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Abstract 18 

Brain activity during rest displays complex, rapidly evolving patterns in space and time. Structural 19 

connections comprising the human connectome are hypothesized to impose constraints on the 20 

dynamics of this activity. Here, we use magnetoencephalography (MEG) to quantify the extent to 21 

which fast neural dynamics in the human brain are constrained by structural connections inferred 22 

from diffusion MRI tractography. We characterize the spatio-temporal unfolding of whole-brain 23 

activity at the millisecond scale from source-reconstructed MEG data, estimating the probability 24 

that any two brain regions will significantly deviate from baseline activity in consecutive time 25 

epochs. We find that the structural connectome relates to, and likely affects, the rapid spreading of 26 

neuronal avalanches, evidenced by a significant association between these transition probabilities 27 

and structural connectivity strengths (r=0.37, p<0.0001). This finding opens new avenues to study 28 

the relationship between brain structure and neural dynamics. 29 
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Introduction 37 

The structural scaffolding of the human connectome (1) constrains the unfolding of large-scale 38 

coordinated neural activity towards a restricted functional repertoire (2). While functional magnetic 39 

resonance imaging (fMRI) can elucidate this phenomenon at relatively slow timescales (3–5), brain 40 

activity shows rich dynamic behaviour across multiple timescales, with faster activity nested within 41 

slower scales. Here, in healthy young adults, we exploit the high temporal resolution of resting-state 42 

magnetoencephalography (MEG) data to study the spatial spread of perturbations of local 43 

activations representative of neuronal avalanches. We aim to establish whether the structural 44 

connectome constrains the spread of avalanches among regions (6, 7). We find that avalanche 45 

spread is significantly more likely between pairs of grey matter regions that are structurally 46 

connected, as inferred from diffusion MRI tractography. This result provides cross-modal empirical 47 

evidence suggesting that connectome topology constrains fast-scale transmission of neural 48 

information, linking brain structure to brain dynamics. 49 

Results 50 

Structural connectomes were mapped for 58 healthy adults (26 females, mean age ± SD: 30.72 ± 51 

11.58) using diffusion MRI tractography and regions defined based on the Automated Anatomical 52 

Labeling  (AAL) and the Desikan-Killiany-Tourville (DKT) atlases. Interregional streamline counts 53 

derived from whole-brain deterministic tractography quantified the strength of structural 54 

connectivity between pairs of regions. Streamline counts were normalized by regional volume. 55 

Group-level connectomes were computed by averaging connectivity matrices across participants. 56 

MEG signals were pre-processed and source reconstructed for both the AAL and DKT atlases. All 57 

analyses were conducted on source-reconstructed signal amplitudes. Each signal amplitude was z-58 

scored and binarized such that, at any time point, a z-score exceeding a given threshold was set to 1 59 

(active); all other timepoints were set to 0 (inactive). An avalanche was defined as starting when 60 

any region exceeded this threshold, and finished when no region was active. An avalanche-specific 61 

transition matrix (TM) was calculated, where element (i, j) represented the probability that region j 62 

was active at time t+�, given that region i was active at time t, where �~3ms. The TMs were 63 

averaged per participant, and then per group, and finally symmetrized. Fig.1 provides an overview 64 

of the pipeline. 65 
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We found striking evidence of an association between avalanche transition probabilities and 66 

structural connectivity strengths (Fig. 2), suggesting that regional propagation of fast-scale neural 67 

avalanches is partly shaped by the axonal fibers forming the structural connectome (r=0.40, 68 

p<0.0001). Specifically, the association was evident for different activation thresholds and both the 69 

AAL and DKT connectomes (AAL atlas:  for threshold z=2.5, r=0.41; for threshold z=3.0, r=0.40; 70 

for threshold z=3.5, r=0.39; DKT atlas: for threshold z=2.5, r=0.38; for threshold z=3.0, r=0.37; for 71 

threshold z=3.5, r=0.35; in all cases, p <0.0001), as well as for individual- and group-level 72 

connectomes, although associations were stronger for group-level analyses (see Fig. 2, panel A).  73 

We also investigated this phenomenon within specific frequency bands. Associations were evident 74 

in all the classical frequency bands: delta (0.5 – 4 Hz; r=0.39), theta (4 – 8 Hz; r=0.29), alpha (8 – 75 

13 Hz; r=0.32), beta (13 – 30 Hz; r=0.32), and gamma (30 – 48 Hz; r=0.32), with p<0.0001 for all 76 

bands (see Supplementary File 1). Supplementary analyses suggested that these results could not be 77 

attributable to volume conduction confounds (see Methods; Field spread analysis).   78 

 79 

Next, we sought to test whether the associations were weaker for randomized transition matrices 80 

computed after randomizing the times of each avalanche while keeping the spatial structure 81 

unchanged.  Randomized transition matrices resulted in markedly weaker associations with 82 

structural connectivity, compared to the actual transition matrices (AAL atlas, z-score=3: mean r = 83 

0.26, observed r= 0.40, p<0.001). Note that the mean correlation coefficient was greater than zeros 84 

for the randomized data because the randomization process preserved basic spatial attributes in the 85 

data. We also found that the findings remained significant after excluding subcortical regions (with 86 

lower signal-to-noise ratios).  Finally, we replicated these findings for a group-level connectome 87 

derived using diffusion MRI acquired from 200 healthy adults in the Human Connectome Project 88 

(r=0.11, p<0.001, z-score=3; see Methods). Our results were thus robust to multiple connectome 89 

mapping pipelines and parcellation atlases, significant for both group-averaged and individual 90 

connectomes, and could not be explained by chance transitions and/or volume conduction effects. 91 

Collectively, these results suggest that connectome organization significantly shapes the  92 

propagation of neural activity.    93 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2020.11.25.393017doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.393017


Discussion 94 

Our results provide new insight into the propagation of fast-evolving brain activity in the human 95 

connectome. We show that the spatial unfolding of neural dynamics at the millisecond scale relates 96 

to the network of large-scale axonal projections comprising the connectome, likely constraining the 97 

exploration of the brain’s putative functional repertoire. The short time scale of several milliseconds 98 

biases the constraint to direct connections, which is the focus of this paper. Longer delays may 99 

impose constraints upon larger-scale motifs of the network and further characterize the sub-spaces, 100 

in which brain dynamics unfold.   101 

Previous functional MRI studies provide evidence of coupling between structural connectivity and 102 

slow activations (3, 8, 9). However, intrinsic neural dynamics evolve quickly and are nested within 103 

slow activity (10). Our findings suggest that long-term structure-function coupling occurs against a 104 

backdrop of faster fluctuations, which are also constrained by the connectome and may enable 105 

individuals to rapidly respond to changing environments and new cognitive demands (11).  106 

Consistent with our findings, two recent M/EEG studies showed that functional connectivity, as 107 

estimated using amplitude-envelope coupling (AEC), relates to structural connectivity (12, 13). 108 

However, in contrast to AEC, we conducted time-resolved analyses, characterizing avalanche 109 

dynamics at high temporal resolution. Further work is needed to determine the extent to which 110 

structure-function coupling is dynamic. To this regard, our results suggest that coupling is strongest 111 

during avalanche events, consistent with established theories (14). Finally, our results might explain 112 

how the large-scale activity unfolding in time might lead to the previous observation that average 113 

resting-state functional connectivity displays topological features that mirror those of the structural 114 

connectome (15). Our proposed framework links the large-scale spreading of aperiodic, locally 115 

generated perturbations to the structural connectome, and might be further exploited to investigate 116 

polysynaptic models of network communication, which aim to describe patterns of signalling 117 

between anatomically unconnected regions (16, 17). In fact, our results show that transitions of 118 

activations are observed across regions that do not appear to be directly linked in the structural 119 

connectome. This provides evidence for polysynaptic communication.  120 

Neuronal avalanches have been previously observed in MEG data (7), and their statistical 121 

properties, such as a size distribution that obeys a power-law with an exponent of -3/2, reported. 122 

These features are compatible with those that would be predicted starting from a process operating 123 

at criticality with a branching ratio equal to one. While beyond the scope of this paper, our 124 

framework might contribute to elucidating the role of the structural scaffolding (and its topological 125 

properties) to the emergence of the observed large-scale, scale-free critical dynamics.  In turn, this 126 
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might be exploited to predict the effects of structural lesions on behaviour and/or clinical 127 

phenotypes.  128 

While our findings were replicated across multiple frequency bands, structural connectivity can 129 

potentially impose frequency-dependent constraints on avalanche spread. Future work should 130 

investigate frequency-specific data to understand what leads to the emergence of avalanches and, 131 

most importantly, to the specific spatio-temporal patterns of recruited regions that defines 132 

individual (or at least groups of) avalanches in each specific frequency-band.  133 

For the present application, we reconstructed the structural connectome using a deterministic 134 

tractography algorithm. While probabilistic algorithms can provide advantages in some 135 

applications, they are prone to reconstruction of spurious connections (false positives), compared to 136 

deterministic methods, reducing connectome specificity (18, 19). We used deterministic 137 

tractography because previous functional MRI studies report that structure-functional coupling is 138 

greater for connectivity matrices inferred from deterministic tractography, compared to probabilistic 139 

methods (20). Nonetheless, additional studies are needed to clarify if and to what extent the present 140 

results are influenced by the structural connectome reconstruction method. While we replicated our 141 

findings using alternative datasets (i.e. HCP) and parcellations, further replication using alternative 142 

connectome mapping pipelines is warranted.  143 

In conclusion, using MEG to study fast neuronal dynamics and diffusion MRI tractography to map 144 

connectomes, we found that the connectome significantly constrains the spatial spread of neuronal 145 

avalanches to axonal connections. Our results suggest that large-scale structure-function coupling is 146 

dynamic and peaks during avalanche events.   147 

Methods 148 

Participants 149 

We recruited 58 young adults (male 32 / female 26, mean age ± SD was 30.72 ± 11.58) from the 150 

general community. All participants were right-handed and native Italian speakers. The inclusion 151 

criteria were: 1) no major internal, neurological or psychiatric illnesses; 2) no use of drugs or 152 

medication that could interfere with MEG/MRI signals. The study complied with the Declaration of 153 

Helsinki and was approved by the local Ethics Committee. All participants gave written informed 154 

consent. 155 

  156 
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MRI acquisition 157 

3D T1-weighted brain volumes were acquired at 1.5 Tesla (Signa, GE Healthcare) using a 3D 158 

Magnetization-Prepared Gradient-Echo BRAVO sequence (TR/TE/TI 8.2/3.1/450 ms, voxel 1 × 1 × 159 

1 mm3, 50% partition overlap, 324 sagittal slices covering the whole brain), and diffusion MRI data 160 

for individual c connectome reconstruction were obtained using the following parameters: Echo-161 

Planar Imaging, TR/TE  12,000/95.5 ms, voxel 0.94×0.94×2.5mm3, 32 diffusion-sensitizing  162 

directions, 5 B0 volumes). The MRI scan was performed after the MEG recording.  Preprocessing 163 

of the diffusion MRI data was carried out using the software modules provided in the FMRIB 164 

Software Library (FSL, http://fsl.fmrib.ox.ac.uk/fsl). All diffusion MRI datasets were corrected for 165 

head movements and eddy currents distortions using the "eddy_correct" routine, rotating diffusion 166 

sensitizing gradient directions accordingly, and a brain mask was obtained from the B0 images 167 

using the Brain Extraction Tool routine. A diffusion-tensor model was fitted at each voxel, and 168 

streamlines were generated over the whole brain by deterministic tractography using Diffusion 169 

Toolkit (FACT propagation algorithm, angle threshold 45°, spline-filtered, masking by the FA maps 170 

thresholded at 0.2). For tractographic analysis, the ROIs of the AAL atlas and of a MNI space-171 

defined volumetric version  of the  Desikan-Killiany-Tourville (DKT) ROI atlas were used, both 172 

masked by the GM tissue probability map available in SPM (thresholded at 0.2). To this end, for 173 

each participant, FA volumes were normalized to the MNI space using the FA template provided by 174 

FSL, using the spatial normalization routine available in SPM12, and the resulting normalization 175 

matrices were inverted and applied to the ROIs, to apply them onto each subject. The quality of the 176 

normalization was assessed visually. From each subject's whole brain tractography and 177 

corresponding GM ROI set, the number of streamlines connecting each couple of GM ROIs and the 178 

corresponding mean tract length was calculated using an in-house software written in Interactive 179 

Data Language (IDL, Harris Geospatial Solutions, Inc., Broomfield, CO, USA).  180 

Connectomes in the replication dataset were constructed using an alternative mapping pipeline and 181 

diffusion MRI data from the Human Connectome Project (HCP). Deterministic tractography was 182 

performed using MRtrix3 (21) under the following parameters: FACT algorithm, 5 million 183 

streamlines, 0.5 mm propagation step size, 400 mm maximum propagation length, and 0.1 FA 184 

threshold for the termination of streamlines (17). The number of streamlines connecting any couple 185 

of regions was normalized by the combined volume of the two regions. Structural matrices were 186 

constructed for 200 HCP participants using the AAL atlas and averaged to derive a group-level 187 

connectome. 188 

  189 
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MEG pre-processing  190 

MEG pre-processing and source reconstruction were performed as in (22). The MEG system was 191 

equipped with 163 magnetometers, and was developed by the National Research Council of Italy at 192 

the Institute of Applied Sciences and Intelligent Systems (ISASI). All technical details regarding the 193 

MEG device are reported in (23). In short, the MEG registration was divided in two eyes-closed 194 

segments of 3:30 minutes each. To identify the position of the head, four anatomical points and four 195 

position coils were digitized. Electrocardiogram (ECG) and electro-oculogram (EOG) signals were 196 

also recorded. The MEG signals, after an anti-aliasing filter, were acquired at 1024 Hz, then a 197 

fourth order Butterworth IIR band-pass filter in the 0.5-48 Hz band was applied. To remove 198 

environmental noise, measured by reference magnetometers, we used Principal Component 199 

Analysis. We adopted supervised Independent Component Analysis to clean the data from 200 

physiological artifacts, such as eye blinking (if present) and heart activity (generally one 201 

component). Noisy channels were identified and removed manually by an expert rater (136 ± 4 202 

sensors were kept). 47 subjects were selected for further analysis.  203 

Source reconstruction 204 

The time series of neuronal activity were reconstructed in 116 regions of interests (ROIs) based on 205 

the Automated Anatomical Labeling (AAL) atlas (24, 25); and in 84 regions of interest based on the 206 

Desikan-Killiany-Tourreville (DKT) atlas. To do this, we used the volume conduction model 207 

proposed by Nolte (26) applying the Linearly Constrained Minimum Variance (LCMV) 208 

beamformer algorithm (27) based on the native structural MRIs. Sources were reconstructed for the 209 

centroids of each ROI. Finally, we considered a total of 90 ROIs for the AAL atlas, since we have 210 

excluded 26 ROIs corresponding to the cerebellum because of their low reliability in MEG (28). All 211 

the preprocessing steps and the source reconstruction were  made using the Fieldtrip toolbox (29).  212 

Neuronal avalanches and branching parameter 213 

 To study the dynamics of brain activity, we estimated “neuronal avalanches”. Firstly, the 214 

time series of each ROI was discretized calculating the z-score, then positive and negative 215 

excursions beyond a threshold were identified. The value of the threshold was set to 3 standard 216 

deviations (|z|  = 3), but we tested the robustness of the results changing this threshold from 2.5 to 217 

3.5. A neuronal avalanche begins when, in a sequence of contiguous time bins, at least one ROI is 218 

active (|z| >3), and ends when all ROIs are inactive (30, 31). The total number of active ROIs in an 219 

avalanche corresponds to its size.  220 
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These analyses require the time series to be binned. This is done to ensure that one is capturing 221 

critical dynamics, if present. To estimate the suitable time bin length, for each subject, for each 222 

neuronal avalanches and for each time bin duration, the branching parameter σ was estimated (32, 223 

33). In fact, system operating at criticality typically display a branching ratio ~1. The branching 224 

ratio is calculated as the geometrically averaged (over all the time bins) ratio of the number of 225 

events (activations) between the subsequent time bin (descendants) and that in the current time bin 226 

(ancestors) and then averaging it over all the avalanches (34). More specifically: 227 

 228 
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Where ��  is the branching parameter of the i-th avalanche in the dataset, 	��� is the total amount of 233 

bins in the i-th avalanche, 
���� ��� is the total number of events active in the j-th bin, 	����  is the 234 

total number of avalanche in the dataset. We tested bins from 1 to 5, and picked 3 for further 235 

analyses, given that the branching ratio was 1 for bin =3. However, results are unchanged for other 236 

bin durations, and the branching ratio remains equal to 1 or differences were minimal (range: 0.999 237 

to 1.010 - data not shown). Bins of longer duration would violate the Nyquist criterion and were 238 

thus not considered. The results shown are derived when taking into accounts avalanches longer 239 

than 10 time bins. However, we repeated the analysis taking into account avalanches longer than 30 240 

time bins, as well as taking all avalanches into account, and the results were unchanged. 241 

 242 

 243 

Transition matrices  244 

The amplitude of each binned, z-scored source-reconstructed signal was binarized, such that, at any 245 

time bin, a z-score exceeding ± 3 was set to 1 (active); all other time bins were set to 0 (inactive). 246 

Alternative z-score thresholds (i.e. 2.5 and 3.5) were tested. An avalanche was defined as starting 247 

when any region is above threshold, and finishing when no region is active, as in (22). Avalanches 248 

shorter than 10 time bins (~30 msec) were excluded. However, the analyses were repeated including 249 
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only avalanches longer than 30 time bins (~90 msec), to focus on rarer events (sizes of the neuronal 250 

avalanches have a fat-tailed distribution) that are highly unlikely to be noise, and including all 251 

avalanches, and the results were unchanged. An avalanche-specific transition matrix (TM) was 252 

calculated, where element (i, j) represented the probability that region j was active at time t+�, 253 

given that region i was active at time t, where �~3ms. The TMs were averaged per participant, and 254 

then per group, and finally symmetrized. The introduction of a time-lag makes it unlikely that our 255 

results can be explained trivially by volume conduction (i.e. the fact that multiple sources are 256 

detected simultaneously by multiple sensors, generating spurious zero-lags correlations in the 257 

recorded signals). For instance, for a binning of 3, as the avalanches proceed in time, the successive 258 

regions that are recruited do so after roughly 3 msecs (and 5 msecs for the binning of 5). Hence, 259 

activations occurring simultaneously do not contribute to the estimate of the transition matrix. See 260 

below for further analyses addressing the volume conduction issue. Finally, we explored transition 261 

matrices estimated using frequency-specific signals. To this end, we filtered the source-262 

reconstructed signal in the classical frequency bands (delta, 0.5 – 4 Hz; theta 4 – 8 Hz; alpha 8 – 13 263 

Hz; beta 13 – 30 Hz; gamma 30 – 48 Hz), before computing neuronal avalanches and the transition 264 

matrix, by applying a fourth-order Butterworth pass-band filter to the source-reconstructed data, 265 

before proceeding to the further analysis as previously described. The results remained significant 266 

in all the explored frequency bands. This analysis was carried out for the DKT atlas, binning = 3, z-267 

score   threshold = ± 3.  268 

 269 

Field spread analysis 270 

Volume conduction alone is an unlikely explanation of our results, given that simultaneous 271 

activations do not contribute to the  transition matrix, due to the time lags introduced. To confirm 272 

that volume conduction effects were negligible, the transition matrices were re-computed using 273 

longer delays. In short, we identified the regions that were recruited in an avalanche after the first 274 

perturbation (i.e. the initial time-bin of an avalanche). Since we did not scroll through the avalanche 275 

in time, as previously described, we considered time delays as long as the avalanche itself, while 276 

minimizing the influence of short delays. This means that the avalanche-specific transition matrix is 277 

now binary, and the ijth element is equal to 1 if region i started the avalanche (i.e. it was active at the 278 

first time-bin) and region j was recruited in the avalanche at any subsequent timepoint, and 0 279 

otherwise. This alternative procedure for the estimation of the transition matrices was carried out 280 

for the AAL atlas, in the case of binning =3, z-score threshold = ± 3. In this case, a significant 281 
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association remained between transition probabilities and structural connectivity (r=0.36; 282 

p<0.0001). Figure 2–figure supplement 1 provides further details.  283 

To further rule out the possibility that field spread might introduce spurious correlations that might 284 

drive the relationship between the Transition Matrix and the structural connectivity matrix, we 285 

conducted further analyses involving surrogate data. We generated n white Gaussian processes, 286 

with n = 66, i.e. the number of cortical regions, and we smoothed them using a zero-phase 287 

polynomial filter. Then, we added 100  perturbations, where each perturbation was assigned to a 288 

randomly chosen regions and random time point, subject to the following constraints.  Perturbations 289 

were separated by at least 200 samples (no overlap was allowed, i.e. the perturbations could only 290 

occur in one region at a time), their length was randomly selected among 5, 10 or 100 samples, their 291 

amplitude between 50 and 400. This procedure was carried out 47 times, to obtain an independent 292 

surrogate dataset for each one of the 47 participants, that will be referred to as the “uncoupled” 293 

dataset. The uncoupled dataset was then transformed using the subject-specific leadfield matrix, 294 

yielding new surrogate sensor-level timeseries, where each sensor is a weighted sum of all the 295 

sources, according to the same leadfield matrix that was used to reconstruct the real data. Noise, 296 

correlated as 1/distance among sensors, was then added to the sensor-level time series, with a SNR 297 

= 4. Then, new source-reconstructed time series were computed for each subject. Based on these 298 

new time series, we performed the same procedure to compute the transition matrix as described 299 

above. Specifically, we z-scored the time series, thresholded them (threshold z=±3), retrieved the 300 

avalanche-specific transition matrices, averaged these within each subject and then across the 301 

group, and finally symmetrized the matrix. We then investigated the extent of correlation between 302 

the new transition matrix and the structural connectivity matrix. We repeated the entire procedure 303 

reported above one hundred times, and show that is unlikely that linear mixing alone can explain 304 

the significant association between transition probabilities and structural connectivity (p < 0.001). 305 

 306 

Statistical analysis 307 

The Spearman rank correlation coefficient was used to assess the association between transition 308 

probabilities and structural connectivity. A correlation coefficient was computed separately for each 309 

individual across all pairs of regions. Transition matrices were symmetrized before this 310 

computation. Randomized transition matrices were generated to ensure that associations between 311 

transition probabilities and structural connectivity could not be attributed to chance. Avalanches 312 

were randomized across time, without changing the order of active regions at each time step. We 313 

generated a total of 1000 randomized transition matrices and the Spearman rank correlation 314 
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coefficient was computed between each randomized matrix and structural connectivity. This yielded 315 

a distribution of correlation coefficients under randomization. The proportion of correlation 316 

coefficients that were greater than, or equal to, the observed correlation coefficient provided a p-317 

value for the null hypothesis that structure-function coupling was attributable to random transition 318 

events.    319 
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 402 

Figure 1. A. Rendering of streamlines reconstructed using diffusion MRI and tractography for an403 

individual. B. Structural connectivity matrix. Row/columns represent regions comprising a brain 404 

atlas. Matrix entries store the number of streamlines interconnecting each pair of regions.  C. 405 

Source-reconstructed MEG series. Each blue line represents the z-scored activity of a region, and 406 

the red lines denote the threshold (z-score= ± 3). The inset represents a magnified version of a time-407 

series exceeding the threshold. D. Raster plot of an avalanche. For each region, the moments in time 408 

when the activity is above threshold are represented in black, while the other moments are indicated 409 

in white. The particular avalanche that is represented involved three regions. E. Estimation of the 410 
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transition matrix of a toy avalanche. Region i is active three times during the avalanche. In two 411 

instances, denoted by the green arrows, region j was active after region i. In one instance, denoted 412 

by the red arrow, region i is active but region j does not activate at the following time step. This 413 

situation would result, in the transition matrix, as a 2/3 probability. F. Average structural matrix and 414 

average transition matrix (Log scale). 415 
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418 

Figure 2. A. Distribution of the r’s of the Spearman’s correlation between the subject-specific 419 

transition matrices and structural connectomes. The black diamond represent the r’s of the group-420 

averaged matrices. On the left, the results for the AAL atlas, on the right, the results for the DKT421 

atlas. Green, purple and orange dots represent results obtained with a z-score threshold of 2.5, 3 and 422 

3.5, respectively. B and C. Data referring to the AAL atlas in B, to the DKT atlas in C. On the top-423 

left, the average structural matrix, on the bottom left, the average transition matrix. The scatterplot 424 

shows the correlation between the values of the structural edges and the transition probabilities for 425 

the corresponding edge. The black line represents the best fit line in the least-square sense. On the 426 

right, the distribution shows the r’s derived from the null distribution. The dotted blue line 427 

represents the observed r. Please note that, for visualization purposes, the connectivity weights and 428 

the transition probabilities were resampled to normal distributions. Figure 2-figure supplement 1429 

shows the comparison between the structural connectome and the transition matrix computed by 430 

taking into account longer delays. In the Supplementary file 1, we report a table with an overview 431 

of the results of the frequency-specific analysis.   432 
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Supplementary figure 1. 440 

441 

On the left, the average structural matrix. On the right, the average transition matrix. 442 

 443 

Supplementary File 1. 444 

Table.1 Correlations between the structural connectome and frequency-specific transition 445 

matrices. 446 

 R p 
Delta (0.5 – 4 Hz) 0.38 2.021e-120 
Theta (4 – 8 Hz)  0.35  5.34e-100 

Alpha (8 – 13 Hz) 0.38 1.46e-116 
Beta (13 – 30 Hz) 0.38 7.30e-122 

Gamma (30 – 48 Hz)          0.39 1.32e-123 
Correlations between the structural connectome and frequency-specific transition matrices. 447 

 448 

Source data File. 449 

The source data file contains the code to generate the transition matrices starting from neuronal av450 

and to compare them to null surrogates.  451 
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