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 2 

ABSTRACT 1 

The transition from maternal to embryonic transcriptional control is a crucial step in 2 

embryogenesis. However, how alternative splicing is regulated during this process and how it 3 

contributes to early development is unknown. Using transcriptomic data from pre-4 

implantation stages of human, mouse and cow, we show that the stage of zygotic genome 5 

activation (ZGA) exhibits the highest levels of exon skipping diversity reported for any cell or 6 

tissue type. Interestingly, much of this exon skipping is temporary, leads to disruptive non-7 

canonical isoforms, and occurs in genes enriched for DNA damage response in the three 8 

species. We identified two core spliceosomal components, Snrpb and Snrpd2, as regulators of 9 

these patterns. These genes have low maternal expression at the time of ZGA and increase 10 

sharply thereafter. Consistently, microinjection of Snrpb/d2 mRNA into mouse zygotes 11 

reduces the levels of temporary exon skipping at ZGA, and leads to an increase in etoposide-12 

induced DNA damage response. Altogether, our results suggest that mammalian embryos 13 

undergo an evolutionarily conserved and developmentally programmed specific splicing 14 

failure at the time of genome activation that attenuates cellular responses to DNA damage at 15 

these early stages. 16 

  17 
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 3 

INTRODUCTION 1 

Pre-implantation embryonic development follows a morphogenetically similar path in all 2 

placental mammals. It progresses from an unfertilized oocyte to a fertilized zygote through 3 

fusion with sperm, followed by symmetric cell divisions, morula compaction, establishment 4 

of the first cell lineages, and formation of a blastocyst that implants into the uterine wall. A 5 

distinctive control over the cell cycle and DNA damage response (DDR) has been observed 6 

during the first cell divisions 1,2, a moment in which the embryo needs to ensure cell cycle 7 

progression whilst preserving genome integrity, as any unrepaired damage will be inherited 8 

by all embryo lineages. These pre-implantation events are mirrored by large epigenetic and 9 

transcriptomic changes. Arguably, the most studied aspect is the transition from maternal to 10 

embryonic transcriptional control, at the stage of zygotic genome activation (ZGA). Here, the 11 

maternal mRNA contribution is cleared both actively and passively 3, and the zygotic genome 12 

activates in different waves 4. The relative timing of the major wave differs between species, 13 

disconnecting morphogenetic and transcriptomic events. For example, while morula 14 

compaction occurs roughly at the 8-cell (8C) stage in both human and mouse embryos, the 15 

major wave of ZGA takes place also at the 8C stage in human, but at the 2-cell (2C) stage in 16 

mouse. These differences, added to the difficulty of obtaining reliable transcriptomic data 17 

from pre-implantation embryos from multiple mammalian species, complicate transcriptomic 18 

evolutionary comparisons between species. Thus, despite some initial reports based on 19 

microarrays (e.g. 5,6), in-depth investigation of transcriptome-wide remodeling had remained 20 

elusive until the advent of single-cell and low-input RNA sequencing (RNA-Seq). Using 21 

these techniques, several studies have undertaken large transcriptomic analyses of pre-22 

implantation development in human 7-9, mouse 3,7,10-13 and cow 14-16. These studies have 23 

confirmed some previous findings (e.g. the different timing of the ZGA in each species) and 24 

provided novel comparative insights. However, they focused nearly exclusively on the 25 

variations of steady-state levels of protein-coding genes.  26 

 27 

Alternative splicing (AS) is the process by which different pairs of splice sites are selected in 28 

precursor mRNAs leading to different combinations of exons in the final mature mRNA. It is 29 

responsible for greatly expanding the functional and regulatory capacity of metazoan 30 

genomes 17, potentially generating numerous transcript and protein products from a single 31 

gene. Over half of human protein-coding genes produce multiple transcript isoforms that are 32 

widely regulated across cell and tissue types 18, with particularly high prevalence in brain and 33 
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 4 

testis 19,20. These AS events may generate distinct functional protein isoforms or lead to 1 

unproductive mRNA products that are degraded by non-sense mediated decay (NMD), 2 

thereby contributing to modulate gene expression 21. Although proper AS regulation is crucial 3 

for post-implantation mammalian embryo development 22, only a handful of studies have 4 

descriptively assessed isoform diversity during pre-implantation stages, concluding that 5 

hundreds of genes dynamically express different transcripts in human and mouse, particularly 6 

at the maternal-to-zygotic transition 8,12,23-25. However, the regulatory mechanisms, 7 

evolutionary conservation and physiological implications of these patterns are unknown.  8 

 9 

Here, we generated a comprehensive dataset of AS quantifications for pre-implantation 10 

development of human, mouse and cow. We found that the blastomeres that undergo the 11 

major wave of ZGA show the highest levels of exon skipping reported so far for any cell and 12 

tissue type. In most cases, this exon skipping was temporary and restored soon after ZGA. 13 

Remarkably, such AS events often disrupt the open reading frame (ORF) and are enriched for 14 

genes involved in DDR in the three studied species. We identified Sm ring components Snrpb 15 

and Snrpd2 as major regulators of these patterns, and showed that induced expression of these 16 

factors prior to ZGA leads to reduced splicing disruption and increased DDR upon etoposide 17 

treatment at this developmental point.  18 

 19 

RESULTS 20 

AS profiles in early embryo development of human, mouse and cow 21 

To investigate AS during pre-implantation development, we took advantage of the abundant 22 

publicly available RNA-Seq datasets (Fig. 1a and Supplementary Table 1). These data 23 

comprised samples from oocyte to blastocyst stage embryos from multiple studies, obtained 24 

from either single blastomere or bulk embryo RNA-Seq. To confidently estimate AS levels 25 

across the time courses, we performed the following steps (Fig. 1b; see Methods for details). 26 

We first measured gene steady-state mRNA levels (hereafter referred to as gene expression, 27 

GE) genome-wide for each individual sample, and clustered these samples using hierarchical 28 

clustering (Supplementary Figs. 1-3). Samples largely grouped by stage and not by 29 

experiment, and outlier cells were removed from further study (Supplementary Table 1 for 30 

details). Based on this information, we merged single cells/samples into pools of ~160 million 31 

reads on average (Supplementary Table 1) to acquire high coverage on exon-exon junctions 32 
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 5 

and improve quantifications of AS. Principal Component Analyses (PCA) of GE 1 

measurements for the pooled groups showed a V-shaped temporal profile for PCs 1 and 2, 2 

with the largest difference occurring at the time of ZGA in the three species (Fig. 1c; between 3 

the 4-cell (4C) and 8C stage in human, zygote and 2C stage in mouse, and 4C and 8C/morula 4 

in cow).  5 

 6 

We then used vast-tools 18,26 to quantify alternative sequence inclusion levels (using the 7 

percent-spliced-in metric, PSI) for alternative exons, alternative donor/acceptor sites and 8 

retained introns (Extended Data Fig. 1a). In addition, to ensure that early embryo-specific 9 

exons were not missed from vast-tools annotations, we conducted a de novo search for 10 

cassette exons using a custom pipeline (see Methods for details; Supplementary Table 2). 11 

Similar to GE, PCAs of exon PSIs separated embryos by cell stage and not experiment, 12 

showed V-shaped temporal dynamics, and had the largest difference between consecutive 13 

stages at ZGA for the three species (Fig. 1c). To facilitate the access of this large resource to 14 

the research community, AS and GE plots are provided as special datasets in VastDB 15 

(http://vastdb.crg.eu).  16 

 17 

ZGA stage embryos show the highest levels of exon skipping diversity of any cell and 18 

tissue type 19 

To have a first assessment of the contribution that AS has to diversify transcriptomes at each 20 

developmental stage, we used a simple measure of diversity where alternative exons with 21 

sufficient read coverage were classified as either producing one main isoform (PSI≤20 or 22 

PSI≥80) or two (20<PSI<80) (Fig. 1d). Remarkably, the stage undergoing the ZGA showed 23 

the highest levels of exon skipping diversity in the three studied species (8C in human, 2C in 24 

mouse and 8C in cow), returning to the preceding lower levels in the subsequent stages (Fig. 25 

1d and Extended Data Fig. 2a). Furthermore, the level of AS of cassette exons upon ZGA was 26 

not matched by any differentiated cell or tissue type, including neural, muscle and testis (Fig. 27 

1d and Extended Data Fig. 2a). The increased level of AS among alternative exons was robust 28 

to different cut-offs of PSI range and read coverage (Extended Data Fig. 2b), also observed at 29 

the single blastomere level (Extended Data Fig. 2c), and was not found for intron retention or 30 

alternative 3′/5′ splice site choices (Extended Data Fig. 2b). Altogether, these results reveal 31 

that transcriptome diversification driven by exon skipping reaches its maximum in mammals 32 
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 6 

only for a brief moment in life during ZGA.  1 

 2 

Changes in GE and AS are maximal at ZGA 3 

We next measured the number of AS events that change between each pair of consecutive 4 

stages (hereafter stage transitions) in our time course (Extended Data Fig. 1b and Methods). 5 

In total, we found 2711, 1828 and 4748 unique AS events of all types with differential 6 

regulation in 2058, 1350 and 2735 genes for human, mouse and cow, respectively (Fig. 1e). 7 

For comparison, we also calculated the numbers of differentially expressed genes (Extended 8 

Data Fig. 1c) and found 6545, 8895 and 8118 genes in each respective species that showed 9 

differential expression in at least one transition. Consistent with the PCA results, we found 10 

the largest number of changes for both AS and GE at ZGA in the three species (Fig. 1e). For 11 

example, in human, 1130/2711 (41.7%) of AS events with differential regulation and 12 

3826/6545 (58.5%) of genes differentially expressed were observed at ZGA (4C-8C 13 

transition). Moreover, a clear bias was observed in the direction of regulation for alternative 14 

exons and intron retention in the three species at this transition: whereas the majority of exons 15 

showed increased skipping at ZGA, most differentially spliced introns had increased retention 16 

(Fig. 1e). Despite AS and GE changes mostly occurring at ZGA, the specific genes with AS 17 

and GE changes did not significantly overlap for nearly all transitions, a pattern that was 18 

consistent for intron retention and exon skipping separately (Extended Data Fig. 3a-c). Given 19 

that a large number of genes become transcribed at this stage for the first time, these results 20 

imply that, in many cases, the maternally inherited transcript isoform is (partially) substituted 21 

by a new isoform without significantly altering the overall mRNA steady state level of the 22 

gene.   23 

 24 

Conserved and species-specific changes in AS 25 

We next asked whether changes in AS and GE were conserved across species or were specific 26 

to individual species. For exons changing in each transition for a given species, we assessed 27 

in each other species: (i) if the exons were present in their genome (“genome-conserved” 27), 28 

(ii) if these orthologous exons had sufficient read coverage, and, if so, (iii) if they changed 29 

(|ΔPSI| > 15) in the same direction at any transition (Extended Data Fig. 4a-f; see Methods for 30 

details). This analysis showed that most AS events changing in two species change at ZGA, 31 

but highlighted overall low levels of conservation. For instance, only 3.6% and 5.1% (31 and 32 
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 7 

44 out of 859) of ZGA-regulated exons in human also change their inclusion in the same 1 

direction at the mouse or cow ZGA, respectively. These percentages increase up to 15.8% and 2 

30.1%, respectively, for exons with an ortholog and sufficient read coverage at the ZGA in 3 

the other species. In the case of GE, 27.2% and 35.0% of genes with differential expression at 4 

ZGA in human overlapped with those changing at ZGA in mouse and cow, respectively, 5 

although a high level of heterochronies was also observed (Supplementary Fig. 4), as 6 

previously reported 5. To further identify exons that were dynamically regulated during pre-7 

implantation development across mammals, we next searched for orthologous exons whose 8 

inclusion levels were different between any two stages in the three species (see Methods). 9 

This revealed 259 exons (Extended Data Fig. 4g and Supplementary Table 3), which were 10 

significantly enriched for genes involved in key signalling pathways (e.g. Wnt pathway), 11 

transcription and chromatin modifiers (e.g. Tcerg1, Dnmt3b, Ezh2), and genes related to 12 

morphogenesis (e.g. cadherin binding) (Extended Data Fig. 4h).  13 

 14 

Peak profiles dominate AS dynamics 15 

To further characterize the temporal dynamics of AS, we used Mfuzz 28 to cluster alternative 16 

exons according to their co-regulated inclusion levels throughout the time course. We 17 

obtained 28, 18 and 22 exon clusters in human, mouse and cow, respectively (Supplementary 18 

Figs. 5-7; Supplementary Table 4). Most of these clusters could be broadly classified into 19 

three general patterns: (i) peak-like regulation, in which the exon is highly included or 20 

skipped only in a given stage, quickly returning to the initial levels (hereafter "peak exons"), 21 

(ii) shift-like regulation, in which the exon goes from high to low inclusion at a specific 22 

transition, or vice versa, but does not return to the initial level ("shift exons"), and (iii) other 23 

regulation, those that do not fit the previous descriptions (Fig. 2a; see Methods for precise 24 

definitions). Remarkably, the peak behaviour was the most common regulation among 25 

alternative exons (Fig. 2b; e.g. 42.1% vs 17.3% of shift exons in human). This contrasted with 26 

the patterns of Mfuzz clusters based on GE, which were more represented by shift or other 27 

behaviours (Fig. 2b). These results were consistent with the V-shape patterns in the PCA (Fig. 28 

1c) and the asymmetric patterns observed for exon skipping and intron retention at ZGA, 29 

which were inverted in the post-ZGA transition in the three species (Fig. 1e), suggesting that 30 

a large proportion of changes at this time are temporary. Indeed, 427/749 (57%) alternative 31 

exons with significant changes at ZGA covered in the Mfuzz cluster analysis showed peak 32 

behaviour. Mfuzz clustering patterns were highly validated by RT-PCR using RNA from 33 
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 8 

independent pools of embryos, with 21/23 (91%) of peak, 11/11 (100%) of shift and 19/19 1 

(100%) other alternative exons showing the expected temporal dynamics (Extended Data Fig. 2 

5). 3 

 4 

Peak AS changes at ZGA often disrupt the ORF and are enriched for DDR genes 5 

To begin elucidating the potential functional impact of AS changes during early 6 

embryogenesis, we investigated the predicted effect that alternative sequence inclusion or 7 

exclusion had on ORFs at each stage. Although the fractions of AS events that are predicted 8 

to disrupt the ORF were similar across stage transitions and species (Extended Data Fig. 6a), 9 

we found strong biases in the direction of the disruption depending on the transition: the vast 10 

majority of non-frame preserving AS events changing at ZGA disrupt the ORF specifically at 11 

that stage in the three species (Extended Data Fig. 6b). That is, these alternative sequences 12 

were more included at ZGA when the inclusion was predicted to disrupt the ORF, and vice 13 

versa for exclusion. Consistent with these predictions, isoforms predicted to disrupt the ORF 14 

at ZGA showed strong upregulation upon NMD disruption through UPF1 knockdown in HR1 15 

cells (Extended Data Fig. 6c). Moreover, the disruptive impact on ORFs seems further 16 

strengthened by a global differential engagement of isoforms in translating ribosomes. 17 

Comparison of RNA-Seq data from high and low polysome fractions from human embryonic 18 

stem cells 29 or HEK293 cells 30 revealed a strong bias for ORF-disrupting isoforms at the 19 

ZGA to be less engaged by translating ribosomes, whereas the opposite was true for the few 20 

ORF-recovering isoforms (Extended Data Fig. 6d,e).  21 

 22 

Analysis of the subsets of exons that belonged to different Mfuzz clusters changing at ZGA 23 

further informed these patterns. Most peak exons disrupted the ORF at the peaking stage in 24 

the three species, whereas shift exons more often generated alternative protein isoforms (Fig. 25 

2c,d, top-left). In addition, peak-down exons were usually constitutively or highly included in 26 

differentiated tissues, whereas peak-up exons were normally not or only lowly included in 27 

differentiated tissues (Fig. 2c, top-middle). Interestingly, the biased inclusion levels in peak 28 

exons occurred for both ORF-preserving and ORF-disrupting events, underscoring a 29 

widespread change from canonical to rare isoforms at this stage.  In line with this, ZGA 30 

isoforms were found to be upregulated upon NMD depletion and depleted in the high 31 

polysome fraction in both embryonic stem cells and 293T cells, irrespective of the predicted 32 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.25.397794doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.397794
http://creativecommons.org/licenses/by-nc/4.0/


 9 

ORF impact (Extended Data Fig. 6f-h). Two additional lines of evidence supported the 1 

opposite nature of peak-down and peak-up exons. First, each cluster type had distinct profiles 2 

of overlap with transposable elements: peak-down exons were strongly depleted for 3 

transposable elements, whereas peak-up exons were enriched for these genetic elements 4 

(Extended Data Fig. 7). Second, peak-down exons had the highest levels of genome 5 

conservation among mammals, whereas most peak-up exons were species-specific (Fig. 2c, 6 

top-right). Therefore, altogether, these patterns are consistent with most peak-down exons 7 

being constitutive exons of major coding relevance and whose skipping at ZGA leads to non-8 

functional isoforms, whereas peak-up exons are cryptic-like exons that do not encode 9 

important protein domains and often disrupt the gene's canonical isoforms when included.  10 

 11 

Remarkably, despite the low level of regulatory conservation of individual events (see above), 12 

exons in clusters peaking at ZGA were altogether significantly enriched for genes involved in 13 

DNA repair and cellular response to DNA damage in human, mouse and cow (Fig. 2c, 14 

bottom). These GO enrichments contrast sharply with those for genes with shift events, with 15 

terms related to transcription or protein phosphorylation, and whose regulated exons had more 16 

intermediate inclusion levels across adult cell and tissues (Fig. 2d). In summary, these results 17 

show that a large number of peak exons are likely to disrupt protein function temporarily 18 

upon ZGA, impacting genes involved in response to DNA damage. 19 

 20 

Reduced DNA damage response to etoposide during ZGA 21 

The predicted impact of AS on the function of proteins involved in DDR is especially 22 

remarkable as previous studies indicate that early pre-implantation embryos present a delayed 23 

response to DNA damage induced by irradiation 31-33, suggesting that this process may not be 24 

fully functional during ZGA. To gain further insights into DDR regulation during ZGA, we 25 

first treated 2C embryos with low doses of the topoisomerase II inhibitor etoposide for 1h and 26 

analyzed the effect on their developmental progression for further 48h (Fig. 3a). Etoposide 27 

treated embryos progressed to the 8C stage at the same rate as control embryos (Fig. 3b) and 28 

only became arrested after early morula compaction (Fig. 3c). In addition, TUNEL staining 29 

showed cell death was suppressed until morula stage, when a large proportion of etoposide 30 

treated embryos were TUNEL positive (Fig. 3d,e). Etoposide induces DNA double strand 31 

breaks (DSBs), which primarily get resolved though the activation of the ATM pathway 34. 32 
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 10 

P53 is one of the main downstream targets that get phosphorylated by ATM in response to 1 

DSBs 35. We therefore used the levels of p53 phosphorylation at Ser15 to ask whether 2 

embryos at the time of ZGA display a correct activation of ATM pathway in response to 3 

etoposide. After treatment of 2C embryos or early morulas (8 to 16 cells) for 1h with low 4 

dose etoposide, the level of phospo-p53 (Ser15) was significantly higher in treated morulas 5 

whereas it remained low in treated 2C embryos (Fig. 3f,g). These results thus support a 6 

dysfunction of ATM–p53-mediated DDR to DSBs during ZGA, which only becomes fully 7 

active from the early morula stage, when the embryos resolve the accumulated damage by 8 

inducing cell cycle arrest and death. Mechanistically, AS-mediated protein disruption at ZGA 9 

could contribute to lowering the overall levels of functional DDR proteins at this 10 

developmental stage, reducing the response to DNA lesions. 11 

 12 

Peak exon behavior is dependent on low SNRPB and SNRPD2 levels 13 

To obtain insights into the characteristics and regulation of peak exons at ZGA, we first 14 

evaluated multiple exonic and intronic features associated with exon skipping using Matt 36. 15 

This analysis revealed some common patterns across the three species, including weaker 16 

branch points and shorter downstream introns for exons peaking down at ZGA, and weaker 5′ 17 

and 3′ splice sites and differences in GC content for those peaking up (Fig. 4a and 18 

Supplementary File 1). Remarkably, a Random Forest classifier based on multiple genomic 19 

features was able to discriminate human and mouse peak exons from sets of exons with 20 

matched pre-ZGA PSIs with high sensitivity and specificity (e.g. AUC = 0.852 and 0.885 for 21 

human peak-down and peak-up exons, respectively; Fig. 4b and Extended Data Fig. 8a). 22 

Investigation of the features that contributed the most to this discrimination revealed the 23 

length of pre-mRNA and intron number as top-ranking characteristics for peak-down exons, 24 

which were located in significantly shorter genes in the three species (Fig. 4b, Extended Data 25 

Fig. 8b,c and Supplementary File 1). 26 

 27 

We next investigated which splicing regulators may be responsible for the specific temporal 28 

dynamics of peak exons at ZGA. For this purpose, we took several complementary 29 

approaches (see Methods for details). First, for each species, we looked for enrichment of 30 

known binding motifs for RNA binding proteins 37 in the exonic and neighboring intronic 31 

regions for exons from Mfuzz clusters peaking up or down at ZGA. Although a few 32 
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significantly enriched motifs were found for individual species, the associated RNA binding 1 

proteins did not show changes in GE at ZGA and/or the enrichments were not evolutionarily 2 

conserved (Supplementary Table 5). Second, we correlated average PSIs of peak-down or 3 

peak-up exons with GE of known splicing regulators at the ZGA at the single cell level 4 

(Supplementary Table 6). This identified multiple significant correlations at each transition, 5 

including several AS factors (e.g. SRSF2, TIAL1) as well as core spliceosomal components 6 

(e.g. SNRPB; Fig. 4c). Third, since these correlations may be indirect, we collected RNA-Seq 7 

data from 119 available experimental perturbations for 84 unique splicing regulators in 8 

different human cell or tissue types (Supplementary Table 1). For each regulator and 9 

experiment, we calculated the average change in PSI (or ΔPSI) between knockdown and 10 

control for all alternative exons, and overlapped those with significant changes with exons 11 

peaking at ZGA (Supplementary Table 7). Strikingly, exons changing upon SNRPB 12 

knockdown showed the strongest association with ZGA peak exons in two independent 13 

available experiments (Fig. 4d). Noticeably, the majority of overlapping exons corresponded 14 

to peak-down exons that are skipped upon SRNPB depletion (Fig. 4e; lower left quadrant).  15 

 16 

Given this strong association, we decided to investigate the potential role of SNRPB at ZGA 17 

in more detail. SNRPB, also known as SmB, is part of the Sm heptameric ring, which is 18 

required for the biogenesis of the U1, U2, U4/U6, and U5 snRNP molecules on the pre-19 

mRNA 38. Contrary to our initial expectation, SNRPB was very lowly expressed at pre-ZGA 20 

stages and showed a sharp increase in expression at the ZGA stage in human, mouse and cow 21 

(Fig. 4f and Extended Data Fig. 8d). In addition, another gene encoding a subunit of the Sm 22 

ring, SNRPD2, had similar activation patterns at ZGA in the three species (Fig. 4f and 23 

Extended Data Fig. 8d). Considering all these data together, we hypothesized the following 24 

scenario (Fig. 5a, left). Genes with peak-down SNRPB/D2-sensitive exons become actively 25 

transcribed at ZGA, when the maternally inherited levels of the two Sm proteins are low. This 26 

results in the production of transcripts that skip these exons, leading to a net decrease in their 27 

inclusion levels compared to pre-ZGA stages. As development proceeds, the burst of 28 

expression of SNRPB/D2 genes at ZGA leads to a subsequent increase in Sm protein levels, 29 

which, in turn, allows the correct inclusion of peak exons in nascent transcripts at post-ZGA 30 

stages, thereby eventually restoring pre-ZGA high inclusion levels. In this way, the dynamic 31 

production and turnover of transcripts from genes containing SNRPB/D2-sensitive exons, 32 
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together with the expression dynamics of the SNRPB/D2 genes themselves, is thus predicted 1 

to result in temporary peak-like patterns of exon skipping around ZGA stages.  2 

 3 

To assess this hypothesis, we tested the major predictions made by this model. First, we 4 

checked whether or not Snrpb and Snrpd2 were depleted at the protein level at pre-ZGA 5 

stages. Western blot and immunostaining at different stages confirmed very low levels of both 6 

proteins until the late 2C/4C stage, with a sharp increase by the 8C/morula stage (Fig. 5b,c). 7 

Next, we evaluated the effect that increasing SNRPB and SNRPD2 levels prior to ZGA had 8 

on exons changing at this particular stage (Fig. 5a, right). For this, we injected in vitro 9 

transcribed mRNA from either Snrpb and Snrpd2 together (Snrpb/d2) or mCherry, as a 10 

control, into pronuclear stage embryos, and sequenced polyA+ mRNA from zygotes (5h post 11 

mRNA injection) and 2C stage embryos (24h post mRNA injection). We identified 878 and 12 

484 alternative exons decreasing and increasing their inclusion levels (|ΔPSI| >= 15), 13 

respectively, between our zygote and 2C stage embryos. Remarkably, of these, 234/878 14 

(26.7%) exons with decreased PSI were less skipped after Snrpb/d2 overexpression compared 15 

to the control condition (in contrast to only 29 with further skipping). Moreover, 82/484 16 

(16.9%) exons that increased their inclusion from 1C to 2C decrease their PSI in Snrpb/d2 17 

injected embryos (compared to 11 in the opposite direction) (Fig. 5d,e). The negative 18 

association between the changes at ZGA and upon Snrpb/d2 overexpression is highly 19 

significant (P = 1.1e-30, binomial test), suggesting that higher Snrpb/d2 levels before ZGA 20 

maintain alternative exon patterns in a more pre-ZGA state. A similar, but milder, reversion 21 

of ZGA AS patterns was observed upon early expression of Snrpb or Snrpd2 alone (Extended 22 

Data Fig. 9a,b). Importantly, this pattern was not observed for GE (Extended Data Fig. 9c), 23 

for which very few changes were identified upon Snrpb/d2 overexpression (29/5,048 [0.58%] 24 

of ZGA changing genes), indicating that the reversion was specific to exon inclusion. 25 

 26 

Earlier Snrpb/d2 expression leads to increased DNA damage response in 2C embryos 27 

Our results show that peak-like exon skipping at ZGA can be in part prevented by combined 28 

overexpression of Snrpb and Snrpd2 (Fig. 5d,e). Given that such exons are predicted to 29 

impact the function of proteins involved in DDR (Fig. 2c), we next evaluated the effect of 30 

Snrpb/d2 overexpression on the ability of the 2C embryo to respond to DNA damage induced 31 

by etoposide. For this, we injected mRNA from Snrpb/d2 or mCherry into pronuclear stage 32 
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embryos. Injected embryos were left to develop in culture up to the 2C stage and then treated 1 

for 1.5h with a high dose of etoposide (10uM), which ensures induction of DDR at this early 2 

stage. Activation of DDR was evaluated by phospho-p53 (Ser15) immunostaining. Strikingly, 3 

while Snrpb/d2 overexpression did not induce a significant change on phospho-p53 levels on 4 

basal conditions, these levels were significantly higher after etoposide treatment in Snrpb/d2 5 

injected embryos (Fig. 5f and Extended Data Fig. 10a). This suggests that the temporal 6 

skipping of exons sensitive to Snrpb/d2 at least in part modulates p53-mediated DDR 7 

occurring during ZGA, contributing to the low response observed at this stage. 8 

 9 

DISCUSSION 10 

We have combined multiple datasets and applied a strict quality control to generate a 11 

comprehensive and highly validated atlas of AS events during pre-implantation development 12 

in three mammalian species. Previous studies revealed that AS is very dynamic during mouse 13 

pre-implantation development, with most changes in isoform usage occurring at the ZGA 12,23-14 
25. Our transcriptomic analysis confirms this observation not only for mouse but also for 15 

human and cow, despite the marked differences in the relative timing of ZGA in the three 16 

species 7,15. Strikingly, blastomeres undergoing ZGA in the three species showed the highest 17 

levels of isoform diversity generated by exon skipping so far reported for any other tissue, 18 

cell type or developmental stage. This is particularly surprising given the low morphological 19 

complexity of these cells, especially when compared to complex organs as intricate as the 20 

brain, which had the previously highest levels of AS 20,39. Remarkably, this exceptional exon 21 

skipping complexity was observed during only one or two stages, lasting 24-48 hours in 22 

development, and was due to hundreds of alternative exons whose inclusion levels displayed 23 

a sharp peak-like temporal behavior. Although the specific peak exons are not highly 24 

conserved, they overall have an equivalent molecular impact (ORF disruption at ZGA), are in 25 

genes enriched for similar gene functions (DDR), and are likely regulated by the same factors 26 

(Sm ring components) in the three studied species. Therefore, we suggest that these peak-like 27 

AS patterns are the result of a specific splicing failure at ZGA that is evolutionarily conserved 28 

and developmentally programmed to contribute to attenuate DDR during early 29 

embryogenesis.  30 

 31 
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The molecular mechanism behind this programmed splicing failure is at least in part related to 1 

the unique developmental dynamics of two Sm ring components. Unlike most adult and 2 

embryonic cells, pre-ZGA blastomeres inherit low mRNA and protein levels of SNRPB and 3 

SNRPD2, leading to skipping of sensitive exons in genes that are transcribed in the major 4 

ZGA wave. Since the SNRPB/D2 genes themselves are also strongly transcribed in this wave, 5 

their mRNA levels increase quickly, which is followed by a rise in protein levels that prompts 6 

high exon inclusion in the subsequent stages, restoring the canonical splicing patterns. 7 

Consistent with this model, zygotic injection of Snrpb/d2 mRNA led to a partial "rescue" of 8 

the splicing failure observed at ZGA. Importantly, only a subset of all exons is sensitive to 9 

low SNRPB/D2 levels, which is enriched among ZGA peak exons. These exons showed 10 

common genomic features and could be accurately discriminated from exons with matched 11 

pre-ZGA inclusion levels by a Random Forest model. Interestingly, this programmed splicing 12 

failure is reminiscent of the widespread intron detention reported during mouse 13 

spermatogenesis 40. In that case, an excess of transcription was proposed to overload the 14 

available spliceosomal machinery, leading to reduced splicing efficiency of a subset of introns 15 

with weak splice sites, which are then properly spliced and translated at later stages. 16 

Therefore, despite their different molecular mechanisms, associated targets and physiological 17 

consequences, these processes suggest that developmentally programmed specific splicing 18 

failures may be exploited by multicellular organisms as a strategy to regulate their 19 

development and physiology more often than previously anticipated. 20 

 21 

The enrichment for DDR functions among genes with peak exons at ZGA in the three studied 22 

species provides a new piece to understand the special regulation of DDR during early 23 

mammalian embryogenesis. It has been shown that the DDR to irradiation increases during 24 

pre-implantation development 31,32, however the mechanisms behind this change in sensitivity 25 

to DNA damage are mostly unknown. We have shown that embryos treated with etoposide 26 

during ZGA fail to properly activate a p53-mediated response and neither arrest nor die until 27 

they reach morula stage. This points to the ATM pathway not being fully functional during 28 

early cleavage stages, in line with previous observations 41,42. Remarkably, reverting the peak-29 

like exon skipping pattern at ZGA by Snrpb/d2 injection led to an increase in phospho-p53 30 

levels in response to etoposide at this stage (Fig. 5f), whereas the levels of gamma-H2AX, a 31 

mark common for the activation of different DDR pathways, increased to a similar extent 32 

upon etoposide treatment in control and Snrpb/d2 injected embryos (Extended Data Fig. 33 
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10b,c). It is known that H2AX phosphorylation can happen independently of ATM 41,43; 1 

therefore, these results suggest that Snrpb/d2-dependent exon skipping occurring at ZGA has 2 

a significant impact on DDR occurring through the ATM-p53 pathway, although other 3 

pathways may not be affected by this type of regulation. In fact, Atm itself has an exon that 4 

gets temporarily skipped at ZGA and whose exclusion is predicted to disrupt the ORF 5 

(Extended Data Fig. 5).  6 

 7 

Intriguingly, a delayed DDR would seemingly make early pre-implantation embryos highly 8 

sensitive to DNA damage, as it implies the accumulation of DNA lesions that will not be 9 

resolved until morula stage. In fact, DNA damage produced by DSBs at these early stages has 10 

been associated to low embryo survival 44. Why would this be beneficial for developing 11 

embryos? Although there could be many non-mutually exclusive explanations, we could 12 

envision a scenario in which severe DNA damage occurring during the first cell divisions is 13 

not resolved and instead gets amplified to provoke embryo arrest and death before 14 

implantation, lowering the tolerance for DNA lesions at a time when any mutation will be 15 

transmitted to all embryo lineages. However, not all DDR pathways can be lower at this 16 

developmental point, as genome stability must be ensured during ZGA, a particularly 17 

disruptive stage at the molecular level, with global transcription occurring in a largely 18 

epigenetically naive and distinct context 45, and with transcription itself producing DNA 19 

breaks 46. DNA damage is mostly sensed by the ATM and ATR kinases that activate 20 

downstream responses depending on the lesion. Hampering DDR though the ATM pathway 21 

will decrease the tolerance to particularly damaging DNA lesions such are DSBs. However, 22 

ATR responds to replication stress and is essential to coordinate replication and transcription; 23 

therefore, it is likely to be fully implemented in early embryos to be able to cope with the 24 

activation of the genome. Consistently, it has been reported that mouse embryos are 25 

particularly sensitive to the replication stress agent aphidicolin during ZGA 47. Moreover, 26 

ATR, but not ATM, was recently shown to be required for the conversion of mouse 27 

embryonic stem cells into 2C-like cells, which are characterized by the activation of various 28 

ZGA markers 48. Thus, hampering DDR through ATM but not ATR pathway could allow 29 

lowering the tolerance for DNA damage whilst ensuring genome stability during ZGA. 30 

Although other factors are likely involved, here we provide a mechanism by which a specific 31 

programmed splicing failure dependent on the levels of Sm proteins results in extensive 32 
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protein disruption at the time of ZGA and contributes to a delay in the ATM-mediated 1 

response to DNA damage.  2 

 3 

METHODS 4 

RNA-Seq datasets 5 

Publicly available Illumina RNA-Seq samples from oocyte (Oo), zygote (Zy), 2-cell (2C), 4-6 

cell (4C), 8-cell (8C), 16-cell/morula (Mo) and blastocyst (Bl), were downloaded from NCBI 7 

Short Read Archive (SRA). All samples and associated information are provided in 8 

Supplementary Table 1. The selected datasets comprise three, four and three independent 9 

experiments with single cells or bulk embryo samples in human, mouse and cow, respectively 10 

(Fig. 1a). To ensure the selection of high quality data representative of each stage and with 11 

sufficient read coverage to measure AS, we performed the following filtering steps (the 12 

reason for exclusion of each individual sample is detailed in Supplementary Table 1): (i) Only 13 

RNA-Seq runs of at least 50 nucleotides were used; (ii) Individual cells (“outliers”) were 14 

discarded from the analyses if they did not cluster with other samples of the expected stage 15 

based on GE clustering profiles (see below; Supplementary Figs. 1-3). In particular, mouse 16 

2C and 4C samples from 10 were excluded as they did not cluster with those from 3 likely due 17 

to slightly different timings, and cow 8C from 49 were discarded since they did not yet 18 

undergo ZGA; (iii) Experiments for which pooling replicates together did not provide 19 

sufficient reads for each stage were discarded (see below); (iv) Samples with strong 3′ bias, as 20 

assessed by vast-tools align though mapping to the five 3′-most 500-nt segments of mRNAs 21 

longer than 2,500 nts 18, were also removed; and (v) Other miscellaneous reasons stated in 22 

Supplementary Table 1. In total, we selected 135, 183 and 28 individual single-cell or bulk 23 

embryo samples in human, mouse and cow, respectively. Finally, to assess relative AS levels 24 

(Fig. 1e and Extended Data Fig. 2a) or PSIs in differentiated adult cell and tissue types (Fig. 25 

2c,d), we compiled another set of samples for the three species from VastDB 26 

(http://vastdb.crg.eu/; Supplementary Table 1).  27 

 28 

Quantification of AS and GE levels 29 

To calculate the percent of inclusion for a given alternative sequence (either an exon, an 30 

intron or an exon truncation/extension due to alternative 3′ or 5′ splice site choices) we used 31 

vast-tools v1 18. vast-tools relies on a comprehensive database of exon-exon and exon-intron 32 
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junctions for the identification and quantification of different types of AS events, and has 1 

been used to quantify inclusion levels in multiple species with high validation rates (e.g. 18,50-2 
55). vast-tools provides a table with percent inclusion levels (using the metrics percent-3 

spliced-in, PSI) for each AS event and sample, as well as a series of quality scores on the 4 

reliability of the estimate. In this study, we have used a minimum read coverage of VLOW 5 

for all event types (for details, see 18), and also filtered out intron retention events with a 6 

significant read imbalance at the two retention junctions (option --p_IR). For each species, we 7 

have used the following VASTDB libraries: human (hg19, hsa.16.02.18), mouse (mm9, 8 

mmu.16.02.18) and cow (bosTau6, bta.20.12.19). To measure GE of each gene in each 9 

cell/pool, we also used the align module of vast-tools, which provides a normalized count 10 

measure for each gene (cRPKM, corrected [for mappability] Reads Per Kilobase of transcript 11 

per Million mapped reads; see 56) and raw read counts for each gene.  12 

 13 

De-novo exon skipping events 14 

To ensure that pre-implantation-specific exons could also be quantified by vast-tools, we 15 

conducted a de novo search for alternative cassette exons for each species using our early 16 

development RNA-Seq data (Supplementary Table 1), and created an additional vast-tools 17 

library with the exon-exon junctions from those exons. For this purpose, we mapped these 18 

RNA-Seq samples to their respective genomes (hg19, mm9 and bosTau6 assemblies) using 19 

tophat2 57 and built gene models through cufflinks 58. The resulting GTFs were merged using 20 

cuffmerge 59 for each species and processed using SUPPA 60 to extract all identified cassette 21 

exons. Custom scripts were then used to identify novel exons, which corresponded to internal 22 

alternative exons that were not present in vast-tools and had at least one upstream (C1) or 23 

downstream (C2) exon annotated in Ensembl. Using this approach, we identified 3,468 new 24 

alternative exons not present in vast-tools v1 for human (508 not annotated in Ensembl), 25 

2,206 (267 not annotated) for mouse and 727 (180 not annotated) for cow (reported in 26 

Supplementary Table 2). Next, for each species, we created a library with exon-exon 27 

junctions for these exons, by joining the upstream and alternative exons (inclusion, C1A), the 28 

alternative and the downstream exons (inclusion, AC2) and the upstream and downstream 29 

exons (skipping, C1C2), with a minimum of eight mapping positions from each exon for 50-30 

nt reads (for details, see 61). This additional library was incorporated into the vast-tools 31 

workflow as an additional module. 32 

 33 
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Determination of cell identities, merging of samples and principal component analyses 1 

GE values for individual cells were normalized with DESeq 62 and clustered using heatmap.2 2 

with default parameters. Raw counts obtained from vast-tools align were normalized using 3 

size factors and a variance stabilizing transformation (“blind” option) before plotting the top 4 

500 most variable genes as a heatmap with z-scores for rows (Supplementary File 1). As 5 

stated above, individual cells that did not fit into their expected stage and may represent 6 

dying, damaged or mislabelled cells were removed from further study (Supplementary Table 7 

1). Next, since single-cell libraries have low molecular complexity and are often sequenced at 8 

low depth, resulting in low coverage across exon-exon junctions, we created pools of samples 9 

representative of specific stages, aiming at generating pools of samples with a total of >150 10 

million reads, when possible. In all cases, cells from the same embryo were kept in the same 11 

pool, and where two embryos needed to be merged, this was based on the hierarchical 12 

clustering results. The pooling of samples was performed with the merge module of vast-13 

tools, and the composition of the pools is described in Supplementary Table 1. 14 

 15 

Principal Component Analysis (PCA) was conducted in R using the function princomp on 16 

either normalized gene expression raw counts (for GE) or PSIs (for AS). For AS, all exons 17 

with sufficient read coverage (VLOW or higher) in >80% of the merged samples and standard 18 

deviation ≥5 were considered. GE measurements took all genes with standard deviation ≥5 19 

across merged samples as input. 20 

 21 

Estimation of AS complexity 22 

We used a simple measure of the transcriptional complexity generated by AS at each 23 

developmental stage or differentiated tissue. For those AS events with sufficient read 24 

coverage (VLOW or higher) in at least 50% of all the compared samples, we calculated for 25 

each stage or tissue the fraction of AS events with sufficient read coverage in that sample 26 

whose PSI was 20<PSI<80 (i.e. was predicted to generate two prevalent isoforms). Modifying 27 

the range of PSI to define prevalent isoforms, the minimum coverage per event, the minimum 28 

fraction of samples with coverage, or using individual single cells/samples (instead of the 29 

pooled samples) did not qualitatively changed the results (Extended Data Fig. 2b,c).  30 

 31 
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Definition of differentially spliced AS events and expressed genes at consecutive stages 1 

Given that the number of replicates per stage and species was relatively low and uneven, we 2 

made the following definitions to call differentially spliced AS events at each developmental 3 

transition (i.e. two consecutive developmental stages) based on differences in mean PSI 4 

between stages (Extended Data Fig. 1b): 5 

(1) Both consecutive stages must have at least two samples with sufficient read coverage 6 

(VLOW or higher) for human and mouse, or one for cow. 7 

(2) In all cases, the overlap between the PSI distributions of the two compared stages had to 8 

be ≤ 10 (i.e. 'range diff' ≥ -10). 9 

(3a) Depending on the intra-stage PSI range (i.e. the difference in PSI between the sample 10 

with the highest PSI and the one with the lowest for a given stage), a minimum mean change 11 

in PSI (∆PSI) between the two stages was required: 12 

 3a.i) if the PSI range in both stages was ≤ 30, then |∆PSI| ≥ 20, else 13 

 3a.ii) if the PSI range in both stages was ≤ 50, then |∆PSI| ≥ 30, else 14 

 3a.iii) if the PSI range in any stage was > 50, then |∆PSI| ≥ 55. 15 

(3b) In addition, if the mean PSI of any of the two stages was ≥ 99.5 or ≤ 0.5 (i.e. either near 16 

complete inclusion or skipping), then |∆PSI| ≥ 10. 17 

All exons that were differentially spliced at any transition are provided in Supplementary 18 

Table 4. 19 

 20 

For a more direct comparison with these differentially spliced definitions, we called 21 

differentially expressed genes between consecutive transitions also using qualitative 22 

definitions based on fold changes between mean cRPKM values for each stage (Extended 23 

Data Fig. 1c). First, we filtered out genes with low expression in both stages (mean cRPKM < 24 

2). Then, for genes with mean expression cRPKM < 10 in both stages, we required that one 25 

stage had a mean cRPKM < 1 and another ≥ 5 to consider it as differentially expressed. 26 

Finally, for genes with mean expression cRPKM ≥ 10 in at least one stage, we imposed an 27 

absolute fold change ≥ 2 for a gene to be considered differentially expressed.  28 

 29 
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To assess the overlap between differentially spliced AS events and differentially expressed 1 

genes per transition (Extended Data Fig. 3a-c), we categorized each differentially spliced AS 2 

event based on whether the host gene was up- or down-regulated at the GE level, not 3 

differentially expressed or had too low expression, as defined above. To obtain the expected 4 

overlap between both types of transcriptomic change at each transition (triangles in Extended 5 

Data Fig. 3a-c), we calculated the fraction of differentially expressed genes among those 6 

hosting AS events that fulfil the minimum coverage criteria in both consecutive stages (see 7 

above). Statistical significance of the overlap was calculated through two-sided Fisher's Exact 8 

tests using a contingency table for differentially spliced and differentially expressed genes out 9 

of the total number of genes tested in both analyses.  10 

 11 

Clustering AS and GE by temporal dynamics and functional enrichment analysis 12 

We used the soft clustering algorithm Mfuzz 28 to group alternative exons and genes based on 13 

their PSI or expression profiles. For exons, we first selected those that had sufficient read 14 

coverage (VLOW or higher) in at least one sample for each time point, and that were 15 

differentially spliced (as described above) between any pair of stages (including non-16 

consecutive stages). This yielded a total of 1,904, 968 and 1,083 exons for human, mouse and 17 

cow, respectively. Next, we provided a mean PSI per stage for each valid exon as input for 18 

Mfuzz. Default settings were employed, and the optimum number of clusters was 19 

automatically determined for each species using the Dmin function. Next, we selected those 20 

exons that were differentially spliced between any pair of stages and that had sufficient read 21 

coverage in all but one or two stages (for human and mouse) or all but one stage (for cow), 22 

and imputed the missing values in two ways: (i) if the missing point is at the beginning or end 23 

of the time course, it was assigned a value identical to the second or previous value, 24 

respectively; (ii) if the missing point is in between known values, it was assigned the mean 25 

between the two neighbouring values. These additional exons (1,050, 689 and 649 exons for 26 

human, mouse and cow, respectively) were then assigned to the previously defined Mfuzz 27 

clusters for exons with complete coverage using the ‘Mfuzz: membership’ function. It should 28 

be noted that exons in the original clusters might be reassigned to other clusters through this 29 

process. Mfuzz clusters were also generated for mean GE values in the same way that was 30 

described for alternative exons with complete coverage. 31 

 32 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.25.397794doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.397794
http://creativecommons.org/licenses/by-nc/4.0/


 21 

Mfuzz profiles were then classified into 'Peak', 'Shift' and 'Other' based on the following 1 

definitions. First, for each exon or gene, the values across the time course were classified as 2 

being in the upper, mid and lower tercile given segments of size = (Max-Mix)/3, producing an 3 

array of seven elements, one per stage (e.g. 1113111; six for cow). A profile was classified as 4 

'Other' if it had either: (i) two or more values in the mid tercile, (ii) a change from upper to 5 

lower tercile in the first or last transition (or viceversa), in which case potential peak and shift 6 

patterns cannot be discriminated, (iii) the first or last value in the mid tercile; or (iv) a profile 7 

gradually changing from high to low PSI (or viceversa), defined as having the first stage in 8 

the first tercile and the last stage in the third tercile (or viceversa) and the maximum change in 9 

PSI at any consecutive stage divided by the total PSI range < 0.4; as 'Peak' if its first and last 10 

values were both in the first (peak-up) or third (peak-down) tercile and it was not defined as 11 

Other; and 'Shift' for any other profile. Profiles of each cluster were then manually inspected 12 

to ensure the accurateness of these definitions. Finally, to calculate the fraction of alternative 13 

exons that belonged to each type of cluster (Fig. 2b), only exons with coverage in all time 14 

points were considered. All exons that were included in any Mfuzz cluster as well as their 15 

associated features are provided in Supplementary Table 4. 16 

 17 

Statistical significance of Gene Ontology (GO) term enrichments was calculated using 18 

proportion tests (prop.test in R) given a foreground and a background list of genes. GO 19 

annotations for the three species were downloaded from Biomart (Ensembl v91) and GO 20 

terms from each species were transferred to the orthologs in the other species to standardize 21 

the comparisons and improve cow annotations. For the GO enrichment analysis of exons in 22 

different Mfuzz clusters changing at ZGA (either Peak or Shift), we used as background all 23 

multiexonic genes that had at least one AS event (of any type) that changed in any pairwise 24 

comparison (a total of 11,096, 9,550 and 12,229 genes for human, mouse and cow, 25 

respectively). 26 

 27 

Assessment of evolutionary conservation 28 

To compare each set of exons changing at a given transition in one species (Species 1) against 29 

another (Species 2), we performed the following steps to assess the evolutionary conservation 30 

at different levels, as previously described 27,51,63. First, to find which exons are conserved at 31 

the genomic level, we use the liftOver tool 64 with -minMatch=0.10 -multiple -32 
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minChainT=200 -minChainQ=200 parameters. Next, for those coordinates lifted to Species 2, 1 

we extracted the two neighbouring dinucleotides. Lifted exons with at least one canonical 5′ 2 

or 3′ splice site (GT/C or AG) were considered Genome-conserved. Then, we matched 3 

Genome-conserved exons to vast-tools v1 identifiers based on coordinate overlap and selected 4 

those that had sufficient read coverage in at least the equivalent transition of Species 2 respect 5 

to the ZGA. Exons were considered to have a "PSI change in the same direction" if they 6 

displayed a |∆PSI| > 15 in the same direction as those in Species 1 in at least one transition. 7 

The equivalence between transitions in Species 1 and 2 was displayed using alluvial plots for 8 

each pair of species (Extended Data Fig. 4a-f). For Species 2, only the transition with the 9 

largest ∆PSI in the same direction was selected. 10 

 11 

In addition, we performed the following steps to identify a set of orthologous exons that were 12 

regulated during pre-implantation development of the three studied mammalian species 13 

(Extended Data Fig. 3g). First, for each species, we identified differentially spliced exons 14 

between any pair of developmental stages (whether consecutive or not) as described above 15 

(Extended Data Fig. 1b). From these, we identified 93 orthologous exons that were 16 

differentially spliced in the three species. Furthermore, for those identified as differentially 17 

spliced in two species, we then asked whether there was an ortholog exon in the third species 18 

and, if so, whether it had an average |∆PSI| > 15 between any pair of stages. This resulted in a 19 

total of 259 orthologous exons (Supplementary Table 3). To assess the enrichment of GO 20 

terms among the genes hosting these exons, we used as background multiexonic genes with 21 

1:1:1 orthologs in the three species and with at least one exon skipping event with coverage in 22 

two stages in any species (15,132 genes). 23 

 24 

Finally, to assess regulatory conservation of genes differentially expressed at each transition 25 

in a given species (Species 1) against another (Species 2) (Supplementary Fig. 4), we first 26 

identified one-to-one orthologs based on Ensembl-BioMart information, and then checked 27 

whether any differentially up- or downregulated gene in Species 1 was also identified as up- 28 

or down-regulated in Species 2 ("GE change same direction"). The equivalence between 29 

transitions was shown using alluvial plots, in which only the transition with the largest fold 30 

change in the same direction was selected for Species 2. 31 

 32 
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Predicted impact on open reading frames, NMD and ribosome-engagement analyses 1 

The predicted impact on the ORF of the inclusion/exclusion of each alternatively spliced 2 

sequence was obtained from VastDB (release 3) and it was inferred essentially as described in 3 
26. Four major categories are reported: (i) AS events that are predicted to generate alternative 4 

protein isoforms both upon inclusion and skipping of the alternative sequence (i.e. are located 5 

in the coding sequence [CDS] and maintain the ORF and/or are located towards the end of the 6 

CDS and are not predicted to trigger NMD or to create a large protein truncation [>20% of the 7 

reference isoform and/or >300 aa]); (ii) AS events that disrupt the ORF upon sequence 8 

inclusion (e.g. most introns, exons that are usually not included and whose length is not 9 

multiple of three and/or contain in-frame stop codons); (iii) AS events that disrupt the ORF 10 

upon sequence exclusion (e.g. exons that are normally constitutive and whose length is not 11 

multiple of three); (iv) AS events in the 5′ or 3′ untranslated regions (UTRs). Comparisons 12 

among ZGA Mfuzz clusters (Fig. 2C,D) included only those exons that were labelled as 13 

alternative protein isoform (i), disruptive upon inclusion (ii) or disruptive upon exclusion (iii).  14 

 15 

To compare the relative engagement of the inclusion and exclusion isoforms on ribosomes for 16 

different exon subsets (Extended Data Fig. 6d,e,g,h), we employed Transcript Isoforms in 17 

Polysomes sequencing (TrIP-seq) data for human embryonic stem cells 29 or HEK 293T cells 18 
30. We used vast-tools to obtain PSI values for each exon in the cytosolic and high-polysome 19 

fractions and calculated the ΔPSI between the two fractions, which gave a measure of the 20 

difference in ribosomal engagement (positive ΔPSI means higher engagement upon inclusion, 21 

and the opposite for negative ΔPSI and exclusion). For each exon category, we plotted events 22 

with sufficient read coverage (VLOW or higher) in both the cytosolic and high-polysome 23 

fractions. For differentially spliced exons at the ZGA transition (Extended Data Fig. 6d,e), we 24 

plotted the ΔPSI with respect to the ZGA isoform grouped by the predicted impact on the 25 

ORF at ZGA (i.e. positive/negative ΔPSI values imply the ZGA isoform is more/less 26 

engaged). For each type of temporal dynamics with change at ZGA (Extended Data Fig. 27 

6g,h), we plotted directly the ΔPSI between cytosolic and high-polysome fractions (i.e. a 28 

negative/positive ΔPSI implies that the inclusion/skipping isoform, that is the ZGA isoform 29 

for peak-up/peak-down exons, respectively, is less engaged). In addition, to assess the impact 30 

of NMD disruption on these sets of exons (Extended Data Fig. 6c,f), we performed an 31 

equivalent analysis calculating the ΔPSI upon UPF1 knockdown in HR1 cells for each 32 

category (data from 65). 33 
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 1 

Finally, to study the enrichment or depletion of transposable elements in different Mfuzz exon 2 

clusters (Extended Data Fig. 7), we overlapped the coordinates of these elements for each 3 

species as defined by RepeatMasker (excluding simple repeats) and of the alternative exons 4 

and neighbouring intronic regions (500 bp upstream and downstream the exon) using bedtools 5 

intersect, and counted the number of exons with at least 1-nt overlap with any transposable 6 

element family. For each Mfuzz cluster, we plotted the relative fraction of exons overlapping 7 

transposable elements with respect to the fraction of all exons included in Mfuzz clusters 8 

("ALL"). 9 

 10 

Evaluation of intron-exon features of ZGA-Peak exons 11 

We used Matt v1.3.0 36 to compare exon and intron features associated with splicing 12 

regulation between exons with Peak dynamics at ZGA and different reference exon sets. For 13 

each group of exons being compared, Matt cmpr_exons automatically extracts and compares 14 

69 genomic features associated with AS regulation, including exon and intron length and GC 15 

content, splice site strength, branch point number, strength and distance to the 3′ splice site 16 

using different predictions, length and position of the polypyrimidine tract, etc. For the 17 

calculation of splice site and branch point strength, we used the available human models. 18 

Comparisons among groups are performed using Mann-Whitney U tests and visualized using 19 

boxplots (Supplementary File 1). For this analysis, we defined the following six exon sets for 20 

each species (Supplementary Table 8): 21 

(i) P_Dw: exons with a peak-down profile at ZGA, sufficient read coverage (VLOW or 22 

higher) in the pre-ZGA and ZGA stage, and a ΔPSI ≤ -10 at the ZGA transition. Given the 23 

broader time of ZGA in cow, the ZGA ΔPSI was defined as the largest ΔPSI from either 4C-24 

8C or 4C-Morula (also in (ii)). N of exons: Human = 526, mouse = 345, cow = 646.  25 

(ii) P_Up: exons with a peak-up profile at ZGA, sufficient read coverage in the pre-ZGA and 26 

ZGA stage, and a ΔPSI ≥ 10 at the ZGA transition. N of exons: Human = 236, mouse = 32, 27 

cow = 152.  28 

(iii) HIGH_PSI: exons with PSI > 90 across both pre-implantation and differentiated samples 29 

with sufficient read coverage. N of exons: Human = 11878, mouse = 6768, cow = 5108. 30 
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(iv) LOW_PSI: exons with PSI < 10 across both pre-implantation and differentiated samples 1 

with sufficient read coverage. N of exons: Human = 4077, mouse = 1213, cow = 955. 2 

 3 

In addition, we extracted 33710, 16999 and 9228 background exons with sufficient read 4 

coverage in the pre-ZGA and ZGA stage, |ΔPSI| < 5 at the ZGA transition, and that are not 5 

part of the foreground sets (i) and (ii) for human, mouse and cow, respectively. Since the pre-6 

ZGA PSI distribution of these background exons differ from those of (i) and (ii), we 7 

constructed two stratified background sets. For this purpose, for each exon of each foreground 8 

set (i and ii), we randomly selected one background exon whose pre-ZGA PSI deviates from 9 

the pre-ZGA PSI of the foreground exon by no more than 5. Selected background exons were 10 

then excluded from the pool of background exons and the process was repeated a total of four 11 

times. The stratified background exon sets after the four iterations ([v] Bg_Dwstrat and [vi] 12 

Bg_Upstrat) contained 2104/1224/2584 and 944/128/604 for sets (i) and (ii) for 13 

human/mouse/cow, and matched at least 89% of the foreground exons.  14 

 15 

Classification and feature analysis with Random Forest 16 

To consolidate and extend results obtained by Matt's discriminative feature analysis, we 17 

applied a Random Forest model to the classification of peak-down exons versus a matched 18 

background and peak-up versus a matched background for each of the three species, and 19 

extracted the variable importance with the goal to identify features most relevant for these 20 

classifications.  First, we constructed a comprehensive set of 746 features for the exons as 21 

follows: a) All 69 intron-exon related genomic features extracted with function get_efeatures 22 

of splicing toolkit Matt v1.3.0, as mentioned above; b) GE fold change at ZGA (ZGA/pre-23 

ZGA) of the gene the exon belongs to; c) For each 338 regular-expression RNA-binding 24 

motifs from CisBP-RNA v0.6, we scanned the 200 nt upstream and 200 nt downstream (150 25 

nt intronic + 50 exonic) sequences for each exon for motif hits and added the number of hits 26 

as individual features.  27 

 28 

We then employed the R package randomForest v4.6-12 to train models for each foreground 29 

exon set. Because the foreground and background sets differ in size by at least one order of 30 

magnitude, we down-sampled the background exon set anew for each Random Forest and 31 

trained multiple models in an iterative manner. In each iteration, we randomly chose for each 32 
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foreground exon one background exon with |ΔPSI| < 5 at ZGA, ensuring that the 1 

characteristics of the foreground and background exons have similar weight when training 2 

Random Forests. We held fixed the Random Forest parameters ntry=25 and nodesize=1, 3 

whose recommended values for classification tasks are sqrt(N features) and 1. We optimized 4 

the number of trees (ntree) by iterating it from 100 to 3100 by 300. For each ntree value we 5 

trained 100 Random Forest and determined average classification accuracies measures by 6 

comparing the OOB classification votes to the ground truth. We chose the ntree value that 7 

gave overall best average OOB error, area under ROC and precision recall curves, average 8 

sensitivities for specificities 90% and 95%. At the same time, we chose ntree as small as 9 

possible to guard against overfitting effects. Finally, we trained 1000 Random Forests with 10 

the optimal ntree value and with different down-sampled stratified background sets in each 11 

run, and reported average ROC and precision recall curves, as well rankings of the features 12 

according to their average feature importance (i.e. mean decrease of accuracy as reported by 13 

the Random Forest model).  14 

 15 

Identification of potential regulators of exons with Peak dynamics 16 

To identify potential regulators of exons with peak-up and peak-down Mfuzz dynamics at 17 

ZGA in the three species, we took three main approaches: 18 

- Sequence motif enrichment analyses: from the foreground sets (i, P_Dw) and (ii, P_Up) 19 

described above, we extracted 300 nt of the upstream and of the downstream intronic regions 20 

as well as the exon sequences and employed Matt v1.3 36 to test enrichment of all available 21 

motifs for RNA binding proteins (RBPs) in CisBP-RNA 37 in each of three regions separately. 22 

The background set corresponded to those exons that have sufficient read coverage in all or 23 

all but one stage and that were not part of P_Dw or P_Up sets (human: 34452 exons, mouse: 24 

20232 exons, cow: 11177 exons). 25 

- Correlation between RBP expression and exon PSIs at the single cell level: For each 26 

foreground exon set in human and in mouse, we correlated (Pearson) at the single-cell level 27 

the GE values of 196 manually curated splicing factors (Supplementary Table 6) with the 28 

mean PSIs of those peak-down or peak-up exons (i and ii sets above) with sufficient read 29 

coverage in each blastomere of the ZGA stage (8C in human and 2C in mouse). This was 30 

performed using corr.test from the psych package in R. 31 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.25.397794doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.397794
http://creativecommons.org/licenses/by-nc/4.0/


 27 

- Overlap with specific splicing factor-dependent exons: To identify peak exons whose 1 

inclusion levels were dependent on specific splicing factors, we first collected publicly 2 

available RNA-Seq data from specific splicing factor depletion experiments (knockdown or 3 

knockout) in any cell or tissue type (Supplementary Table 1). In total, we compiled data for 4 

119 available experimental perturbations for 84 splicing factors comprising 64 independent 5 

studies. These data were processed using vast-tools to obtain ΔPSIs for each experiment and 6 

splicing factor for all exons with sufficient read coverage in control and experimental 7 

condition. Next, for each individual splicing factor and experiment, we scored the number of 8 

ZGA peak exons (i and ii sets above) that show a |ΔPSI| ≥ 15 upon splicing factor depletion. 9 

To identify the most promising splicing factors (Fig. 4d), we calculated: (i) the percent of 10 

exons with sufficient read coverage affected by the depletion, and (ii) the consistency of these 11 

changes (e.g. downregulation of peak-down and upregulation of peak-up), as estimated by the 12 

percentage of exons in quadrants Q1 and Q3 and evaluated using a two-sided Binomial test 13 

(Supplementary Table 7). 14 

 15 

Embryo collection and manipulation 16 

All embryos were obtained from B6CBA F1 crosses. Zygotes were collected from the oviduct 17 

of superovulated females 20h post HCG injection and cultured in EmbryoMax® KSOM 18 

Mouse Embryo Media (Millipore) at 37oC, 5%CO2 up to 2 cell, 4 cell, 8 cell, morula or 19 

blastocyst stage.  For the experiments in Fig. 3f,g early morulas were collected at 2.5dpc by 20 

flushing of the oviduct in M2 media (Sigma).  For the overexpression experiments (Fig. 5d-f), 21 

Snrpb and Snrpd2 cDNA were cloned into a modified pCS2+8NmCherry vector lacking 22 

mCherry tag (Addgene) for their in vitro transcription. The mCherry used as control was 23 

transcribed from the pCS2+8NmCherry vector (Addgene). In vitro transcription was 24 

performed using the mMESSAGE mMACHINE® SP6 Transcription Kit (Ambion) according 25 

to manufacturers’ instructions. For all overexpression experiments 1 cell embryos at 26 

pronuclear stage were microinjected with 300ng/ul of mCherry mRNA (control) or 150ng/ul 27 

of Snrpb mRNA and 150ng/ul Snrpd2 mRNA (Snrpb/d2).  28 

 29 

Etoposide treatment 30 

For experiments in Fig. 3, embryos were either left untreated or treated for 1h at the stated 31 

stage with 0.5uM etoposide (Sigma). Following treatment embryos were either fixed directly 32 
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for immunostaining or washed in KSOM media and kept in culture to be fixed at the desired 1 

stage. For Snrpb and Snrpd2 overexpression experiments (Fig. 5f), injected one-cell embryos 2 

were left in culture and either treated with 10uM etoposide for 1.5h or left untreated. 3 

Following the treatment embryos were fixed for immunostaining. 4 

 5 

RT-PCR validation assays and RNA-Seq experiments 6 

RT-PCR assays for alternative exon validations were performed on pools of embryos at 7 

different developmental stages. The Arcturus Pico Pure RNA extraction kit (Thermo Fisher) 8 

was used for RNA extraction and cDNA was transcribed with Superscript III Reverse 9 

Transcriptase (Thermo Fisher). RT-PCR primers can be found in Supplementary Table 9. PSI 10 

quantification from RT-PCR was performed using the Fiji software 66. 11 

For RNA-Seq experiments following Snrpb and Snrpd2 overexpression, one cell embryos 12 

were microinjected as described above and collected for RNA extraction at either 5h post 13 

injection (zygote stage) or 24h post injection (2C stage). For each condition 40 embryos 14 

coming from three independent experiments were pooled to extract RNA for sequencing. 15 

RNA was extracted using the Qiagen RNeasy Micro Kit. SMARTer Stranded RNA-Seq Kit 16 

was used for library preparation prior to Illumina sequencing. Libraries were sequenced in a 17 

HiSeq2500 machine, generating an average of ~69 million 125-nt paired-end reads per 18 

sample. Read numbers and mapping statistics are provided in Supplementary Table 10. 19 

 20 

Snrpb and Snrpd2 overexpression RNA-Seq analysis 21 

RNA-Seq data for control or Snrpb and/or Snrpd2 overexpressing embryos at 1C or 2C stages 22 

was processed using vast-tools. For both AS and GE analyses, control 1C and 2C embryos 23 

were compared to identify differentially spliced exons or expressed genes at ZGA, and 2C 24 

embryos overexpressing mRNA from Snrpb, Snrpd2 or both genes were compared with the 25 

control condition. For AS analyses (Fig. 5c,d and Extended Data Fig. 9a,b), only exons with 26 

sufficient read coverage in 1C and 2C controls as well as the tested experimental condition 27 

were used, and a cut-off of |ΔPSI| ≥ 15 was employed. For GE analyses, cRPKM values were 28 

normalized using quantile normalization in R, and genes with fewer than 50 read counts or 29 

expression levels lower than cRPKM < 5 in the three conditions (1C and 2C controls as well 30 

as the tested experimental condition) were discarded. To calculate log2 fold changes, 0.01 31 
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was added to each normalized cRPKM value, and a minimum fold change of |FC| ≥ 2 was set 1 

as a cut-off. 2 

 3 

Embryo immunostaining, TUNEL staining and western blot 4 

Embryos were fixed in 4%PFA/PBS for 10 min. Following fixation they were permeabilised 5 

in 0.5% Triton X-100 for 15min, blocked in 10%BSA/0,1% Triton X-100/PBS and incubated 6 

overnight in primary antibody: anti-SNRPB (Thermo Fisher), anti-SNRPD2 (Thermo Fisher), 7 

anti-phospho H2AX Ser 139 (Cell Signaling), anti-phospho p53 Ser15 (Cell Signaling). 8 

Hoechst was used for nuclear staining and CytoPainter Phalloidin-iFluor 647 Reagent (Abcam) 9 

for membrane staining. Imaging was conducted in a Leica SP5 inverted confocal and images 10 

processed with Fiji software 66. For quantification, relative intensity represents the mean 11 

fluorescent intensity of the nucleus relative to nucleus area along the biggest nuclear section, 12 

measured with Fiji. Each dot represents average relative intensity of all cells of the embryo. 13 

Each plot represents quantification of embryos from six (Fig. 3b,c) or three (Fig. 3-g and 5f, 14 

and Extended Data Fig. 10) independent experiments.  15 

 16 

The Apop-Tag Fluorescein Kit (Millipore) was used for TUNEL staining according to 17 

manufacturer’s instruction with minor modifications. Briefly, embryos were fixed in 4% 18 

paraformaldehyde for 10 minutes at room temperature, washed in 0.1% Triton X-100/PBS, 19 

permeabilised for 15 minutes in 0.4% Triton X-100/PBS. Following washes in PBS embryos 20 

were equilibrated and stained according to the Apop-Tag kit’s protocol. Hoechst and 21 

Cytopainter Phalloidin-iFluor 647 Reagent (Abcam) were used for counterstaining following 22 

TUNEL staining. For western blot embryos at different developmental stages were collected 23 

as described above. For protein extraction pools of embryos at each stage were collected in 24 

Laemmli Buffer. Proteins were separated by 14% SDS-PAGE and transferred to PVDF 25 

membranes (Biorad). Following blocking in 5% Milk (Sigma) in TBST, membranes were 26 

incubated overnight with the primary antibody in 5% BSA (Sigma) in TBST. The following 27 

antibodies and dilutions were used: anti-SNRPB (Thermo Fisher, 1/200), anti SNRPB2 28 

(Abcam, 1/2000) and anti-GAPDH (Abcam, 1/10000).  29 

 30 
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Main Figures 1 

 2 

Figure 1 - AS profiles during early development reveal the highest exon skipping diversity at 3 
ZGA. (a) Summary of datasets used in this study for each species. Golden lines indicate the ZGA for 4 
each species. (b) Schematic view of the methodological steps taken to process the RNA-Seq data and 5 
obtain AS quantifications with vast-tools. (c) Principle component analysis (PCA) for the merged 6 
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groups of samples per stage for GE (top; cRPKMs) and AS (bottom; exons with sufficient read 1 
coverage in at least 80% of the samples). Color codes and shapes for each stage as depicted in (a). 2 
Turquoise circles represent the centroids of each stage, and lines show the change between 3 
consecutive stages, with values representing the relative change respect to the largest change (=1). (d) 4 
Percentage of exons with 20<PSI<80 (i.e. generating two substantial isoforms) in each sample was 5 
calculated for every stage and differentiated tissue, showing the highest relative exon skipping levels 6 
for the ZGA stage. Equivalent plots for mouse and cow are shown in Extended Data Fig. 2a. (e) 7 
Numbers of alternative exons (AltEx), alternative 3/5′ splice sites (Alt3/5) and retained introns (IR) 8 
with increased/decreased inclusion levels in consecutive pairwise transitions (bars, left Y-axes) or 9 
genes with higher/lower expression (DEGs) (line, right Y-axes). Abbreviations: Oo, oocyte; Zy, 10 
zygote; Mo, morula; Bl, blastocyst; Gv, oocyte GV; MII, oocyte MII. 11 
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 1 

Figure 2 - Exons peaking at ZGA disrupt the ORFs and are enriched for DNA damage response 2 
genes. (a) Representative examples of the three main Mfuzz cluster types (Peak, Shift and Other). (b) 3 
Proportions of each type of Mfuzz cluster for GE (top) and alternative exons with sufficient read 4 
coverage in all stages (bottom). Abbreviations: Oo, oocyte; Zy, zygote; Mo, morula; Bl, blastocyst; 5 
Gv, oocyte GV; MII, oocyte MII. (c,d) For each species, several features are shown for exons in 6 
Mfuzz clusters with Peak (c) or Shift (d) dynamics at ZGA, either with decreased (DW) or increased 7 
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(UP) PSI. Top: percentage of exons in coding sequences predicted to disrupt the ORF upon inclusion 1 
or skipping or to produce alternative protein isoforms (left), distribution of median PSIs in adult 2 
tissues (center), and percentage of exons with genomic conservation in any of the other two species 3 
(right). Bottom: enriched Gene Ontology (GO) categories. Orange bars indicate DNA damage/repair 4 
related categories. 5 

  6 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.25.397794doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.397794
http://creativecommons.org/licenses/by-nc/4.0/


 38 

 1 

Figure 3 – Mouse embryos at ZGA have a lower response to DNA damage induced by etoposide. 2 
(a) Scheme of etoposide treatment and analysis of embryo recovery: 2C embryos (1.5 days post 3 
coitum, dpc) were either left un-treated or treated with 0.5uM etoposide for 1h and then washed and 4 
left to recover for further 48h. (b,c) Proportion of embryos found arrested or developed to the stated 5 
stage 24h (b) or 48h (c) post-treatment. Stack plots show the average of 6 independent experiments 6 
with a total number of embryos analysed of n=105 (control) and n=113 (treated). All embryos not 7 
reaching the expected developmental stage at a given time point either because of cell death or cell 8 
cycle arrest were classified as "Arrested". (d) TUNEL staining of embryos in (b) and (c), showing a 9 
high incidence of cell death in treated embryos only 48h, but not 24h, post-etoposide treatment. (e) 10 
Percentage of embryos showing positive TUNEL staining at each developmental stage. Average of 11 
three independent experiments is shown with a total number of embryos of: n=72 (control, 2.5dpc), 12 
n=63 (etoposide, 2.5dpc), n=67 (control, 3.5dpc) and n=50 (etoposide, 3.5dpc). * P=0.036 two-sided 13 
Student's T-test. (f,g) Immunostaining for phospho-p53 (Ser15; pp53) in 2C (f) or early morula (g) 14 
stage embryos treated with 0.5uM etoposide for 1h or left untreated. Quantification of phospho-p53 15 
(Ser15) levels from embryos is shown for each stage. Each dot represents the average relative intensity 16 
of all cells of a single embryo. Boxplots show staining levels of embryos from three independent 17 
experiments. Number of embryos: n=42 (control, 2C), n=47 (etoposide, 2C), n=17 (control, morula) 18 
and n=25 (etoposide, morula). *** (0.001 < P) based on Wilcoxon Rank Sum tests.  19 
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 1 
 2 

Figure 4 - Snrpb and Snrpd2 are activated during ZGA and are associated with peak exons. (a) 3 
Schematic summary of intron-exon features associated with ZGA peak-down or peak-up exons for the 4 
three species. Blue/red arrows indicate features with statistically significantly higher/lower median 5 
values compared to exons with high PSI across development and differentiated tissues based on two-6 
sided Mann–Whitney U tests. Full comparisons with exons with high/low PSI as well as control sets 7 
with matched pre-ZGA PSIs and value distributions are shown in Supplementary File 1. (b) Top inset: 8 
receiver operating characteristic curves (ROCs) for Random Forest classifiers for peak-down exons in 9 
the three species (H: human, AUC = 0.852; M: mouse, AUC = 0.818; C: cow, AUC = 0.678). Barplot: 10 
top ranking features based on mean decrease in accuracy averaged for the three species. Bottom inset: 11 
distribution of pre-mRNA lengths for human peak-down exons and a control set of exons with 12 
matched pre-ZGA PSI distributions. (c) Correlation at the single cell level between human SNRPB 13 
expression and the mean PSI for peak-down exons. (d) Summary of associations between human 14 
splicing factor knockdowns and exons from Mfuzz clusters that peak at ZGA (up and down). Y-axis: 15 
percentage of exons affected by the knockdown (|ΔPSI| ≥ 15; Y-axis). X-axis: concordance of the 16 
direction of change in the knockdown respect to the change at ZGA (in Cartesian axes as per (e), those 17 
in quadrants 1 and 3 [Q1+Q3]). (e) Scattered plot showing ΔPSI of exons from Mfuzz cluster that 18 
peak at ZGA upon SNRPB knockdown in U251 cells (Y-axis) versus ΔPSI at ZGA (8C-4C; X-axis). 19 
Exons with |ΔPSI| ≥ 15 upon knockdown are highlighted in green/red and numbers indicated. p-value 20 
corresponds to a two-sided Binomial test between Q1+Q3 versus Q2+Q4. U251 data from 67. (f) 21 
Expression of SNRPB and SNRPD2 in human early development. Equivalent plots for mouse and cow 22 
are shown in Extended Data Fig. 8d.  23 
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 1 

Figure 5 - Snrpb and Snrpd2 are partly responsible for peak-down AS patterns affecting DNA 2 
damage response at ZGA. (a) Working hypothesis for peak-like alternative exon regulation during 3 
ZGA in mouse. Left (Wild type): Snrpb/d2 have low mRNA and protein levels before ZGA. At ZGA, 4 
their mRNA levels are increased, followed by a rise in protein levels. This period with low levels of 5 
Snrpb/d2 protein leaves a time window in which sensitive exons in newly transcribed genes get 6 
excluded due to insufficient amount of these regulators. This situation starts being restored after ZGA, 7 
when Snrpb/d2 protein levels reach sufficient amounts. Given their specific functional enrichment, 8 
aberrant exclusion of exons in DDR genes during ZGA will contribute to a delay in the response to 9 
DNA damage at these developmental stages. Right: induced expression of Snrpb/d2 prior to ZGA 10 
should prevent the abovementioned exon skipping in DDR genes and therefore allow for an earlier 11 
stronger response to DNA damage. (b,c) Western blot and immunostaining showing SNRPB and 12 
SNRPBD2 levels during pre-implantation development in mouse. Pools of 150 or 60 embryos per 13 
stage were used for the SNRPB and SNRPD2 western blots respectively. (d) Changes in exon 14 
inclusion levels at 2C stage upon early induced expression of Snrpb/d2 (Y-axis) respect to the 15 
observed change at ZGA (2C-1C; X-axis). Exons with |ΔPSI| ≥ 15 upon Snrpb/d2 expression and at 16 
ZGA are highlighted in green/red and numbers indicated. p-value corresponds to a two-sided Binomial 17 
test between Q2+Q4 versus Q1+Q3. (e) Distribution of ΔPSI upon Snrpb/d2 induced expression for all 18 
exons with increased (UP), decreased (DOWN) or no change (NONE) in PSI at ZGA. (f) Pronuclear 19 
stage embryos were co-injected with Snrpb/d2 mRNA or injected with mCherry mRNA and left to 20 
develop to the 2C stage, when they were treated for 1.5h with 10uM etoposide or left untreated. 21 
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Boxplots show the quantification of phospho-p53 (Ser15) relative intensity from immunostaining of 1 
embryos in each condition. Each dot represents the average relative intensity of both cells of a single 2 
embryo. Data from three independent experiments is shown (individual experiments are shown in 3 
Extended Data Fig. 10a). Total number of embryos for each condition: n=29 (mCherry untreated), 4 
n=26 (Snrpb/d2, untreated), n=30 (mCherry, etoposide) and n=29 (Snrpb/d2, etoposide). ** P = 5 
0.0034, two-sided Wilcoxon Rank Sum test. 6 
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