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Abstract 17 

Brain activity during rest displays complex, rapidly evolving patterns in space and time. Structural 18 

connections comprising the human connectome are hypothesized to impose constraints on the 19 

dynamics of this activity. Here, we use magnetoencephalography (MEG) to quantify the extent to 20 

which fast neural dynamics in the human brain are constrained by structural connections inferred 21 

from diffusion MRI tractography. We characterize the spatio-temporal unfolding of whole-brain 22 

activity at the millisecond scale from source-reconstructed MEG data, estimating the probability that 23 

any two brain regions will significantly deviate from baseline activity in consecutive time epochs. 24 

We find that the structural connectome relates to, and likely affects, the rapid spreading of neuronal 25 

avalanches, evidenced by a significant association between these transition probabilities and 26 

structural connectivity strengths (r=0.37, p<0.0001). This finding opens new avenues to study the 27 

relationship between brain structure and neural dynamics. 28 
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Introduction 36 

The structural scaffolding of the human connectome (1) constrains the unfolding of large-scale 37 

coordinated neural activity towards a restricted functional repertoire (2). While functional magnetic 38 

resonance imaging (fMRI) can elucidate this phenomenon at relatively slow timescales (3–5), brain 39 

activity shows rich dynamic behaviour across multiple timescales, with faster activity nested within 40 

slower scales. Here, in healthy young adults, we exploit the high temporal resolution of resting-state 41 

magnetoencephalography (MEG) data to study the spatial spread of perturbations of local activations 42 

representative of neuronal avalanches. We aim to establish whether the structural connectome 43 

constrains the spread of avalanches among regions (6, 7). We find that avalanche spread is 44 

significantly more likely between pairs of grey matter regions that are structurally connected, as 45 

inferred from diffusion MRI tractography. This result provides cross-modal empirical evidence 46 

suggesting that connectome topology constrains fast-scale transmission of neural information, linking 47 

brain structure to brain dynamics. 48 

Results 49 

Structural connectomes were mapped for 58 healthy adults (26 females, mean age ± SD: 30.72 ± 50 

11.58) using diffusion MRI tractography and regions defined based on the Automated Anatomical 51 

Labeling  (AAL) and the Desikan-Killiany-Tourville (DKT) atlases. Interregional streamline counts 52 

derived from whole-brain deterministic tractography quantified the strength of structural connectivity 53 

between pairs of regions. Streamline counts were normalized by regional volume. Group-level 54 

connectomes were computed by averaging connectivity matrices across participants. 55 

MEG signals were pre-processed and source reconstructed for both the AAL and DKT atlases. All 56 

analyses were conducted on source-reconstructed signal amplitudes. Each signal amplitude was z-57 

scored and binarized such that, at any time point, a z-score exceeding a given threshold was set to 1 58 

(active); all other timepoints were set to 0 (inactive). An avalanche was defined as starting when any 59 

region exceeded this threshold, and finished when no region was active. An avalanche-specific 60 

transition matrix (TM) was calculated, where element (i, j) represented the probability that region j 61 

was active at time t+ẟ, given that region i was active at time t, where ẟ~3ms. The TMs were averaged 62 

per participant, and then per group, and finally symmetrized. Fig.1 provides an overview of the 63 

pipeline. 64 

We found striking evidence of an association between avalanche transition probabilities and structural 65 

connectivity strengths (Fig. 2), suggesting that regional propagation of fast-scale neural avalanches 66 

is partly shaped by the axonal fibers forming the structural connectome (r=0.40, p<0.0001). 67 
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Specifically, the association was evident for different activation thresholds and both the AAL and 68 

DKT connectomes (AAL atlas:  for threshold z=2.5, r=0.41; for threshold z=3.0, r=0.40; for threshold 69 

z=3.5, r=0.39; DKT atlas: for threshold z=2.5, r=0.38; for threshold z=3.0, r=0.37; for threshold 70 

z=3.5, r=0.35; in all cases, p <0.0001), as well as for individual- and group-level connectomes, 71 

although associations were stronger for group-level analyses (see Fig. 2, panel A).  72 

We also investigated this phenomenon within specific frequency bands. Associations were evident in 73 

all the classical frequency bands: delta (0.5 – 4 Hz; r=0.39), theta (4 – 8 Hz; r=0.29), alpha (8 – 13 74 

Hz; r=0.32), beta (13 – 30 Hz; r=0.32), and gamma (30 – 48 Hz; r=0.32), with p<0.0001 for all bands 75 

(see Supplementary File 1). Supplementary analyses suggested that these results could not be 76 

attributable to volume conduction confounds (see Methods; Field spread analysis).   77 

 78 

Next, we sought to test whether the associations were weaker for randomized transition matrices 79 

computed after randomizing the times of each avalanche while keeping the spatial structure 80 

unchanged.  Randomized transition matrices resulted in markedly weaker associations with structural 81 

connectivity, compared to the actual transition matrices (AAL atlas, z-score=3: mean r = 0.26, 82 

observed r= 0.40, p<0.001). Note that the mean correlation coefficient was greater than zeros for the 83 

randomized data because the randomization process preserved basic spatial attributes in the data. We 84 

also found that the findings remained significant after excluding subcortical regions (with lower 85 

signal-to-noise ratios).  Finally, we replicated these findings for a group-level connectome derived 86 

using diffusion MRI acquired from 200 healthy adults in the Human Connectome Project (r=0.11, 87 

p<0.001, z-score=3; see Methods). Our results were thus robust to multiple connectome mapping 88 

pipelines and parcellation atlases, significant for both group-averaged and individual connectomes, 89 

and could not be explained by chance transitions and/or volume conduction effects. Collectively, 90 

these results suggest that connectome organization significantly shapes the  propagation of neural 91 

activity.    92 
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Discussion 93 

Our results provide new insight into the propagation of fast-evolving brain activity in the human 94 

connectome. We show that the spatial unfolding of neural dynamics at the millisecond scale relates 95 

to the network of large-scale axonal projections comprising the connectome, likely constraining the 96 

exploration of the brain’s putative functional repertoire. The short time scale of several milliseconds 97 

biases the constraint to direct connections, which is the focus of this paper. Longer delays may impose 98 

constraints upon larger-scale motifs of the network and further characterize the sub-spaces, in which 99 

brain dynamics unfold.   100 

Previous functional MRI studies provide evidence of coupling between structural connectivity and 101 

slow activations (3, 8, 9). However, intrinsic neural dynamics evolve quickly and are nested within 102 

slow activity (10). Our findings suggest that long-term structure-function coupling occurs against a 103 

backdrop of faster fluctuations, which are also constrained by the connectome and may enable 104 

individuals to rapidly respond to changing environments and new cognitive demands (11).  105 

Consistent with our findings, two recent M/EEG studies showed that functional connectivity, as 106 

estimated using amplitude-envelope coupling (AEC), relates to structural connectivity (12, 13). 107 

However, in contrast to AEC, we conducted time-resolved analyses, characterizing avalanche 108 

dynamics at high temporal resolution. Further work is needed to determine the extent to which 109 

structure-function coupling is dynamic. To this regard, our results suggest that coupling is strongest 110 

during avalanche events, consistent with established theories (14)). Finally, our results might explain 111 

how the large-scale activity unfolding in time might lead to the previous observation that average 112 

resting-state functional connectivity displays topological features that mirror those of the structural 113 

connectome (15). Our proposed framework links the large-scale spreading of aperiodic, locally 114 

generated perturbations to the structural connectome, and might be further exploited to investigate 115 

polysynaptic models of network communication, which aim to describe patterns of signalling between 116 

anatomically unconnected regions (16, 17). In fact, our results show that transitions of activations are 117 

observed across regions that do not appear to be directly linked in the structural connectome. This 118 

provides evidence for polysynaptic communication.  119 

Neuronal avalanches have been previously observed in MEG data (7), and their statistical properties, 120 

such as a size distribution that obeys a power-law with an exponent of -3/2, reported. These features 121 

are compatible with those that would be predicted starting from a process operating at criticality with 122 

a branching ratio equal to one. While beyond the scope of this paper, our framework might contribute 123 

to elucidating the role of the structural scaffolding (and its topological properties) to the emergence 124 
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of the observed large-scale, scale-free critical dynamics.  In turn, this might be exploited to predict 125 

the effects of structural lesions on behaviour and/or clinical phenotypes.  126 

While our findings were replicated across multiple frequency bands, structural connectivity can 127 

potentially impose frequency-dependent constraints on avalanche spread. Future work should 128 

investigate frequency-specific data to understand what leads to the emergence of avalanches and, 129 

most importantly, to the specific spatio-temporal patterns of recruited regions that defines individual 130 

(or at least groups of) avalanches in each specific frequency-band.  131 

For the present application, we reconstructed the structural connectome using a deterministic 132 

tractography algorithm. While probabilistic algorithms can provide advantages in some applications, 133 

they are prone to reconstruction of spurious connections (false positives), compared to deterministic 134 

methods, reducing connectome specificity (18, 19). We used deterministic tractography because 135 

previous functional MRI studies report that structure-functional coupling is greater for connectivity 136 

matrices inferred from deterministic tractography, compared to probabilistic methods (20). 137 

Nonetheless, additional studies are needed to clarify if and to what extent the present results are 138 

influenced by the structural connectome reconstruction method. While we replicated our findings 139 

using alternative datasets (i.e. HCP) and parcellations, further replication using alternative 140 

connectome mapping pipelines is warranted.  141 

In conclusion, using MEG to study fast neuronal dynamics and diffusion MRI tractography to map 142 

connectomes, we found that the connectome significantly constrains the spatial spread of neuronal 143 

avalanches to axonal connections. Our results suggest that large-scale structure-function coupling is 144 

dynamic and peaks during avalanche events.   145 

Methods 146 

Participants 147 

We recruited 58 young adults (male 32 / female 26, mean age ± SD was 30.72 ± 11.58) from the 148 

general community. All participants were right-handed and native Italian speakers. The inclusion 149 

criteria were: 1) no major internal, neurological or psychiatric illnesses; 2) no use of drugs or 150 

medication that could interfere with MEG/MRI signals. The study complied with the Declaration of 151 

Helsinki and was approved by the local Ethics Committee. All participants gave written informed 152 

consent. 153 

  154 
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MRI acquisition 155 

3D T1-weighted brain volumes were acquired at 1.5 Tesla (Signa, GE Healthcare) using a 3D 156 

Magnetization-Prepared Gradient-Echo BRAVO sequence (TR/TE/TI 8.2/3.1/450 ms, voxel 1 × 1 × 157 

1 mm3, 50% partition overlap, 324 sagittal slices covering the whole brain), and diffusion MRI data 158 

for individual c connectome reconstruction were obtained using the following parameters: Echo-159 

Planar Imaging, TR/TE  12,000/95.5 ms, voxel 0.94×0.94×2.5mm3, 32 diffusion-160 

sensitizing  directions, 5 B0 volumes). The MRI scan was performed after the MEG recording.  161 

Preprocessing of the diffusion MRI data was carried out using the software modules provided in the 162 

FMRIB Software Library (FSL, http://fsl.fmrib.ox.ac.uk/fsl). All diffusion MRI datasets were 163 

corrected for head movements and eddy currents distortions using the "eddy_correct" routine, rotating 164 

diffusion sensitizing gradient directions accordingly, and a brain mask was obtained from the B0 165 

images using the Brain Extraction Tool routine. A diffusion-tensor model was fitted at each voxel, 166 

and streamlines were generated over the whole brain by deterministic tractography using Diffusion 167 

Toolkit (FACT propagation algorithm, angle threshold 45°, spline-filtered, masking by the FA maps 168 

thresholded at 0.2). For tractographic analysis, the ROIs of the AAL atlas and of a MNI space-defined 169 

volumetric version  of the  Desikan-Killiany-Tourville (DKT) ROI atlas were used, both masked by 170 

the GM tissue probability map available in SPM (thresholded at 0.2). To this end, for each participant, 171 

FA volumes were normalized to the MNI space using the FA template provided by FSL, using the 172 

spatial normalization routine available in SPM12, and the resulting normalization matrices were 173 

inverted and applied to the ROIs, to apply them onto each subject. The quality of the normalization 174 

was assessed visually. From each subject's whole brain tractography and corresponding GM ROI set, 175 

the number of streamlines connecting each couple of GM ROIs and the corresponding mean tract 176 

length was calculated using an in-house software written in Interactive Data Language (IDL, Harris 177 

Geospatial Solutions, Inc., Broomfield, CO, USA).  178 

Connectomes in the replication dataset were constructed using an alternative mapping pipeline and 179 

diffusion MRI data from the Human Connectome Project (HCP). Deterministic tractography was 180 

performed using MRtrix3 (21) under the following parameters: FACT algorithm, 5 million 181 

streamlines, 0.5 mm propagation step size, 400 mm maximum propagation length, and 0.1 FA 182 

threshold for the termination of streamlines (17). The number of streamlines connecting any couple 183 

of regions was normalized by the combined volume of the two regions. Structural matrices were 184 

constructed for 200 HCP participants using the AAL atlas and averaged to derive a group-level 185 

connectome. 186 

  187 
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MEG pre-processing  188 

MEG pre-processing and source reconstruction were performed as in (22). The MEG system was 189 

equipped with 163 magnetometers, and was developed by the National Research Council of Italy at 190 

the Institute of Applied Sciences and Intelligent Systems (ISASI). All technical details regarding the 191 

MEG device are reported in (23). In short, the MEG registration was divided in two eyes-closed 192 

segments of 3:30 minutes each. To identify the position of the head, four anatomical points and four 193 

position coils were digitized. Electrocardiogram (ECG) and electro-oculogram (EOG) signals were 194 

also recorded. The MEG signals, after an anti-aliasing filter, were acquired at 1024 Hz, then a fourth 195 

order Butterworth IIR band-pass filter in the 0.5-48 Hz band was applied. To remove environmental 196 

noise, measured by reference magnetometers, we used Principal Component Analysis. We adopted 197 

supervised Independent Component Analysis to clean the data from physiological artifacts, such as 198 

eye blinking (if present) and heart activity (generally one component). Noisy channels were identified 199 

and removed manually by an expert rater (136 ± 4 sensors were kept). 47 subjects were selected for 200 

further analysis.  201 

Source reconstruction 202 

The time series of neuronal activity were reconstructed in 116 regions of interests (ROIs) based on 203 

the Automated Anatomical Labeling (AAL) atlas (24, 25); and in 84 regions of interest based on the 204 

Desikan-Killiany-Tourreville (DKT) atlas. To do this, we used the volume conduction model 205 

proposed by Nolte (26) applying the Linearly Constrained Minimum Variance (LCMV) beamformer 206 

algorithm (27) based on the native structural MRIs. Sources were reconstructed for the centroids of 207 

each ROI. Finally, we considered a total of 90 ROIs for the AAL atlas, since we have excluded 26 208 

ROIs corresponding to the cerebellum because of their low reliability in MEG (28). All the 209 

preprocessing steps and the source reconstruction were  made using the Fieldtrip toolbox (29).  210 

Neuronal avalanches and branching parameter 211 

 To study the dynamics of brain activity, we estimated “neuronal avalanches”. Firstly, the time 212 

series of each ROI was discretized calculating the z-score, then positive and negative excursions 213 

beyond a threshold were identified. The value of the threshold was set to 3 standard deviations (|z|  = 214 

3), but we tested the robustness of the results changing this threshold from 2.5 to 3.5. A neuronal 215 

avalanche begins when, in a sequence of contiguous time bins, at least one ROI is active (|z| >3), and 216 

ends when all ROIs are inactive (30, 31). The total number of active ROIs in an avalanche corresponds 217 

to its size.  218 
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These analyses require the time series to be binned. This is done to ensure that one is capturing critical 219 

dynamics, if present. To estimate the suitable time bin length, for each subject, for each neuronal 220 

avalanches and for each time bin duration, the branching parameter σ was estimated (32, 33). In fact, 221 

system operating at criticality typically display a branching ratio ~1. The branching ratio is calculated 222 

as the geometrically averaged (over all the time bins) ratio of the number of events (activations) 223 

between the subsequent time bin (descendants) and that in the current time bin (ancestors) and then 224 

averaging it over all the avalanches (34). More specifically: 225 

 226 

𝜎𝑖 =  
1

𝑁𝑏𝑖𝑛−1
∏ (

𝑛𝑒𝑣𝑒𝑛𝑡𝑠 (𝑗+1)

𝑛𝑒𝑣𝑒𝑛𝑡𝑠 (𝑗)
)

1

𝑁𝑏𝑖𝑛−1
 

𝑁𝑏𝑖𝑛−1
𝑗=1                    (1) 227 

 228 

𝜎 =  
1

𝑁𝑎𝑣𝑎𝑙
∏ (𝜎𝑖)

1

𝑁𝑎𝑣𝑎𝑙     
𝑁𝑎𝑣𝑎𝑙
𝑖=1     (2) 229 

 230 

Where 𝜎𝑖 is the branching parameter of the i-th avalanche in the dataset, 𝑁𝑏𝑖𝑛 is the total amount of 231 

bins in the i-th avalanche, 𝑛𝑒𝑣𝑒𝑛𝑡𝑠 (𝑗) is the total number of events active in the j-th bin, 𝑁𝑎𝑣𝑎𝑙 is the 232 

total number of avalanche in the dataset. We tested bins from 1 to 5, and picked 3 for further analyses, 233 

given that the branching ratio was 1 for bin =3. However, results are unchanged for other bin 234 

durations, and the branching ratio remains equal to 1 or differences were minimal (range: 0.999 to 235 

1.010 - data not shown). Bins of longer duration would violate the Nyquist criterion and were thus 236 

not considered. The results shown are derived when taking into accounts avalanches longer than 10 237 

time bins. However, we repeated the analysis taking into account avalanches longer than 30 time bins, 238 

as well as taking all avalanches into account, and the results were unchanged. 239 

 240 

 241 

Transition matrices  242 

The amplitude of each binned, z-scored source-reconstructed signal was binarized, such that, at any 243 

time bin, a z-score exceeding ± 3 was set to 1 (active); all other time bins were set to 0 (inactive). 244 

Alternative z-score thresholds (i.e. 2.5 and 3.5) were tested. An avalanche was defined as starting 245 

when any region is above threshold, and finishing when no region is active, as in (22). Avalanches 246 

shorter than 10 time bins (~30 msec) were excluded. However, the analyses were repeated including 247 
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only avalanches longer than 30 time bins (~90 msec), to focus on rarer events (sizes of the neuronal 248 

avalanches have a fat-tailed distribution) that are highly unlikely to be noise, and including all 249 

avalanches, and the results were unchanged. An avalanche-specific transition matrix (TM) was 250 

calculated, where element (i, j) represented the probability that region j was active at time t+ẟ, given 251 

that region i was active at time t, where ẟ~3ms. The TMs were averaged per participant, and then per 252 

group, and finally symmetrized. The introduction of a time-lag makes it unlikely that our results can 253 

be explained trivially by volume conduction (i.e. the fact that multiple sources are detected 254 

simultaneously by multiple sensors, generating spurious zero-lags correlations in the recorded 255 

signals). For instance, for a binning of 3, as the avalanches proceed in time, the successive regions 256 

that are recruited do so after roughly 3 msecs (and 5 msecs for the binning of 5). Hence, activations 257 

occurring simultaneously do not contribute to the estimate of the transition matrix. See below for 258 

further analyses addressing the volume conduction issue. Finally, we explored transition matrices 259 

estimated using frequency-specific signals. To this end, we filtered the source-reconstructed signal in 260 

the classical frequency bands (delta, 0.5 – 4 Hz; theta 4 – 8 Hz; alpha 8 – 13 Hz; beta 13 – 30 Hz; 261 

gamma 30 – 48 Hz), before computing neuronal avalanches and the transition matrix, by applying a 262 

fourth-order Butterworth pass-band filter to the source-reconstructed data, before proceeding to the 263 

further analysis as previously described. The results remained significant in all the explored frequency 264 

bands. This analysis was carried out for the DKT atlas, binning = 3, z-score   threshold = ± 3.  265 

 266 

Field spread analysis 267 

Volume conduction alone is an unlikely explanation of our results, given that simultaneous 268 

activations do not contribute to the  transition matrix, due to the time lags introduced. To confirm that 269 

volume conduction effects were negligible, the transition matrices were re-computed using longer 270 

delays. In short, we identified the regions that were recruited in an avalanche after the first 271 

perturbation (i.e. the initial time-bin of an avalanche). Since we did not scroll through the avalanche 272 

in time, as previously described, we considered time delays as long as the avalanche itself, while 273 

minimizing the influence of short delays. This means that the avalanche-specific transition matrix is 274 

now binary, and the ijth element is equal to 1 if region i started the avalanche (i.e. it was active at the 275 

first time-bin) and region j was recruited in the avalanche at any subsequent timepoint, and 0 276 

otherwise. This alternative procedure for the estimation of the transition matrices was carried out for 277 

the AAL atlas, in the case of binning =3, z-score threshold = ± 3. In this case, a significant association 278 

remained between transition probabilities and structural connectivity (r=0.36; p<0.0001). Supplement 279 

1 of Fig. 2 provides further details.  280 
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To further rule out the possibility that field spread might introduce spurious correlations that might 281 

drive the relationship between the Transition Matrix and the structural connectivity matrix, we 282 

conducted further analyses involving surrogate data. We generated n white Gaussian processes, with 283 

n = 66, i.e. the number of cortical regions, and we smoothed them using a zero-phase polynomial 284 

filter. Then, we added 100  perturbations, where each perturbation was assigned to a randomly chosen 285 

regions and random time point, subject to the following constraints.  Perturbations were separated by 286 

at least 200 samples (no overlap was allowed, i.e. the perturbations could only occur in one region at 287 

a time), their length was randomly selected among 5, 10 or 100 samples, their amplitude between 50 288 

and 400. This procedure was carried out 47 times, to obtain an independent surrogate dataset for each 289 

one of the 47 participants, that will be referred to as the “uncoupled” dataset. The uncoupled dataset 290 

was then transformed using the subject-specific leadfield matrix, yielding new surrogate sensor-level 291 

timeseries, where each sensor is a weighted sum of all the sources, according to the same leadfield 292 

matrix that was used to reconstruct the real data. Then, new source-reconstructed time series were 293 

computed for each subject. Based on these new time series, we performed the same procedure to 294 

compute the transition matrix as described above. Specifically, we z-scored the time series, 295 

thresholded them (threshold z=±3), retrieved the avalanche-specific transition matrices, averaged 296 

these within each subject and then across the group, and finally symmetrized the matrix. We then 297 

investigated the extent of correlation between the new transition matrix and the structural connectivity 298 

matrix. We repeated the entire procedure reported above one hundred times, and show that is unlikely 299 

that linear mixing alone can explain the significant association between transition probabilities and 300 

structural connectivity (p<0.001). 301 

 302 

Statistical analysis 303 

The Spearman rank correlation coefficient was used to assess the association between transition 304 

probabilities and structural connectivity. A correlation coefficient was computed separately for each 305 

individual across all pairs of regions. Transition matrices were symmetrized before this computation. 306 

Randomized transition matrices were generated to ensure that associations between transition 307 

probabilities and structural connectivity could not be attributed to chance. Avalanches were 308 

randomized across time, without changing the order of active regions at each time step. We generated 309 

a total of 1000 randomized transition matrices and the Spearman rank correlation coefficient was 310 

computed between each randomized matrix and structural connectivity. This yielded a distribution of 311 

correlation coefficients under randomization. The proportion of correlation coefficients that were 312 
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greater than, or equal to, the observed correlation coefficient provided a p-value for the null 313 

hypothesis that structure-function coupling was attributable to random transition events.    314 
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Figure 1. 397 

 398 

 399 

A.  Rendering of streamlines reconstructed using diffusion MRI and tractography for an 400 

individual. B. Structural connectivity matrix. Row/columns represent regions comprising a brain 401 

atlas. Matrix entries store the number of streamlines interconnecting each pair of regions.  C. 402 

Source-reconstructed MEG series. Each blue line represents the z-scored activity of a region, 403 

and the red lines denote the threshold (z-score= ± 3). The inset represents a magnified version of 404 

a time-series exceeding the threshold. D. Raster plot of an avalanche. For each region, the 405 

moments in time when the activity is above threshold are represented in black, while the other 406 

moments are indicated in white. The particular avalanche that is represented involved three 407 

regions. E. Estimation of the transition matrix of a toy avalanche. Region i is active three times 408 

during the avalanche. In two instances, denoted by the green arrows, region j was active after 409 

region i. In one instance, denoted by the red arrow, region i is active but region j does not activate 410 
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at the following time step. This situation would result, in the transition matrix, as a 2/3 411 

probability. F. Average structural matrix and average transition matrix (Log scale). 412 

 413 

  414 
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Figure 2. 415 

 416 

 417 

 418 

A.  Distribution of the r’s of the Spearman’s correlation between the subject-specific transition matrices 419 

and structural connectomes. The black diamond represent the r’s of the group-averaged matrices. On the left, 420 

the results for the AAL atlas, on the right, the results for the DKT atlas. Green, purple and orange dots 421 

represent results obtained with a z-score threshold of 2.5, 3 and 3.5, respectively. B and C. Data referring to 422 

the AAL atlas in B, to the DKT atlas in C. On the top-left, the average structural matrix, on the bottom left, 423 

the average transition matrix. The scatterplot shows the correlation between the values of the structural edges 424 

and the transition probabilities for the corresponding edge. The black line represents the best fit line in the 425 

least-square sense. On the right, the distribution shows the r’s derived from the null distribution. The dotted 426 

blue line represents the observed r. Please note that, for visualization purposes, the connectivity weights and 427 

the transition probabilities were resampled to normal distributions. In Figure 2, supplement 1, we report the 428 

comparison between the structural connectome and the transition matrix computed by taking into account 429 

longer delays. In the Supplementary file 1, we report a table with an overview of the results of the frequency-430 

specific analysis.   431 
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