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Abstract 

Brain activity during rest displays complex, rapidly evolving patterns in space and time. Structural 

connections comprising the human connectome are hypothesized to impose constraints on the 

dynamics of this activity.  Here, we use magnetoencephalography (MEG) to quantify the extent to 

which fast neural dynamics in the human brain are constrained by structural connections inferred 

from diffusion MRI tractography. We characterize the spatio-temporal unfolding of whole-brain 

activity at the millisecond scale from source-reconstructed MEG data, estimating the probability 

that any two brain regions will activate at consecutive time epochs. We find that the structural 

connectome profoundly shapes rapid spreading of neuronal avalanches, evidenced by a significant 

association between these transition probabilities and structural connectivity strengths (r=0.30-0.38, 

p<0.0001). This finding opens new avenues to study the relationship between brain structure and 

neural dynamics. 
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Introduction 

The structural scaffolding of the human connectome
1
 constrains the unfolding of large-scale 

coordinated neural activity towards a restricted functional repertoire
2
. While functional magnetic 

resonance imaging (fMRI) can elucidate this phenomenon at relatively slow timescales
3–5

, brain 

activity shows rich dynamic behavior across multiple timescales, with faster activity nested within 

slower ones. Here, we exploit the high temporal resolution of resting-state 

magnetoencephalography (MEG) data to study the spatial spread of neuronal avalanches in healthy 

adults, aiming to establish whether the structural connectome constrains the spread of avalanches 

among regions
6,7

. We find that avalanche spread is significantly more likely between pairs of grey 

matter regions that are structurally connected, as inferred from diffusion MRI tractography. This 

result provides cross-modal empirical evidence suggesting that connectome topology constrains 

fast-scale transmission of neural information, linking brain structure to brain dynamics. 

Results 

Structural connectomes were mapped for 58 healthy adults (26 females, mean age ± SD: 30.72 ± 

11.58) using diffusion MRI tractography and regions  defined based on the Automated Anatomical 

Labeling  (AAL) and the Desikan-Killiany-Tourville (DKT) atlases. Interregional streamline counts 

derived from whole-brain deterministic tractography quantified the strength of structural 

connectivity between pairs of regions (see SI extended methods). Group-level connectomes were 

computed by averaging connectivity matrices across participants. 

MEG signals were pre-processed and source reconstructed for both the AAL and DKT atlases. Each 

source reconstructed signal was z-scored and binarized such that, at any time point, a z-score 

exceeding a given threshold was set to 1 (active); all other timepoints were set to 0 (inactive). An 

avalanche was defined as starting when any region exceeded this threshold, and finished when no 

region was active. An avalanche-specific transition matrix (TM) was calculated, where element (i, j) 

represented the probability that region j was active at time t+ẟ, given that region i was active at time 

t, where ẟ~3ms. The TMs were averaged per participant, and then per group, and finally 

symmetrized.    

We found striking evidence of an association between avalanche transition probabilities and 

structural connectivity strengths (Fig. 2), suggesting that regional propagation of fast-scale neural 

avalanches is partly shaped by the axonal fibers forming the structural connectome (r=0.30-0.38, 

p<0.0001). Specifically, the association was evident for different activation thresholds and both the 

AAL and DKT connectomes (AAL atlas:  for threshold z=2.5, r=0.38; for threshold z=3.0, r=0.37; 
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for threshold z=3.2, r=0.34; DKT atlas: for threshold z=2.5, r=0.32; for threshold z=3.0, r=0.31; for 

threshold z=3.2, r=0.30; in all cases, p <0.0001), as well as for individual- and group-level 

connectomes, although associations were stronger for group-level analyses (see Fig. 2, panel A). 

Next, we sought to test whether the associations were weaker for randomized  transition matrices 

computed after randomizing the times of each avalanche while keeping the spatial structure 

unchanged (see SI extended methods).  Randomized transition matrices resulted in markedly 

weaker associations with structural connectivity, compared to the actual transition matrices (AAL 

atlas, z-score=3: mean r = 0.25, observed r= 0.38, p<0.001). This suggests that the empirical 

organization of the connectome significantly shapes the temporally resolved propagation of neural 

activity. We replicated these findings for a group-level connectome derived using high-quality data 

from 200 healthy adults in the Human Connectome Project (r=0.11, p<0.001, z-score=3; Methods). 

Our results were thus robust to multiple connectome mapping pipelines and parcellation atlases, 

significant for both group-averaged and individual connectomes, and could not be explained by 

chance transitions.  

Discussion 

Our results provide new insight into the propagation of fast-evolving brain activity in the human 

connectome. We show that the spatial unfolding of neural dynamics at the millisecond scale is 

shaped by the network of large-scale axonal projections comprising the connectome, thereby 

constraining exploration of the brain’s putative functional repertoire.  While previous studies 

provide evidence of coupling between structural connectivity and functional MRI activity 
3,8,9

, the 

neural signals measured with MEG in the present study are orders of magnitude faster, enabling 

investigation of intrinsic neural dynamics nested in slow activity
10

.  Our findings suggest that long-

term structure-function coupling previously uncovered with functional MRI occurs against a 

backdrop of faster fluctuations, which are also constrained by the connectome and may enable 

individuals to rapidly respond to changing environments and new cognitive demands 
11

. Finally, our 

results explain how the large-scale activity unfolding in time might lead to the previous observation 

that average resting-state functional connectivity has topological features that mirror those of the 

structural connectome
12

. The neural avalanche framework opens up new opportunities to investigate 

polysynaptic models of network communication, which aim to describe patterns of signalling 

between anatomically unconnected regions
13,14

. Therefore, our work provides a foundational step 

towards elucidating the mechanisms governing communication in the human connectome. In turn, 

this can be exploited to predict the effects of structural lesions on behaviour and/or clinical 

phenotypes, under the above-mentioned hypothesis that structure influences behavioural outcomes 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 7, 2021. ; https://doi.org/10.1101/2020.11.25.393017doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.393017


by constraining global dynamics. In conclusion, using MEG to study neuronal avalanches, we 

provide a new framework to link fast neural dynamics to the structural connectome. 

Methods 

MEG pre-processing  

MEG pre-processing and source reconstruction were performed as in
15

. In short, the data were 

acquired using a MEG system equipped by 154 SQUID magnetometers  (Superconducting 

Quantum Interference Device). The MEG registration was divided in two eyes-closed segments of 

3:30 minutes each. To identify the position of the head, four anatomical points (nasion, right and 

left pre-auricular points and vertex of the head) and four position coils were digitized. 

Electrocardiogram (ECG) and electro-oculogram (EOG) signals were also recorded during the 

acquisition. The MEG signals, after an anti-aliasing filter, were acquired at 1024 Hz, then a fourth 

order Butterworth IIR band-pass filter in the 0.5-48 Hz band was applied. To remove environmental 

noise, measured by reference magnetometers, we used Principal Component Analysis. We adopted 

Independent Component Analysis to clean the data from physiological artifacts, such as eye 

blinking (if present) and heart activity (generally one component). Noisy channels were identified 

and removed manually by an expert rater. 47 patients were selected for further analysis. The time 

series of neuronal activity were reconstructed based on the Automated Anatomical Labeling (AAL) 

and the Desikan-Killiany-Tourreville (DKT) atlases. To do this, we used the Linearly Constrained 

Minimum Variance (LCMV) beamformer algorithm based on the native MRIs. Finally, we 

excluded the ROIs corresponding to the cerebellum because of their low reliability in MEG. 

However, when these regions were included, the results were replicated. All the preprocessing steps 

and the source reconstruction were performed using the Fieldtrip toolbox.  

Transition matrices  

Each source reconstructed signal was binned (such as to obtain a branching ratio ~=1, see SI) and 

then z-scored and binarized, such that, at any time bin, a z-score exceeding 3 was set to 1 (active); 

all other time bins were set to 0 (inactive).  See SI for further details. Alternative z-score thresholds 

(i.e. 2.5 and 3.5) were tested. An avalanche was defined as starting when any region is above 

threshold, and finishing when no region is active, as in
15

).  Avalanches shorter than 10 time bins (30 

msec) were excluded. However, the analyses were repeated including only avalanches longer than 

30 time bins (90 msec), to focus on rarer events that are highly unlikely to be noise, and including 

all avalanches, and the results were unchanged. An avalanche-specific transition matrix (TM) was 

calculated, where element (i, j) represented the probability that region j was active at time t+ẟ, 
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given that region i was active at time t, where ẟ~3ms. The TMs were averaged per participant, and 

then per group, and finally symmetrized.    

 

Diffusion MRI pre-processing and structural connectome mapping 

Diffusion MRI data were acquired for the same individuals using a 1.5 Tesla machine (Signa, GE 

Healthcare).Preprocessing was performed using the software modules provided in the FMRIB 

Software Library (FSL, http://fsl.fmrib.ox.ac.uk/fsl).  Data were corrected for head movements and 

eddy current distortions using the "eddy_correct" routine, rotating diffusion sensitizing gradient 

directions accordingly, and a brain mask was obtained from the B0 images using the Brain 

Extraction Tool routine. A diffusion-tensor model was fitted at each voxel, and fiber tracks were 

generated over the whole brain using deterministic tractography, as implemented in Diffusion 

Toolkit (FACT propagation algorithm, angle threshold 45°, spline-filtered, masking by the FA maps 

thresholded at 0.2). For tractographic analysis, the ROIs of the AAL atlas and of a MNI space-

defined volumetric version of the Desikan-Killiany-Tourville (DKT) ROI atlas were used, both 

masked by the GM tissue probability map available in SPM (thresholded at 0.2). To this end, for 

each subject, FA volumes were normalized to the MNI space using the FA template provided by 

FSL, using the spatial normalization routine available in SPM12, and the resulting normalization 

matrices were inverted and applied to the ROIs, to apply them onto each individual. The quality of 

the normalization was assessed visually. For each individual, the number of streamlines 

interconnecting each pair of regions was enumerated using custom software written in Interactive 

Data Language (IDL, Harris Geospatial Solutions, Inc., Broomfield, CO, USA). Results were 

replicated using both the AAL and the DKT atlases. In supplementary analyses, connectomes were 

also mapped using diffusion MRI data for 200 participants from the Human Connectome Project 

using an alternative workflow. The resulting individual connectomes were then averaged to yield a 

group-consensus connectome. Further details are available in SI.  

Statistical analysis 

The Spearman rank correlation coefficient was used to assess the association between transition 

probabilities and structural connectivity. A correlation coefficient was computed separately for each 

individual across all pairs of regions. Transition matrices were symmetrized before this 

computation. 

Randomized transition matrices were generated to ensure that associations between transition 

probabilities and structural connectivity could not be attributed to chance. Avalanches were 
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randomized across time, without changing the order of avalanches at each time step. We generated 

a total of 1000 randomized transition matrices and the Spearman rank correlation coefficient was 

computed between each randomized matrix and structural connectivity. This yielded a distribution 

of correlation coefficients under randomization. The proportion of correlation coefficients that were 

greater than, or equal to, the observed correlation coefficient provided a p-value for the null 

hypothesis that structure-function coupling was attributable to random transition events.   
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Figure 1. 

 

 

A.  Rendering of streamlines reconstructed using diffusion MRI and tractography for an 

individual. B. Structural connectivity matrix. Row/columns represent regions comprising a 

brain atlas. Matrix entries store the number of streamlines interconnecting each pair of regions.  

C. Source-reconstructed MEG series. Each blue line represents the z-scored activity of a 

region, and the red lines denote the threshold (z-score= ± 3). The inset represents a magnified 

version of a time-series exceeding the threshold. D. Raster plot of an avalanche. For each 

region, the moments in time when the activity is above threshold are represented in black, 

while the other moments are indicated in white. The particular avalanche that is represented 

involved three regions. E. Estimation of the transition matrix of a toy avalanche. Region i is 

active three times during the avalanche. In two instances, denoted by the green arrows, region j 

was active after region i. In one instance, denoted by the red arrow, region i is active but region 

j does not activate at the following time step. This situation would result, in the transition 
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matrix, as a 2/3 probability. F. Average structural matrix and average transition matrix (Log 

scale). 
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Figure 2. 

 

 

 

A.  Distribution of the r’s of the Spearman’s correlation between the subject-specific transition matrices 

and structural connectomes. The black diamond represent the r’s of the group-averaged matrices. On the 

left, the results for the AAL atlas, on the right, the results for the DKT atlas. Green, purple and orange dots 

represent results obtained with a z-score threshold of 2.5, 3 and 3.5, respectively. B and C. Data referring to 

the AAL atlas in B, to the DKT atlas in C. On the top-left, the average structural matrix, on the bottom left, 

the average transition matrix. The scatterplot shows the correlation between the values of the structural 

edges and the transition probabilities for the corresponding edge. The black line represents the best fit line in 

the least-square sense. On the right, the distribution shows the r’s derived from the null distribution. The 

dotted blue line represents the observed r. 
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