimuli as well as to other auditory sensory cell and synapse model descriptions, and this provides 426

a promising outlook. On the one hand, our method might be applicable to other neuronal systems 427

that depend on nonlinear and/or coupled ODEs (e.g., see also their application to cochlear me- 428

chanics descriptions [62]). On the other hand, the CNN model architectures can easily be retrained 429

when improved analytical model descriptions become available. When properly benchmarked, 430

CNN-based neuronal models can provide new tools for neuroscientists to explain complex neuronal 431

mechanisms such as heterogenous neural activity, circuit connectivity or optimisation [34,35]. 432

9 Conclusion 433

CoNNear presents a new method for projecting complex mathematical descriptions of neuron 434

and synapse models, while providing a differentiable solution and accelerated run-time. Our 435

proposed framework was applied to different auditory Hodgkin-Huxley neuron and synapse models, 436

providing a baseline methodology for approximating nonlinear biophysical models of sensory 437

systems. The presented CoNNearIHC-ANF model can simulate single-unit responses, speeding up 438

the IHC-ANF processing, or population responses across a number of simulated tonotopic locations 439

(default NCF = 201) when connected to a cochlear model, preferably the CoNNearcochlea [62]. 440

The developed CoNNear models are suitable for implementation in data processing devices 441

such as a cochlear implant to provide biophysically-accurate stimuli to the auditory nerve. The 442

ANF responses could also be used to drive neural-network back-ends that simulate brainstem 443

processing or even the generation of auditory evoked potentials, such as the auditory brainstem 444

response [59, 60] or the compound action potential [81]. All the developed CoNNear architectures 445

can easily be integrated as part of brain networks, neurosimulators, or closed-loop systems for 446

auditory enhancement or neuronal-network based treatments of the pathological system. Further 447

neural network models can be developed on the basis of the present framework to compose large- 448

scale neuronal networks and advance our understanding of the underlying mechanisms of such 449

systems, making use of the transformative ability of backpropagating through these large-scale 450

systems. We think that this type of neural networks can provide a breakthrough to delve deeper 451

into unknown systems of higher processing levels, such as the brainstem, midbrain and cortical 452

pathway of the human auditory processing. 453
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The source code of the auditory periphery model used for training is available via 10.5281/zen- 462

odo.3717431 or github/HearingTechnology/Verhulstetal2018Model, the TIMIT speech corpus used 463

for training can be found online [72]. All figures in this paper can be reproduced using the trained 464

CoNNear models. A supplementary zip file is included which contains the evaluation procedure of 465

the trained CoNNear models. 466
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Methods 477

The procedure of Fig. 1(a) was used to train the CoNNear IHC and ANF modules using simulated 478

responses of an analytical Hodgkin-Huxley-type IHC model [43] and a three-store diffusion model 479

of the ANF synapse [9] respectively. We adopted the implementations described in [60] and found 480

on 10.5281/zenodo.3717431. 481

Figure 1(b) depicts the CoNNear IHC encoder-decoder architecture we used: an input of size 482

Lc ×NCF cochlear BM waveforms is processed by an encoder (comprised of three CNN layers) 483

which encodes the input signal into a condensed representation, after which the decoder layers 484

map this representation onto L×NCF IHC receptor potential outputs, for NCF = 201 cochlear 485

locations corresponding to the filters’ centre frequencies. Context is provided by making the 486

previous Ll = 256 and following Lr = 256 input samples also available to an input of length 487

L = 2048, yielding a total input size of Lc = Ll + L+ Lr = 2560 samples. 488

The three CoNNear ANF models follow an encoder-decoder architecture as depicted in Fig. 1(c): 489

an IHC receptor potential input of size Lc × NCF is first processed by an encoder (comprised 490

of N = 14 CNN layers) which encodes the IHC input signal into a condensed representation 491

of size 1 × kN using strided convolutions, after which the decoder, using the same number of 492

layers, maps this representation onto L×NCF ANF firing outputs corresponding to NCF = 201 493

cochlear centre frequencies. Context is provided by making the previous Ll = 7936 and following 494

Lr = 256 input samples also available to an input of length L = 8192, yielding a total input size 495

of Lc = Ll + L+ Lr = 16384 samples. 496
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Training the CoNNear IHC-ANF complex 497

The IHC-ANF models were trained using reference analytical BM or IHC model simulations [60] 498

to 2310 randomly selected recordings from the TIMIT speech corpus [72], which contains a large 499

amount of phonetically balanced sentences with sufficient acoustic diversity. The 2310 TIMIT 500

sentences were upsampled to 100 kHz to solve the analytical model accurately [82]. The root- 501

mean-square (RMS) energy of half the sentences was adjusted to 70 dB and 130 dB sound pressure 502

level (SPL), respectively. These levels were chosen to ensure that the stimuli contained sufficiently 503

high instantaneous intensities, necessary for the CoNNear models to capture the characteristic 504

input-output and saturation properties of individual IHC [47] and ANFs [76]. 505

BM displacements, IHC potentials and ANF firing rates were simulated across 1000 cochlear 506

sections with CFs between 25 Hz and 20 kHz [60]. The corresponding 1000 yBM, Vm and ANfh/m/l 507

output waveforms were downsampled to 20 kHz and only 201 uniformly distributed CFs between 508

112 Hz and 12 kHz were selected to train the CoNNear models. Above 12 kHz, human hearing 509

sensitivity becomes very poor [83], motivating the chosen upper limit of considered CFs. The 510

simulated data were then transformed into a one-dimensional dataset of 2310 × 201 = 464310 511

different training sequences. This dimension reduction was necessary because the IHC and ANF 512

models are assumed to have CF-independent parameters, whereas the simulated BM displacements 513

have different impulse responses for different CFs, due to the cochlear mechanics [84]. Hence, 514

parameters for a single IHC or ANF model (NCF = 1) were determined during training, based on 515

simulated CF-specific BM inputs and corresponding IHC, or ANF outputs from the same CF. 516

For each of the resulting 464310 training pairs, the simulated BM and IHC outputs were sliced 517

into windows of 2048 samples with 50% overlap and 256 context samples for the IHC model. In 518

the case of the ANF models, silence was also added before and after each sentence with duration 519

of 0.5 and 1 s, respectively, to ensure that our models can accurately capture the recovery and 520

adaptation properties of ANF firing rates. The resulting simulated IHC and ANF outputs were 521

sliced into windows of 8192 samples with 50% overlap, using 7936 context samples before and 256 522

samples after each window. 523

A scaling of 106 was applied to the simulated BM displacement outputs before they were given 524

as inputs to the CoNNear IHC model, expressing them in [µm] rather than in [m]. Similarly, 525

the simulated IHC potential outputs were multiplied by a factor of 10, expressed in [dV] instead 526

of [V], and a scaling of 10−2 was applied to the simulated ANF outputs, expressing them in 527

[x100 spikes/s]. These scalings were necessary to enforce training of CoNNear with sufficiently 528

high digital numbers, while retaining as much as possible the datasets’ statistical mean close to 529

0 and standard deviation close to 1 to accelerate training [80]. For visual comparison between 530

the original and CoNNear outputs, the values of the CoNNear models were scaled back to their 531

original units in all following figures and analyses. 532

CoNNear model parameters were optimised to minimise the mean absolute error (L1-loss) 533

between the predicted CoNNear outputs and the reference analytical model outputs. A learning 534

rate of 0.0001 was used with an Adam optimiser [85] and the entire framework was developed 535

using the Keras machine learning library [86] with a Tensorflow [87] back-end. 536

After completing the training phase, the IHC and ANF models were extrapolated to compute 537

the responses across all 201 channels corresponding to the NCF = 201 tonotopic centre frequencies 538

located along the BM. The trained architectures were adjusted to apply the same calculated 539

weights (acquired during training) to each of the NCF channels of the input, providing an output 540

with the same size, as shown in Fig. 1(c). In the same way, the trained models can easily simulate 541

single-CF IHC responses, or be used for different numbers of channels or frequencies than those 542
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we used in the cochlear model. 543

Evaluating the CoNNear IHC-ANF complex 544

Three IHC and three ANF evaluation metrics were used to determine the final model architecture 545

and its hyperparameters, and to ensure that the trained models accurately captured auditory 546

properties, did not overfit to the training data and can be generalised to new inputs. Even though 547

any speech fragment can be seen as a combination of basic stimuli such as impulses and tones of 548

varying levels and frequencies, the acoustic stimuli used for the evaluation can be considered as 549

unseen to the models, as they were not explicitly present in the training material. The evaluation 550

stimuli were sampled at 20 kHz and had a total duration of 128 ms (2560 samples) and 819.2 ms 551

(16384 samples) for the CoNNear IHC model and the CoNNear ANF models, respectively. The 552

first 256 samples of the IHC stimuli and 7936 samples of the ANF stimuli consisted of silence, to 553

account for the respective context of the models. Each time, the evaluation stimuli were passed 554

through the preceding processing stages of the analytical model to provide the necessary input for 555

each CoNNear model, i.e., through the cochlear model for evaluating the CoNNear IHC model 556

and through the cochlear and IHC models for evaluating the CoNNear ANF models. 557

IHC excitation patterns 558

Inner-hair-cell excitation patterns can be constructed from the mean IHC receptor potential at 559

each measured CF in response to tonal stimuli of different levels. Similar to cochlear excitation 560

patterns, IHC patterns show a characteristic half-octave basal-ward shift of their maxima as 561

stimulus level increases [88]. These excitation patterns also reflect the nonlinear compressive 562

growth of BM responses with level observed when stimulating the cochlea with a pure-tone which 563

has the same frequency as the CF of the measurement site in the cochlea [89]. 564

We calculated excitation patterns for all 201 simulated IHC receptor potentials in response to 565

pure tones of 0.5, 1 and 2 kHz frequencies and levels between 10 and 90 dB SPL using: 566

tone(t) = p0 ·
√

2 · 10L/20 · sin(2πftonet), (1)

where p0 = 2 × 10−5Pa, L corresponds to the desired RMS level in dB SPL and ftone to the 567

stimulus frequencies. The pure-tones were multiplied with Hanning-shaped 5-ms ramps to ensure 568

gradual onsets and offsets. 569

IHC transduction aspects 570

Palmer and colleagues recorded intracellular receptor potentials from guinea-pig IHCs in response 571

to 80-dB-SPL tones [73], and reported the ratio between the AC and DC response components as 572

a function of stimulus frequency. The AC/DC ratio shows a smooth logarithmic decrease over 573

frequency and is used as a metric to characterise synchronisation in IHCs, with higher ratios 574

indicating more efficient phase-locking. Our simulations were conducted for 80-ms, 80-dB-SPL 575

tone bursts of different frequencies presented at the respective CFs, and were compared against 576

experimental AC/DC ratios reported for two guinea-pig IHCs. We used a longer stimulus than 577

adopted during the the experimental procedures (50 ms), to ensure that the AC component would 578

reach a steady-state response after the stimulus onset. A 5-ms rise and fall ramp was used for 579

the stimuli, and the AC and DC components of the responses were computed within windows of 580

50-70 ms after and 5-15 ms before the stimulus onset, respectively. 581
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Capturing the dynamics of outward IHC K+ currents has an important role in shaping 582

ANF response properties of the whole IHC-ANF complex [9,10]. This feature of mechanical-to- 583

electrical transduction compresses IHC responses dynamically and thereby extends the range of 584

vBM amplitudes that can be encoded by the IHC, as postulated in experimental and theoretical 585

studies [8,39]. As the vBM responses only show compressive growth up to levels of 80 dB SPL [60,62], 586

the simulated half-wave rectified IHC receptor potential is expected to grow roughly linearly with 587

SPL (in dB) for stimulus levels up to 90 dB SPL, thus extending the compressive growth range by 588

10 dB. To simulate the IHC receptor potential, tonal stimuli with a frequency of 4 kHz and levels 589

from 0 to 100 dB SPL were generated, using the same parameters as before (80-ms duration, 5-ms 590

rise/fall ramp). The responses were half-wave rectified by subtracting their DC component, and 591

the root-mean-square of the rectified responses was computed for each level. 592

ANF firing rates 593

We evaluate key properties of simulated ANF responses to amplitude-modulated and pure tone 594

stimuli for which single-unit reference ANF recordings are available. We simulated the firing rate 595

for low-, medium- and high- SR fibers to 1 and 4-kHz tone-bursts and amplitude-modulated tones, 596

presented at 70 dB SPL and calculated at the respective CFs. Based on physiological studies 597

that describe phase-locking properties of the ANF [50, 90], stronger phase-locking to the stimulus 598

fine structure is expected for the 1-kHz fiber response than for the 4-kHz, where the response is 599

expected to follow the stimulus envelope after its onset. Similar differences are expected for the 600

amplitude-modulated tone responses as well. 601

The pure-tone stimuli were generated according to Eq. 1 and the amplitude-modulated tone 602

stimuli using: 603

SAM-tone(t) = [1 +m · cos(2πfmodt+ π)] · sin(2πftonet), (2)

where m = 100% is the modulation depth, fmod = 100 Hz the modulation frequency, and ftone 604

the stimulus frequency. Amplitude-modulated tones were multiplied with a 7.8-ms rise/fall ramp 605

to ensure a gradual onset and offset. The stimulus levels L were adjusted using the reference 606

pressure of p0 = 2× 10−5 Pa, to adjust their root-mean-square energy to the desired level. 607

ANF level-dependent properties 608

Rate-level curves can be computed to evaluate ANF responses to stimulus level changes, in 609

agreement with experimental procedures [47, 75]. Using Eq. 1, we generated pure-tone stimuli 610

(50-ms duration, 2.5-ms rise/fall ramp) with levels between 0 and 100 dB and frequencies of 611

approximately 1 and 4 kHz, based on the corresponding CFs of the ANF models (1007 and 612

3972.7 Hz). The rate levels were derived by computing the average response 10-40 ms after 613

the stimulus onset (i.e., excluding the initial and final 10 ms, where some spike intervals may 614

include spontaneous discharge [75]). Data from the experimental studies are plotted alongside our 615

simulations and reflect a variety of experimental ANF rate-level curves from different species and 616

CFs. 617

Synchrony-level functions were simulated for fully-modulated 400-ms long pure tones with a 618

modulation frequency fm of 100 Hz [50] and carrier frequencies of 1007 and 3972.7 kHz (henceforth 619

referred to as 1 and 4 kHz), generated using Eq. 2. Synchrony to the stimulus envelope was 620

quantified using vector strength [91] and was calculated by extracting the magnitude of the fm 621

component from the Fourier spectrum of the fibers’ firing rate. The fm magnitude was normalised 622

to the DC component (0 Hz) of the Fourier spectrum, corresponding to the average firing rate of 623
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CoNNearANfH

CoNNearANfM

CoNNearANfL

CoNNearIHCCoNNearcochlea

Fig 11. CoNNear model of the auditory periphery. Acoustic stimuli can be transformed
to IHC receptor potentials and ANF firing rates along the cochlear tonotopy and hearing range,
after connecting the CoNNear cochlea [62], IHC and ANF modules together.

the fiber [90]. Experimental synchrony-level functions [50] show a non-monotonic relation to the 624

stimulus level and exhibit maxima that occur near the steepest part of ANF rate-level curves. 625

Connecting the different CoNNear modules 626

We considered the evaluation of each CoNNear module separately, without taking into account 627

the CoNNear models of the preceding stages and thus eliminating the contamination of the 628

results by other factors. Each time, the evaluation stimuli were given as inputs to the reference 629

analytical model of the auditory periphery and the necessary outputs were extracted and given as 630

inputs to the respective CoNNear models. However, the different CoNNear models can be merged 631

together to form different subsets of the human auditory periphery, such as CoNNearIHC-ANF 632

or CoNNearcochlea-IHC-ANF, by connecting the output of the second last layer of each model 633

(before cropping) to the input layer of the next one. This can show how well these models can 634

work together and how any internal noise in these neural-network architectures would affect the 635

final response for each module. Using a CNN model of the whole auditory periphery (Fig. 11), 636

population responses can be simulated and similar ANN-based back-ends can be added afterwards 637

to expand the pathway and simulate higher levels of auditory processing. 638
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