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ABSTRACT 

 

Induced differentiation is one of the most experience- and skill-dependent experimental processes in regenerative 
medicine, and establishing optimal conditions often takes years. We developed a robotic AI system with a batch Bayesian 
optimization algorithm that autonomously induces the differentiation of induced pluripotent stem cell-derived retinal pigment 
epithelial (iPSC-RPE) cells. The system performed 216 forty-day cell culture experiments, with a total experimentation time 
of 8,640 days. From 200 million possible parameter combinations, the system performed cell culture in 143 different 
conditions in 111 days, resulting in 88% better iPSC-RPE production than that by the pre-optimized culture in terms of 
pigmented scores. Our work demonstrates that the use of autonomous robotic AI systems drastically accelerates systematic 
and unbiased exploration of experimental search space, suggesting immense use in medicine and research. 

 
 
 

INTRODUCTION 
 

Automating scientific discovery is one of the grandest 
challenges of the 21st century (1, 2). A promising 
approach involves creating a closed loop of computation 
and experimentation by combining AI and robotics (3). A 
relatively simple form of autonomous knowledge 
discovery involves searching for optimal experimental 
procedures and parameter sets through repeated 
experimentation and result validation, according to a 
predefined validation method. For example, in material 
science, the parameters associated with the growth of 
carbon nanotubes have been explored using an 
autonomous closed-loop learning system (4). In 
experimental physics, Bayesian optimization has been 
used to identify the optimal evaporation ramp conditions 
for Bose–Einstein condensate production (5). In 2019, a 
promoter-combination search in molecular biology was 
automated using an optimization algorithm-driven robotic 
system (6).  

Here, we report the development of a robotic search 
system that autonomously determines the optimal 
conditions for cell culture. Cell culture is probably one of 

the most delicate procedures in two respects. First, the 
parameters related to physical manipulation can greatly 
affect the outcome of the experiment (7). Secondly, it 
takes a long time to execute a series of protocols. For 
example, in regenerative medicine, cells need to be 
artificially differentiated from embryonic stem cells or 
induced pluripotent stem cells (ES/iPS cells) through 
hundreds of experimental procedures that typically last 
for weeks or months. During these processes, cells are 
given chemical inputs (e.g., type, dose, and timing of 
reagents) and physical inputs (e.g., strength of pipetting, 
vibration during handling of plates, timing of transfer 
from/to CO2 incubator, and accompanying changes in 
temperature, humidity, CO2 concentration etc.). Due to 
the heterogeneous and complex internal states of cells, 
suitable culture conditions must be determined for each 
strain and/or lot (8). A small difference in a single 
chemical stimulus or physical procedure can lead to 
failure of differentiation or poor quality of the produced 
cells, and such consequences can often become 
experimentally detectable only days or weeks after the 
input is given (9). Therefore, manual cell culture, which is 
highly skill-dependent, is often inefficient, error-prone, 
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and lacks scalability, which is a crucial drawback in 
medical and industrial applications. 

It is advantageous to utilize high-accuracy and 
programmable robot arms for the search of optimal cell 
culture parameters. Because programs and sensors 
describe everything that occurs in the lab, robotization 
realizes nearly perfect control and parameterization of 
experimental procedures. Furthermore, unlike human 
hands, robot arms can repeat the same procedure many 
times, ensuring reproducibility by keeping all the 
parameters related to physical procedures constant. 
Although some automated cell culture machines have 
already been proposed (10), proper formulation of an 
autonomous search for optimal culture conditions has not 
yet been determined. 

In this study, we combined a Maholo LabDroid (11) 
and an AI system that independently evaluates the 
experimental results and plans the next experiments to 
realize an autonomous robotic search for optimal culture 
conditions. We first created a digital representation of the 
regenerative medical cell culture protocol used for the 
induction of retinal pigment epithelial (RPE) cells from iPS 
cells (iPSC-RPE cells) (12), which can be executed by 
the robot and used as a template for an AI-driven 
parameter search. We then implemented the 
experimental protocol on a LabDroid, which is a versatile 
humanoid robot that can perform a broad range of 
experimental procedures. Its flexibility allows frequent 
changes in protocols and protocol parameters, making it 
suitable for use in experimental parameter searches. The 
robot has an integrated microscope, providing data for 
image-processing through AI which evaluates the quality 
of growing cells. The search process was mathematically 
formulated as a type of experimental design problem, and 
a batch Bayesian optimization (BBO; Figs. 1, S1, S2) 
technique was employed as a solver. Finally, we 
demonstrated that iPSC-RPE cells generated by 
LabDroid satisfy the cell biological criteria for 
regenerative medicine research applications. 

 
 

RESULTS 
 

Robotization of the iPSC-RPE differentiation protocol 
An overview of the iPSC-RPE differentiation protocol 

used for optimization is shown in Figs. 2A and S1. It 
consists of five steps: seeding, preconditioning, passage, 
induction of RPE differentiation (induction), and RPE 
maintenance culture. The day on which the passage was 
performed was defined as differentiation day (DDay) 0, 
and the cultured cells were sampled and validated on 
DDays 33 and 34. To implement this protocol using 
LabDroid, the necessary peripheral devices were 
installed on and around LabDroid's workbench (Figs. 2B, 
S3). We designed the system to work simultaneously with 
eight 6-well plates per batch, for a total of 48 cell-
containing wells. LabDroid was programmed for three 
types of operations: seeding, medium exchange, and 

passage (Figs. S4–9; Table S1; Movie S1). The steps 
for the preconditioning and induction, which correspond 
to the preparation of reagents, were named medium 
exchange type I, and the step for RPE maintenance 
culture, which does not involve reagent preparation, was 
named medium exchange type II (Figs. 2A, S4). 

First, we used LabDroid to perform baseline 
experiments involving iPSC-RPE induced differentiation 
under the same conditions as the typical manual 
operations. Because of the differences in structure and 
experimental environment between the LabDroid and 
humans, some operations and movements, such as the 
use of a centrifuge, the presence or absence of cell 
counting at the time of passage, and the speed of 
movement, differed from those of humans. For example, 
achieving the same time interval for trypsin treatment in 
all wells of a single plate during cell detachment using 
LabDroid is difficult. Therefore, the passage operation 
was performed at six separate time intervals. The cells 
differentiating into RPEs produce melanin, which causes 
them to turn brown. Therefore, the area ratio of the total 
number of pigmented cells on DDay 34 was used to 
estimate the differentiation induction efficiency and obtain 
evaluation scores, following the example of previous 
studies (10, 13) (Fig. S14). These validation scores were 
used to simplify the validation process and do not reflect 
the entire quality of the RPE. 

Baseline experiments were conducted and validated 
using six trypsin conditions and eight plates (Figs. 2C–E, 
S15; Table S2). The highest-scoring trypsin treatment 
was 20 min at 37 °C, followed by 14 min incubation at 
room temperature, with an eight-plate score of 0.44 ± 
0.03 (mean ± SEM, n = 8). The lowest-scoring of the six 
trypsin conditions was incubated for 20 min at 37 °C 
followed by 23 min at room temperature, with an eight-
plate score of 0.33 ± 0.02 (mean ± SEM, n = 8). LabDroid 
successfully performed the iPSC-RPE protocol, as 
evidenced by the detection of pigmented cells in all 48 
wells and the lack of errors in the operating process. 
However, in the naive transplantation of the manual 
protocol to the robot, the induction efficiency was 
insufficient. This suggests that it is inherently difficult to 
describe physical parameters, including unrecorded 
human movements. Therefore, we attempted to optimize 
the protocol parameters to further improve the scores 
using a robotic search. 

 
Parameterization of the protocol 

To improve the pigmentation score, we selected 
seven parameters for optimization: two from the 
preconditioning step, three from the passage step, and 
two from the induction step. Search domains were set for 
each parameter (Table 1; Fig. 3A, B).  

From the preconditioning step on DDays -1 to -6, we 
selected two parameters for optimization: the 
concentration of fibroblast growth factor receptors 
inhibitor (FGFRi) in the medium (PC, preconditioning 
concentration), and the duration of addition (PP, 
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preconditioning period). From the passage step 
performed on DDay 0, we selected three parameters to 
optimize: the pipetting strength during cell detachment 
(DS, detachment pipetting strength), the area of the 
bottom surface to be pipetted (DL, detachment pipetting 
length), and trypsin processing time (DP, detachment 
trypsin period) of a passage. DP is a contextual 
parameter that can only be used to perform experiments 
at fixed values, owing to the specifications of the 
experimental system. In this case, DP is allowed to take 
different fixed values at three-minute intervals, 
corresponding to the number of wells in the plate. From 
the RPE differentiation induction step on DDays 1 to 25, 
we selected two parameters to optimize: the 
concentration of KnockOut Serum Replacement (KSR) in 
the medium (KP, KSR period), and the duration of 
exposure period of the three chemical supplements (3P, 
three supplement period).  

 
Optimization of the protocol 

To improve the optimization performance, 48 
conditions (eight plates × six wells, as shown in Fig. 2C) 
were executed in parallel in each batch. In general, 
solving a high-dimensional, expensive black-box 
optimization problem such as the present one, with a 
limited number of rounds, is challenging. In our case, 
some 200 million possible parameter combinations 
existed in the search space, and the point where the 
pigmented score was optimal in three rounds (144 
queries) had to be determined, because one experiment 
round took 40–45 days. In recent studies, batch Bayesian 
optimization (BBO) has shown excellent performance in 
real-world black-box optimization problems (6, 14, 15). 
We integrated an experimental design module based on 
BBO to effectively search for the optimal experimental 
parameters that maximize the pigmentation scores in the 
search space defined in (Fig. 3B). 

The Bayesian optimization module generates queries 
using two components: the Model updater, which updates 
the surrogate model that captures the relationship 
between parameters and the scores using Bayesian 
inference (Fig. S10), and the Query generator that 
generates the next experimental parameters  using 
an acquisition function and a policy function (Figs. 3C, 
S11; Algorithms S1–S3). In the Query generator, the 
acquisition function estimates the expected progress 
toward the optimal experimental parameter at a given 
experimental parameter (Fig. 3D). Then, using the 
acquisition function, the policy function generates the 
next 48 experimental parameters  considering the 
context of trypsin processing time  (Fig. 3E).  

To test the performance of the Bayesian optimization 
module in our case, we executed a preliminary 
performance validation using a toy testing function 
constructed on domain knowledge (Figs. S12, S13).  

 

Robotic optimization drastically improved pigmented 
score 

In this study, three successive experiments were 
conducted to optimize the target protocol. In each round, 
48 conditions were generated using the Bayesian 
optimization module and translated into LabDroid 
operating programs. In accordance with the experimental 
design, we incorporated the two highest-scoring 
conditions from the previous experiment (Fig. 2E) as 
control conditions, performed differentiation-inducing 
cultures with the LabDroid, and validated the area of the 
colored cells. In round 1, although one condition was 
found to be experimentally deficient, the other 47 
conditions were validated. The highest score was 0.86 
(Figs. 4A, S16; Table S3), yielding five conditions that 
exceeded the mean value (0.39) for all wells in the 
baseline experiment (Fig. 2E). In round 2, 46 conditions 
were generated, and the two highest-scoring conditions 
in round 1 were incorporated as control conditions. The 
highest score was 0.83 (Figs. 4B, S17; Table S3). In 
round 3, 48 experiments were conducted, yielding an 
improved highest score of 0.91. We obtained 26 other 
conditions that were better than the highest in round 2 
(Figs. 4C, S18; Table S3). A visualization diagram of a 
two-dimensional partial least squares regression (PLS) 
clearly revealed that the overall experimental parameters 
tended to converge in a higher pigmented score direction 
from rounds 1 to 3 (Figs. 4D, S20). 

To determine whether the optimized conditions were 
statistically improved over the pre-optimized conditions, a 
multi-well validation experiment was conducted using the 
top five conditions in round 3 and the pre-optimized 
conditions. The validation values, ordered by place, were 
0.71 ± 0.06, 0.72 ± 0.03, 0.76 ± 0.02, 0.79 ± 0.02, and 
0.81 ± 0.02 (mean ± SEM, n = 3 each). All scores were 
statistically significantly higher than the pre-optimization 
scores of 0.43 ± 0.02 (mean ± SEM, n = 3) (Figs. 5A, B, 
S19; Table S4). 

In summary, we conducted 216 forty-day cell culture 
experiments with a total experimentation time of 8640 
days. We accelerated the search using a BBO technique, 
compressing the search time to 185 days with a 
cumulative robot operating time of 995 h (Table S5; Figs. 
S21, S22; Movies 2–6). 

In this study, we succeeded in replacing part of the 
process of moving from iPS cells to the production of RPE 
cells for transplantation using robots and demonstrated 
an effective optimization method (Fig. S2). However, it 
was not obvious that robot-manufactured RPE cells 
would produce the cell characteristics required for 
transplanted cells obtained using manual preparation. 
Therefore, we purified the differentiation-inducing cells of 
the validation round, prepared the cells just before 
transplantation, and performed a biological quality 
evaluation (Fig. S1B). The analyzed iPSC-RPE cells 
expressed BEST1, RPE65, and CRALBP (Fig. 5C), 
which are characteristic marker genes of RPE cells. 
Secretion of VEGF and PEDF into the culture medium, a 
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characteristic of RPE cells, was observed (Fig. 5D, E; 
Table S6). The expression of tight junction-associated 
factor ZO-1 was examined using immunohistochemistry, 
and a ZO-1-derived fluorescence signal was observed in 
microphthalmia-associated transcription factor (MITF)-
positive cells, which play a central role in RPE cell 
function (Fig. 5F). These results indicated that the robot-
manufactured iPSC-RPE cells had the characteristics of 
RPE cells, and fulfilled the criteria for use in regenerative 
medicine research using the type of analysis measured 
in a previous clinical study (12). 

 
 

DISCUSSION 
 

Laboratory automation is a recently developing 
technology that transfers human skills to machines. 
Although some robotic systems for cell culture have 
already been developed (16–24), many of these fixed-
process automation apparatuses lack the flexibility and 
precision necessary to execute comprehensive 
parameter searching. Biological cells are physical 
systems with rich internal dynamics (25) and have lower 
tolerance for differences in manufacturing processes than 
products derived from metal fabrication, chemical 
synthesis, or other similar approaches (9), underscoring 
the need for closed-loop optimization.  

By combining the LabDroid and BBO algorithm, our 
robotic search system autonomously discovered optimal 
conditions that improved the efficiency of differentiation 
induction in iPSC-RPE production by up to 88% (Fig. 5A). 
We chose the iPSC-RPE differentiation protocol for three 
reasons. First, melanin pigmentation is a single, easily 
measurable morphological indicator of the quality and 
quantity of successfully differentiated RPE cells. The 
pigmentation score is a well-established measure of RPE 
differentiation quality that can be easily verified with the 
naked eye. Integrating other modalities of data, such as 
the RNA expression and secretory protein data shown in 
Fig. 5C–F to the scoring function will greatly improve the 
accuracy of iPSC-RPE cell quality estimation. It should be 
noted that, in the analysis described in Fig. 5C–F, there 
was no change in cell quality indicators before and after 
optimization, because these cells were analyzed after the 
purification process. In clinical transplantation of iPSC-
RPE, appropriate cells among induced cells are picked 
up and cultured to prevent contamination of cells that did 
not induce properly (purification process; Fig. S1A). For 
a patient, even if the efficiency of induction is extremely 
low, the appropriate cells can be selected for 
transplantation. By contrast, for transplantation to a large 
number of patients, it is necessary to increase the final 
cell number by increasing the efficiency of induction as 
much as possible. Second, the operating accuracy and 
repeatability of the robotic system used in this study were 
satisfactory for the efficient completion of the search 
process. The iPSC-RPE cell differentiation protocol 
requires 40 days to run, and a single mis-operation, error, 

or inaccuracy can deteriorate the search efficiency if the 
entire process is not destroyed. Third, iPSC-RPE cells 
have already been clinically transplanted into human 
patients, and a well-established protocol is available (12). 
Data and expertise accumulated in manual differentiation 
induction experiments provide useful information for 
establishing the general structure of the protocol and in 
defining its parameter search space. However, many 
other cell types and differentiation targets lack 
established protocols, some of which probably demand a 
more sophisticated optimization technique that can deal 
with categorical values and their combinations. Such a 
technique could optimize the structure of the protocol 
simultaneously with continuous parameter values while 
minimizing the execution costs incurred by a large 
number of possible combinations (26).  
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TABLE 
 

Table 1: Definition of optimized parameters 
Parameter names, parameter name codes, description, parameter ranges, parameter units, correspondence between 
experimental procedure and parameters used (related to Figs. 2A, 3A, B). 

 

 
 
 
 
 
FIGURES 

 
 

 
 

Fig. 1: Robotic search for optimal experimental conditions 
(A) Overall workflow for the optimization of experimental procedures using combined experimental robotics and Bayesian 
optimization. The user defines the target experimental protocol, subject parameters of the protocol, and the validation 
function. In this study, we chose the differentiation procedure from iPS to RPE cells as a target protocol and selected the 
reagent concentration, administration period, and five other parameters (details are shown in Table 1). We defined the 
pigmented area in a culture well, which represents the degree of RPE differentiation induction, as the validation function. 
The optimization program presented multiple parameter candidates; the LabDroid performed the experiment, and then an 
evaluation value for each candidate was obtained. Subsequently, the Bayesian optimization presented a plurality of 
parameter candidates predicted to produce higher validation values. The optimal parameters were searched by repeating 
candidate presentation, experiment execution, validation, and prediction. The detailed components are shown in Fig. S2. 
(B) Workflows performed in this study. First, robotization of the iPSC-RPE protocol was performed as a baseline. Next, the 
optimization process was conducted in three rounds, followed by statistical and biological validation. The figure numbers in 
parentheses represents the results shown in the figure. 
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Fig. 2: Robotization of iPSC-RPE differentiation protocols 
(A) Schematic diagram of the standard iPSC-RPE differentiation procedures. DDay indicates the differentiation day. Filled 
circles represent days when the robot operated, solid circles represent days with human operations only, and dashed line 
circles represent days when no operations were conducted. F stands for FGF receptor inhibitor; Y for Y-27632, a Rho-kinase 
inhibitor; SB for SB431542, a TGF-β/Activin/Nodal signal inhibitor; CK for a CKI-7, Wnt signal inhibitor; and MX for medium 
exchange.  
(B) The LabDroid Maholo including peripheral equipment. 
(C) Plate numbering and the orders of seeding, passage, and medium exchange operations. Eight 6-well plates were used 
for each experiment. 
(D) Well numbering. 
(E) Scores of the first trial. iPSC-RPE differentiation was conducted under six different trypsin treatment times using the 
LabDroid. Vertical blue bars represent the pigmented cell area score of each well. The bold black lines and the shaded area 
around the lines represent the mean score and SEM of eight samples operated at the same trypsin time, respectively. The 
raw values are shown in Table S2. 
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Fig. 3: Optimization module  
(A) Definition of the target parameters and corresponding steps in the protocol: PC, preconditioning concentration; PP, 
preconditioning period; DP, detachment trypsin period; DS, detachment pipetting strength; DL, detachment pipetting length; 
KP, KSR concentration reducing period; and 3P, three chemical (Y, SB, CKI) supplement administration period. 
(B) Ranges and stepping of the parameters.  
(C) The Bayesian optimization module consists of two components: a Model updater and a Query generator. The Model 
updater updates the Gaussian process posterior on the experiment using all available data  , where x 
indicates experimental parameter, and y indicates corresponding evaluation score. The Query generator calculates the 
acquisition function  for an experiment parameter  with the posterior distribution , and generates the 
experiment parameter set  for the next 48 points using the policy function with . 
(D and E) Test of the query generation process using a two-dimensional toy acquisition function.  
(D) Values of the toy acquisition function given an experimental parameter set. The horizontal axis represents the input 
values of  (contextual parameter), whereas the vertical axis represents the input values of the other six remaining 
context-free parameters , which are collapsed into a single axis. The color of the heatmap 
indicates the value of the acquisition function. In the heat map, the acquisition value is higher in places where the color is 
closer to red and lower in places where the color is closer to blue. 
(E) Test of the query generation process for the experimental parameter set  in the next experiment using a batch 
contextual local penalization policy (BCLP) policy. The heat maps in the upper row show the (penalized) acquisition function 
values, and the lower row shows the penalization values for the acquisition function. The queries! !for 48 wells (right 
side figure) were iteratively generated from the maximization-penalization loop on the acquisition function. 
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Fig. 4: Robotic search for optimal parameters in iPSC-RPE differentiation 
(A–C) Parameter candidates sorted in order of the pigmentation score in optimization rounds 1 (A), 2 (B), and 3 (C). The ID 
label on the left represents 'Round No. - Plate No. - Well No.'. For example, “1-2-3” means “(Round) 1-(Plate) 2-(Well) 3.” 
The parameter values and resulting pigmentation scores are plotted as horizontal bars. The parameter candidate with black 
frames (1-1-3) in (A) is the standard condition. Arrows indicate the control experiments; the top two conditions in round 1 
were included in round 2, and the top two conditions in round 2 were implemented in round 3. The raw values are shown in 
Table S3.  
(D) Visualization of the parameter set and pigmentation score distributions using partial least squares regression (PLS) in 
each round. The horizontal axis PC1 shows the values of the parameter candidates that are projected onto the first 
component of the PLS. The vertical axis shows the pigmentation score for each candidate parameter. As the rounds 
progressed, the overall score tended to converge in a higher direction. A full visualization of the experimental results using 
a parallel coordinate plot (PCP) is shown in Fig. S20.  
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Fig. 5: Quality evaluation of robot-induced RPE cells 
(A) Pigmentation score evaluation of the pre-optimized (n = 3) and top five conditions (n = 3 each) from round 3. Error bars 
represent the standard error of the mean (SEM). The numbers 1–5 in the optimized group represent the first to fifth place 
conditions for round 3 (Fig. 4C). Circles represent an individual score, bars represent the mean score, and error bars 
represent the SEM. Statistical significance was examined using two-way ANOVA and SNK post-hoc tests. P < 0.05 was 
considered significant. ***P < 0.001 versus pre-optimized. In all other combinations no statistical significance was detected. 
Raw values are shown in Table S4. 
(B) Representative pigmented images of the pre-optimized and five optimized iPSC-RPE cells. Images acquired on DDay 
34. ID labeling on the bottom reads 'V (validation) - Plate No. - Well No.'. The other images are shown in Fig. S19. 
(C–F) Cell biological validation of the robot-induced RPE cells. After DDay 34, cells were purified, stocked, initiated, 
maintained for four weeks, and analyzed (Fig. S1B). 
(C) Representative marker gene expression in RPE cells by RT-PCR. iPSC, undifferentiated iPSC; H-RPE (Lonza), 
Clonetics H-RPE (Lot #493461, Lonza, USA); pre-optimized and optimized LabDroid-induced RPE. 
(D–E) Quantification of representative secreted proteins from iPSC-RPE cells using ELISA. The supernatants were collected 
and the amount of VEGF (D) and PEDF (E) in the culture medium was analyzed 24 h after medium exchange (n = 3 wells 
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each). Circles represent individual scores, bars represent the mean score, and error bars represent SEM. n.d. = not detected. 
The raw values are shown in Table S6. 
(F) Co-staining of ZO-1 (green) and MITF (magenta) using immunohistochemistry. Nuclei were stained with DAPI. 
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