
1 
 

Cutting through the noise: reducing bias in 
motor adaptation analysis 
Daniel H. Blustein1, Ahmed W. Shehata2, Erin S. Kuylenstierna1, Kevin B. Englehart3, 
Jonathon W. Sensinger3 

1Department of Psychology and Neuroscience Program, Rhodes College, Memphis, TN, USA 
2Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada 
3Institute of Biomedical Engineering and Department of Electrical and Computer Engineering, University of New 
Brunswick, Fredericton, New Brunswick, Canada  

Abstract 
During goal-directed movements, the magnitude of error correction by a person on a subsequent 
movement provides important insight into a person’s motor learning dynamics. Observed differences in 
trial-by-trial adaptation rates might indicate different relative weighting placed on the various sources of 
information that inform a movement, e.g. sensory feedback, control predictions, or internal model 
expectations. Measuring this trial-by-trial adaptation rate is not straightforward, however, since 
externally observed data are masked by noise from several sources and influenced by inaccessible 
internal processes. Adaptation to perturbation has been used to measure error adaptation as the 
introduced external disturbance is sufficiently large to overshadow other noise sources. However, 
perturbation analysis is difficult to implement in real-world scenarios, requires a large number of 
movement trials to accommodate infrequent perturbations, and the paradigm itself might affect the 
movement dynamics being observed. Here we focus on error adaptation during unperturbed and 
naturalistic movements. With increasing motor noise, the conventional estimation of trial-by-trial 
adaptation increases, a counterintuitive finding that is the consequence of systematic bias in the 
estimate due to noise masking the learner’s intention. We present an analytic solution relying on 
stochastic signal processing to reduce this effect of noise, producing an estimate of motor adaptation 
with reduced bias. The result is an improved estimate of trial-by-trial adaptation in a human learner 
compared to conventional methods. We demonstrate the effectiveness of the new method in analyzing 
simulated and empirical movement data under different noise conditions. The analytic approach is 
applicable across different types of movements in varied contexts and should replace the regression 
analysis method in future motor analysis studies.  

Author Summary 
When a person makes a movement, a motor error is typically observed that then drives motor planning 
corrections on subsequent movements. This error correction provides insight into how the nervous 
system is operating, particularly in regard to how much confidence a person places in different sources 
of information such as sensory feedback or motor command reproducibility. Traditional analysis of 
movement has required carefully controlled laboratory conditions, limiting the usefulness of motor 
analysis in clinical and everyday environments. Here we present a new computational method that can 
be accurately applied to typical movements. Counterintuitive findings of the established approach are 
corrected by the proposed method. This method will provide a common framework for researchers to 
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analyze movements while extending dynamic motor adaptation analysis capabilities to clinical and non-
laboratory settings. 

Introduction 
Reaching for a coffee mug, shooting a basketball, or typing on a keyboard - our daily movements are 
constantly being adjusted based on perceived motor performance. If one misses a basketball shot wide 
right, the next shot will, on average, end up farther left (hopefully closer to the basket). Adaptation of 
the motor output of the nervous system is shaped by perceived errors. Measuring the adaptation 
relationship between changes in motor output and perceived errors provides insight into how humans 
learn to move and how they rely on different information sources in crafting those movements (1,2). 

This adaptation relationship can be calculated by measuring changes in motor output in response to 
perturbations. However, the corresponding experiments require people to complete movements under 
abnormal conditions, such as moving through force fields (3–5), moving with shifted visual feedback 
(6,7), or moving with occasional and unpredictable externally imposed disruptions (8,9). This work has 
provided significant insight into motor adaptation processes but presents limitations. The experimental 
manipulations are difficult to implement outside of the laboratory and it remains unclear whether the 
observed phenomena are relevant to everyday movements. Further, some of these studies require 
extremely high numbers of repetitive movements. 

Trial-by-trial adaptation analysis is an alternative approach to measure this relationship that focuses on 
error adaptation in unmanipulated environments. This method observes the magnitude of error 
correction during sequential movements (10–14), and provides similar insight (10) as autocorrelation 
analysis (15). Trial-by-trial analysis can be run on any type of goal-directed movement under real-world 
conditions, not relying on applied perturbations. The resulting trial-by-trial adaptation rate has been 
thought to provide an intuitive metric capturing important motor system characteristics, specifically the 
relative trust level in control signal generation versus sensory observation (16). Furthermore, empirical 
observations in this paradigm have been extensively described with computational models including 
state-space models (17,18) and Bayesian models (1,11,14).  

Calculation of trial-by-trial adaptation, however, is easily corrupted by unmeasurable noise within the 
control signal (19,20), leading to estimates of adaptation that are qualitatively counterintuitive and 
quantitatively biased. For example, if a person knows their motor output has more noise, they should 
adapt less. But estimations of trial-by-trial adaptation produce calculations suggesting that they adapt 
more (11). To date, approaches to estimate trial-by-trial adaptation rates have used an autocorrelation 
analysis (21,22) or a linear regression analysis (10,11,14) that ignored, by averaging, the effect of 
stochastic variables at play in a motor system, namely the motor control noise and sensory feedback 
noise (23). As we describe below, these techniques are sensitive to the noise in the system, such that 
they produce counterintuitive and biased estimations. The theoretical promise of calculating trial-by-
trial adaptation remains, and in this work we propose a novel method to reduce the inherent bias in 
estimates of the trial-by-trial adaptation rate. 

Since it is impossible to externally measure motor noise on a trial-by-trial basis, we sought to estimate 
the true adaptation rate indirectly. In this work we first demonstrate that the conventional calculation of 
trial-by-trial adaptation rate, even under steady-state conditions, produces paradoxical results likely due 
to the overlying noise. Then we present a novel approach to estimate an unbiased trial-by-trial 
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adaptation rate using a model-free analytic stochastic method to filter out overlapping noise. We 
compare the conventional and proposed method using simulated and empirical data collected with a 
simple movement experiment. The proposed analytic technique provides a closer approximation to the 
elusive motor parameters of interest, providing a more useful error adaptation measurement that is 
relevant for unperturbed movements across a variety of contexts. We conclude with suggestions for 
how to use the new analysis tool and discuss the wide-ranging research and clinical applications in 
supporting informative motor assessment. 

Results 
Trial-by-trial Adaptation Rate (AR) is broadly defined as the ratio between the trial-to-trial change in 
movement endpoint and trial error:  

𝐴𝐴𝐴𝐴 =  
𝑥𝑥𝑘𝑘+1 −  𝑥𝑥𝑘𝑘

𝑥𝑥𝑘𝑘 −  𝑥𝑥𝑖𝑖
 

(1) 

where superscript 𝑘𝑘 denotes a given trial number and 𝑥𝑥𝑖𝑖  denotes the intended target. Not that the 
target modality may be any continuous variable such as position, force, sound frequency, etc. We use 
the term position throughout the manuscript, but the concepts apply to any signal modality. The generic 
position (𝑥𝑥) terms do not adequately differentiate between the various positions, which include the 
intended position (𝑥𝑥𝑖𝑖),  the motor command result in a noise-free system (𝑥𝑥𝑢𝑢), the externally measured 
position (𝑥𝑥𝑚𝑚), the sensed position (𝑥𝑥𝑠𝑠), and the perceived position �𝑥𝑥𝑝𝑝� (Fig. 1). See Table I for an 
overview of variable definitions.  

Table I. Summary of variable definitions. 

Variable 
Name Definition - Descriptive Definition - Expression 

𝜂𝜂𝑞𝑞 Control noise with variance 𝑄𝑄 𝜂𝜂𝑞𝑞 = 𝑁𝑁(0,𝑄𝑄) 

𝜂𝜂𝑟𝑟  Sensory feedback noise with variance 𝑅𝑅 𝜂𝜂𝑟𝑟 = 𝑁𝑁(0,𝑅𝑅) 
𝜂𝜂𝜉𝜉  Internal model noise 𝜂𝜂𝜉𝜉 = 𝑁𝑁(0, 𝜉𝜉) 

𝐵𝐵 System dynamics actual parameters, e.g. controller gain 

𝐵𝐵�  Estimated system dynamics 𝐵𝐵� = 𝑓𝑓(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), from estimated parameters 
𝑢𝑢 Motor command 𝑢𝑢 =  

𝑥𝑥𝑖𝑖
𝐵𝐵�

 

𝑥𝑥𝑖𝑖  Intended target  
𝑥𝑥𝑢𝑢 Result of 𝑢𝑢 in noise-free environment 𝑥𝑥𝑢𝑢 = 𝐵𝐵 ∙ 𝑢𝑢 
𝑥𝑥𝑚𝑚 Measurable endpoint of movement      𝑥𝑥𝑚𝑚 = 𝑥𝑥𝑢𝑢+ 𝜂𝜂𝑞𝑞 

𝑥𝑥𝑠𝑠 Sensed endpoint of movement 𝑥𝑥𝑠𝑠 = 𝑥𝑥𝑚𝑚+ 𝜂𝜂𝑟𝑟  
𝑥𝑥𝑝𝑝 Posterior estimate of movement endpoint 𝑥𝑥𝑝𝑝 = 𝑓𝑓(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑠𝑠 , 𝜉𝜉) 
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Fig 1. Overview of movement generation framework during a task of tossing a ball to hit a target. In 
the Planning phase, the thrower generates a motor command (𝑢𝑢) that, in a noise-free environment, will 
result in specific ball landing point (𝑥𝑥𝑢𝑢). In other words, a control action 𝑢𝑢 is formed using an inverse 
model of the user's estimate of system dynamics (𝑓𝑓(𝑢𝑢)), and 𝑥𝑥𝑢𝑢 is obtained by propagating this action 𝑢𝑢 
through the actual dynamics 𝑓𝑓: [𝑥𝑥𝑢𝑢 = 𝑓𝑓(𝑓𝑓−1(𝑥𝑥𝑖𝑖))]. The difference between 𝑥𝑥𝑢𝑢 and the intended target 
(𝑥𝑥𝑖𝑖) represents misestimation of system parameters that are continually updated through the learning 
process. In the Movement phase, the throw is completed with 𝑥𝑥𝑢𝑢 being affected by control noise (𝜂𝜂𝑞𝑞) to 
produce the actual measurable error (𝑥𝑥𝑚𝑚). In the Sensing phase, the actual movement endpoint (𝑥𝑥𝑚𝑚) is 
corrupted by feedback noise (𝜂𝜂𝑟𝑟), resulting in the endpoint sensed by the thrower (𝑥𝑥𝑠𝑠). In the 
Perceiving phase, a posterior estimate (𝑥𝑥𝑝𝑝) of the landing point is arrived at by combining information 
from the intended endpoint (𝑥𝑥𝑖𝑖), the sensed endpoint (𝑥𝑥𝑠𝑠), and the level of internal model noise (𝜉𝜉) 
(1,11). 

When the various types of position are delineated, we can better articulate the implicit assumption that 
adaptation refers to the response of the person’s intent or noise-free actions (e.g. 𝑥𝑥𝑢𝑢 domain), in 
response to their perceived error (e.g. 𝑥𝑥𝑝𝑝 domain). We may accordingly use these domains within our 
adaptation equation. Although impossible to measure empirically, this definition serves as our gold 
standard, defined as:  

𝐴𝐴𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  
𝑥𝑥𝑢𝑢𝑘𝑘+1 −  𝑥𝑥𝑢𝑢𝑘𝑘

𝑥𝑥𝑝𝑝𝑘𝑘 −  𝑥𝑥𝑖𝑖
, 

(2) 

 

Pragmatically, neither the 𝑥𝑥𝑢𝑢 domain nor the 𝑥𝑥𝑝𝑝 domain can be measured, and so conventional 
definitions use the 𝑥𝑥𝑚𝑚 domain as a proxy for both:  

𝐴𝐴𝐴𝐴�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  
𝑥𝑥𝑚𝑚𝑘𝑘+1 −  𝑥𝑥𝑚𝑚𝑘𝑘

𝑥𝑥𝑚𝑚𝑘𝑘 −  𝑥𝑥𝑖𝑖
 

(3) 

 

This rate is typically calculated using a linear regression (10,14,24) or auto-correlation (21,22). 

To compare the gold standard (2) with the conventional regression analysis (3), we generated simulated 
movement data across a range of simulation parameters using a Bayesian model of an experienced 
performer in which trial-by-trial adaptation depends on the subject’s true knowledge of control noise, 
sensory noise, and internal model confidence (see Methods) (Fig. 2). For increasing control noise (Fig. 
2a), the modelled learner should adapt less. The gold-standard definition accurately captures this 
phenomenon (Fig. 2a, black line). Surprisingly, the conventional estimation shows a qualitatively 
different phenomenon – its estimate increases as control noise increases (Fig. 2a, red line). For 
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increasing sensory noise (Fig. 2b), the qualitative trend between the two metrics is the same, though the 
quantitative bias is substantial and qualitatively wrong (an adaptation rate greater than 1 indicates 
overcompensation).  

  
Fig 2. Conventional trial-by-trial adaptation does not capture the expected dynamics of human 
motor performance. (a) Simulated adaptation rate values with changing control noise (Q). The 
shaded area indicates one standard deviation above and below the mean (solid line). Results from 
1,000 simulations at each of 100 values of Q across the range indicated with 𝑥𝑥𝑖𝑖 = 100, 𝑅𝑅 = 1 and 𝜉𝜉 =
0.01. (b) Simulated adaptation rate values with changing sensory noise (R). Simulation settings and 
parameters as in a except here 𝑄𝑄 = 1. All adaptation rates are shown as absolute values. 

 

The gold standard definition and conventional estimation differ in the domains used in both their 
numerator and denominator, and this counterintuitive trend could be caused by either one or a 
combination of both. As we analytically explain below, using the proxy for the numerator does result in 
qualitative and quantitative problems. In contrast, using the proxy for the denominator does not 
produce counterintuitive effects (increases in 𝜂𝜂𝑞𝑞 or 𝜂𝜂𝑟𝑟  lead to increases in estimated adaptation rate, 
and increases in 𝜉𝜉 lead to decreases in estimated adaptation rate, as we would expect) and only mild 
biases. It is thus important not to use the proxy in the numerator, but less important to avoid the proxy 
in the denominator. Pragmatically, there is no way to recover 𝑥𝑥𝑝𝑝 from 𝑥𝑥𝑚𝑚 without relying on model-
based assumptions, but we can recover 𝑥𝑥𝑢𝑢 from 𝑥𝑥𝑚𝑚 using simple stochastic analysis, as we show below.  

We accordingly define a silver-standard proxy for the adaptation rate as follows: 

𝐴𝐴𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
𝑥𝑥𝑢𝑢𝑘𝑘+1 −  𝑥𝑥𝑢𝑢𝑘𝑘

𝑥𝑥𝑚𝑚𝑘𝑘 −  𝑥𝑥𝑇𝑇
 

(4) 

 

This silver definition closely tracks the gold adaptation rate when applied to simulated data with 
increasing control noise (Fig. 3a) and sensory noise (Fig. 3b). This definition can be calculated under 
carefully controlled experimental conditions where the control noise added on each trial is known in 
order to calculate 𝑥𝑥𝑢𝑢 = 𝑥𝑥𝑚𝑚 − 𝜂𝜂𝑞𝑞, which is the case in the empirical motor study included in this work. 
The silver adaptation rate can accordingly be used as a baseline against which to compare conventional 
estimation along with the proposed new estimation approach. 
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Fig 3. Silver adaptation rate approximates gold standard adaptation rate. Simulated data for 
changing control noise (a) and sensory noise (b). Silver can be calculated from data collected in 
carefully controlled experiments (4). Simulation parameters as in Fig. 2. 
 

The silver definition provides an experimentally measurable baseline that is in qualitative and 
quantitative agreement with the gold standard, but it cannot be measured in real-world conditions 
without applying perturbations – the very conditions that make trial-by-trial adaptation so appealing. 
We accordingly sought to develop a way to estimate the true adaptation rate that could be applied to a 
variety of laboratory and real-world movement data. The analytic approach, using statistical principles 
to filter out the noise effects and estimate the silver adaptation rate, can be defined as follows (see 
Methods for derivation): 

𝐴𝐴𝐴𝐴�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  =  
𝑐𝑐𝑐𝑐𝑐𝑐�𝑥𝑥𝑚𝑚𝑘𝑘+1, 𝑥𝑥𝑚𝑚𝑘𝑘 � −  𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥𝑚𝑚𝑘𝑘 )  +  𝑄𝑄

𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥𝑚𝑚𝑘𝑘 )
, 

(5) 

 

where the variance of control noise 𝑄𝑄 can be measured or estimated from the experiment. We 
systematically varied simulation parameters (as in Fig. 2) and compared the analytic estimate to the gold 
AR, silver AR and the conventional regression estimate (Fig. 4).  

The analytic estimate better captures the qualitative and quantitative trends observed for changing 
control noise compared to the conventional regression estimate (Fig. 4a). We also observed more 
quantitatively aligned estimates under conditions of changing sensory noise (Fig. 4b). Estimation error 
plotted across the changing parameters shows that the analytic estimate consistently produces better 
estimates of the gold adaptation rate than the conventional regression method (Fig. 4cd). The one 
exception is that due to the different trends in adaptation rates with changing parameters, the 
conventional regression happens to overlap with the gold adaptation rate showing a low estimation 
error indicated by low mean squared error when Q<R (Fig. 4cd). When internal model noise (𝜉𝜉) was 
varied we observed similar quantitative improvements using the new method compared to the 
conventional regression estimate. 
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Fig 4. Comparison of different trial-by-trial adaptation rate calculation methods. (a-b) Simulation 
and parameters settings as in Fig. 2 for changing control noise with R = 1 (a) and changing sensory 
noise with Q = 1 (b). For clarity, the one standard deviation shaded range is shown only for the 
analytic results (see Fig. 2 and 3 for variability shading for other analysis methods). (c-d) Performance 
of each analysis method shown in (a) and (b) as measured using the mean squared error compared to 
the gold adaptation rate for changing control noise (c) and sensory noise (d). 

Estimation results presented so far involved the analysis of 1,000 trials of simulated movement data, a 
number not always feasible for everyday experiments. We sought to determine the variability of the 
estimation methods with different numbers of trials analyzed. We systematically varied the size of the 
analyzed trial window and observed the performance of each analysis technique on simulated data (Fig. 
5). As the number of trials analyzed increases, the variability of each estimation method is reduced (Fig. 
5). 
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Fig 5. Analyzing more trials reduces variability of results. 10,000 simulations were run with the 
following parameters: 𝑄𝑄 = 1, 𝑅𝑅 = 1, 𝜉𝜉 = 0.1. Different windows of trials were analyzed on each 
simulation run with the shaded area indicating one standard deviation of the total results.  

We observed a similar improvement in estimated adaptation rates using the analytic method in an 
empirical study (Fig. 6). Twenty-seven able-bodied participants each completed three sets of 100 
movements under different noise conditions. Participants moved a mouse cursor on a screen to a 
target and were provided with endpoint landing position feedback only. The order of the three noise 
conditions – NO added noise, LOW added noise, HIGH added noise – was randomized for each 
participant. The endpoint error and externally applied noise were recorded for every trial and then 
used to run the adaptation rate estimation methods.  

Increasing levels of control noise resulted in a slightly increasing trend in conventional regression 
estimates of trial-by-trial adaptation using the conventional regression approach (Fig. 6, red line), 
matching the observations on the simulated datasets (Fig. 2a). However, as predicted, the silver 
adaptation rate estimate showed a proportional decrease with increasing control noise (Fig. 6, gray 
line), a trend closely matched by the analytic estimate (Fig. 6, cyan line).   
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Fig 6. Performance of analysis techniques on empirical data. The means with standard deviation 
error bars comparing the three analysis methods run on data collected from 27 able-bodied 
participants completing a computer cursor movement study under different added noise conditions. 
Note that the silver adaptation rate and conventional estimate are mathematically equivalent with no 
added control noise. All pairwise differences within silver ARs and analytic ARs are statistically 
significant (ANOVA with Bonferroni-corrected post-hoc comparison, p<.001). 

 

The data resulting from each analysis method shown in Fig. 6 were analyzed with a separate one-way 
ANOVA with repeated measures using Bonferroni corrected post-hoc comparisons: 

• For the conventional estimates of trial-by-trial adaptation rate, Mauchly’s Test of Sphericity 
indicated that the sphericity assumption was not violated (χ2(2)  =  2.595, p = .273). The 
repeated measures ANOVA did not indicate statistical significance between estimated 
adaptation rates across different noise conditions (F(2,52) = 2.389, p = .102).  

• For the silver trial-by-trial adaptation rates, Mauchly’s Test of Sphericity indicated that the 
sphericity assumption was violated (χ2(2)  =  8.208, p = .017). The repeated measures ANOVA 
with Greenhouse-Geisser correction indicated a statistically significant difference of estimated 
adaptation rates across different noise conditions (F(1.563,40.629) = 68.480, p < .001). All 
Bonferroni-corrected pairwise comparisons were statistically significant (p < .001).  

• For the analytic estimates trial-by-trial adaptation rate, Mauchly’s Test of Sphericity indicated 
that the sphericity assumption was not violated (χ2(2)  =  2.777, p = .249). The repeated 
measures ANOVA indicated a statistically significant difference of estimated adaptation rates 
across different noise conditions (F(2,52) = 73.551, p < .001). All Bonferroni-corrected pairwise 
comparisons were statistically significant (p < .001). 

In summary, the conventional adaptation method was not able to capture the clear decrease in 
adaptation caused by increasing control noise (silver), whereas the analytic method was able to do so, 
and its estimate closely aligned with the silver definition. 
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Methods 
In the following subsections we first present the derivation of the analytic estimation approach and then 
describe the simulations and experiments we used to assess our techniques.  

Analytic estimation of adaptation rate 
The least squares regression of the slope 𝛽𝛽 for the linear relationship 𝑦𝑦 = 𝛼𝛼 +  𝛽𝛽𝛽𝛽 is: 

𝛽̂𝛽 =
∑(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)

∑(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2  
(6) 

However, the contribution of noise sources in 𝑥𝑥 and 𝑦𝑦 are not apparent from this expression, and as we 
have shown in the results, it is important to be able to compensate for noise sources in 𝑦𝑦. An equivalent 
well-known analytic representation may be used, which makes use of stochastic methods to produce a 
probabilistic estimator: 

𝛽̂𝛽 =  
𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦)
𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥)

 
(7) 

It will be easier to see and remove the contribution of noise sources using this analytic estimation. 
Applying this analytic estimate of the slope to our silver definition of adaptation rate (4), our estimate of 
AR is: 

 𝐴𝐴𝐴𝐴�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  =  
𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑢𝑢𝑘𝑘+1 − 𝑥𝑥𝑢𝑢𝑘𝑘 , 𝑥𝑥𝑚𝑚𝑘𝑘 − 𝑥𝑥𝑖𝑖)

𝑣𝑣𝑣𝑣𝑣𝑣�𝑥𝑥𝑚𝑚𝑘𝑘 −  𝑥𝑥𝑖𝑖�
 

=  
𝑐𝑐𝑐𝑐𝑐𝑐((𝑥𝑥𝑚𝑚𝑘𝑘+1 −  𝜂𝜂𝑞𝑞𝑘𝑘+1) − (𝑥𝑥𝑚𝑚𝑘𝑘 −  𝜂𝜂𝑞𝑞𝑘𝑘), 𝑥𝑥𝑚𝑚𝑘𝑘 −  𝑥𝑥𝑖𝑖)

𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥𝑚𝑚𝑘𝑘 −  𝑥𝑥𝑖𝑖)
 

 

(8) 

Simplifying the numerator, 

𝑐𝑐𝑐𝑐𝑐𝑐�(𝑥𝑥𝑚𝑚𝑘𝑘+1 −  𝜂𝜂𝑞𝑞𝑘𝑘+1) − (𝑥𝑥𝑚𝑚𝑘𝑘 −  𝜂𝜂𝑞𝑞𝑘𝑘), 𝑥𝑥𝑚𝑚𝑘𝑘 −  𝑥𝑥𝑖𝑖� = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑚𝑚𝑘𝑘+1 −  𝑞𝑞𝑘𝑘+1 −  𝑥𝑥𝑚𝑚𝑘𝑘  +  𝑞𝑞𝑘𝑘, 𝑥𝑥𝑚𝑚𝑘𝑘 ) 
= 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑚𝑚𝑘𝑘+1, 𝑥𝑥𝑚𝑚𝑘𝑘 ) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑞𝑞𝑘𝑘+1, 𝑥𝑥𝑚𝑚𝑘𝑘 ) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑚𝑚𝑘𝑘 , 𝑥𝑥𝑚𝑚𝑘𝑘 ) 
+ + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑞𝑞𝑘𝑘, 𝑥𝑥𝑚𝑚𝑘𝑘 ) 
=  𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑚𝑚𝑘𝑘+1, 𝑥𝑥𝑚𝑚𝑘𝑘 ) − 0 − 𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥𝑚𝑚𝑘𝑘 ) + 𝑄𝑄 
=  𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑚𝑚𝑘𝑘+1, 𝑥𝑥𝑚𝑚𝑘𝑘 ) − 𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥𝑚𝑚𝑘𝑘 ) + 𝑄𝑄 

(9) 

 

Simplifying the denominator, 

𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥𝑚𝑚𝑘𝑘 −  𝑥𝑥𝑖𝑖)  =  𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥𝑚𝑚𝑘𝑘 ) (10) 

Combining our simplified numerator and denominator, our estimate accordingly can be calculated as: 

𝐴𝐴𝐴𝐴�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  =  
𝑐𝑐𝑐𝑐𝑐𝑐�𝑥𝑥𝑚𝑚𝑘𝑘+1, 𝑥𝑥𝑚𝑚𝑘𝑘 � −  𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥𝑚𝑚𝑘𝑘 )  +  𝑄𝑄

𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥𝑚𝑚𝑘𝑘 )
 

(11) 

We call Eq. (11) the analytic estimate of the trial-by-trial adaptation rate. It can be calculated from 
endpoint error records of movements and an estimate of the control noise variance. 
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Simulations 
Simulated data generation  
For all simulated data, MATLAB software (MathWorks, Natick, MA, version 2020a) was used to run a 
hierarchical Kalman filter model that has been described in detail elsewhere (10). Briefly, the first part of 
the model uses a Kalman filter to generate a posterior estimate of the endpoint position (i.e. 𝑥𝑥𝑝𝑝) by 
fusing the a priori premotor estimate (i.e. 𝑥𝑥𝑖𝑖) and the post-movement sensory observation (i.e. 𝑥𝑥𝑠𝑠). The 
second layer of the model uses another Kalman filter to generate an update in the learner’s estimation 
of system parameters. In this case we use a single parameter representing the gain of the controller; the 
learner’s misestimation of the controller gain leads to motor errors. The magnitude of the parameter 
estimate update is determined by the second Kalman filter’s integration of the perceived error and the 
overall internal model uncertainty that is driven by the uncertainty increment at each trial (𝜉𝜉). For 
example, if the internal model uncertainty is high, parameter estimate updates will be larger. 

Simulated data were generated with changing input parameters to test the sensitivity of each estimation 
method. Each of the three input parameters – 𝑄𝑄, 𝑅𝑅, and 𝜉𝜉 – was systematically varied while the other 
two were held constant. Constant parameters values were as follows:  𝑄𝑄 = 1, 𝑅𝑅 = 1, 𝜉𝜉 = 0.1, 𝑥𝑥𝑖𝑖 = 100. 
When varied, 100 equally spaced values on a log scale were used for the changing input parameter 
ranging from 10-2 to 102, enabling the parameter to range from being dominated to dominating. For 
each set of input parameters, 1,000 simulations were run, each with 1,500 movement trials with the last 
1000 trials used for analysis. All other parameters were constant including the controller gain (𝐵𝐵 = 1), 
initial estimated gain (𝐵𝐵� (1) = 1), and the initial overall internal model uncertainty (𝑃𝑃𝑝𝑝

(1) = 5). The gold, 
silver, conventional, and analytic adaptation rate estimates x1were calculated for each simulated 
dataset. Mean squared errors were computed comparing the estimates to the gold trial-by-trial 
adaptation rate. 
 
To explore the sensitivity of the estimation methods when run on different numbers of trials, a separate 
set of simulated data was generated with fixed parameters (𝑄𝑄 = 1, 𝑅𝑅 = 1, 𝜉𝜉 = 0.1). For each of 10,000 
simulation runs, data from 2000 movement trials were generated. Starting at the 1000th trial, the data 
were analyzed using each estimation procedure across 99 trial windows of varying sizes, equally spaced 
from 20 trials to 1000 trials. 

Empirical study  
Ethics Oversight 
All research with human participants was conducted with approval and oversight by the Rhodes College 
Institutional Review Board. All participants provided written informed consent. 

Participants 
27 able-bodied and right-handed participants [mean age = 18.7yrs , range = 18-21, 23 females], 
recruited from the Rhodes College Psychology Department participant pool, completed the experiment. 
Two additional participants did not complete the full experiment and their data were not included. 
Participants were compensated for their time with class credit points.  

Setup 
While seated comfortably at a desk and viewing a 27” computer monitor (Acer Model #G276HL), 
participants were asked to move a computer cursor from left to right along a straight line to hit a target 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 26, 2020. ; https://doi.org/10.1101/2020.11.25.397992doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.397992
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

at a distance of 22.4cm. Participants used a wireless mouse (Logitech Model #G703) with a reduced 
sensitivity setting on an extra wide mouse pad (31.5” x 11.8”) to land on a stationary onscreen target. 
The movement was initiated with a participant mouse click that caused the cursor to disappear until the 
participant completed the movement and clicked again. At the completion of each movement, endpoint 
only visual feedback was provided on screen. View of the participant’s hand and arm movement was 
blocked by a rigid covering that did not contact the participant or impede movement of the computer 
mouse. 

Participants wore noise canceling headphones with white noise playing to mask ambient auditory 
information. Participants were alerted with on-screen text when movement endpoints were off-screen, 
backwards or too short (landing <25% of the way to the target).  

All participants completed three blocks of 100 successful trials, each under different noise conditions. 
Each movement block took about 6 minutes to complete. In one of the three blocks, movements were 
completed without added noise. In the Low noise block, control noise of variance 5.04 cm2 was added, 
with noise of 20.11 cm2 variance added in the High noise block. The noise was applied by computing a 
random number from a Gaussian distribution with the variance for that movement block and adding 
that shift to the landing position before the cursor was displayed to the participant. Each participant was 
randomly assigned one of six possible orders for the three noise conditions to appear.  

To encourage participant engagement, a scoring system was implemented. Scores were displayed on-
screen with points awarded for movements close to the target. 200 points were awarded for direct 
target hits, 100 points for movement endpoints within 25 pixels (0.78cm) of the target, and 50 points for 
within 100 pixels (3.12cm) of the target.  

Analysis 
To prepare the data for analysis, backwards and short movements were presumed to be accidental 
mouse clicks and removed from the movement records. Error during off-screen movements could not 
be measured and this resulted in a break in contiguous analyzable movement trials. The longest stretch 
of contiguous movement trials without an off-screen movement was extracted for each block of data to 
be analyzed. Steady-state trials in which initial parameter learning had stabilized were identified from 
the contiguous movement trials using a previously reported method (10).  Across the 81 blocks of data 
collected, the average number of steady state trials analyzed was 93. Only 3 movement blocks resulted 
in fewer than 67 steady state trials. For one block which resulted in only 11 steady state trials identified, 
the last 20 trials were analyzed. As in the simulated data, contiguous movement trials were analyzed 
using the conventional (3), silver (4), and analytic (5) methods. For the silver method, the added noise 
on each trial was used, ignoring any baseline control noise generated by the participant. Likewise, for 
the analytic method the added control noise variance (Q) was used.  

Data and code availability 
Code used to simulate data, run the estimation analyses, and generate the figures, along with the 
simulated data used for estimation method analysis, and the empirical data are available here: 
https://osf.io/4vsmd/?view_only=9fe78f28eefe4a08aafa56e84cbd9397 (permanent DOI pending 
publication). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 26, 2020. ; https://doi.org/10.1101/2020.11.25.397992doi: bioRxiv preprint 

https://osf.io/4vsmd/?view_only=9fe78f28eefe4a08aafa56e84cbd9397
https://doi.org/10.1101/2020.11.25.397992
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

Discussion 
Here we have developed an analytic method to better estimate trial-by-trial adaptation rates. When 
applied to simulated data, the novel approach produces qualitatively accurate and quantitively 
improved estimates of the gold adaptation rate, compared to the conventional regression estimate. 
Following validation with simulated data, we ran an empirical study in which participants moved a 
cursor on a screen with a computer mouse under varied noise conditions. Analysis of empirical data 
matched the simulation results: the novel analysis approach produced better adaptation rate estimates 
compared to the conventional regression estimate. In the empirical work, adaptation estimates were 
compared to a close approximation of the gold adaptation rate – the silver estimate – a value that can 
only be calculated under carefully controlled experimental conditions. The analytic adaptation rate 
estimation method proposed here can be run across a wide range of motor contexts, both within and 
outside of the laboratory. Due its versatility, accuracy and sensitivity, the new proposed technique 
provides a path to reduce bias in the analysis of human motor performance.  

The estimation method resulting from this work can be applied in the laboratory to advance motor 
adaptation research in several ways. First, the method provides a well-justified and standardized 
approach to measure adaptation. In the past there have been different ways to measure adaptation that 
result in incomparable numerical indicators, e.g. trial-by-trial adaptation and perturbation adaptation 
(10). The new method can be applied in a wide range of contexts to allow for direct comparisons across 
different experimental setups. Second, the method reduces experimental limitations associated with 
perturbation adaptation studies. These perturbation studies, looking at the magnitude of adaptation to 
an unexpected externally applied disturbance, avoid some noise biasing associated with trial-by-trial 
adaptation because the perturbation magnitude dominates the baseline system noise. One issue is that 
the applied perturbations can alter motor dynamics, interfering with the process being observed. 
Perturbation adaptation studies also require large numbers of trials because the disturbances can only 
occur sporadically. The new method eliminates both issues associated with perturbation adaptation 
studies. 

The application of this novel approach to estimate adaptation rate goes beyond the laboratory 
environment. Since the method operates on unperturbed movement data, it can be run in clinical or 
real-world settings. For example, a stroke patient could make repetitive reaching movements with an 
occupational therapist. Understanding the magnitude of error adaptation is critically insightful in such a 
case, providing details about motor deficiencies and compensatory strategies that are overlooked by 
currently available clinical motor assessments. Or movement data could be extracted from video 
recordings of a pitcher in a baseball game; without the need for manipulations or complicated 
measurements, the adaptation analysis approach can be applied to almost any sequence of movements.  

Although the analytic method provides accurate estimates, it does require knowledge of the baseline 
control noise (Q). This parameter can be measured with a separate experiment in which the learner 
makes movements in the absence of sensory feedback and the endpoint variability is recorded. Sporadic 
feedback is necessary to reduce endpoint drift and although removing exteroceptive feedback is 
straightforward, proprioceptive feedback usually remains. There are other ways to estimate control 
noise including measurement of the just-noticeable-difference of a perturbation that can be converted 
to a total noise estimate (25) with subsequent subtraction of an estimate of sensory noise. Another 
limitation of the analytic method is that its results show high variability similar to the conventional 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 26, 2020. ; https://doi.org/10.1101/2020.11.25.397992doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.397992
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

regression method when low numbers of trials are analyzed (Fig. 5). The improved estimation accuracy 
is maintained across trial window sizes and we suggest analyzing as many trials as possible.  

A few limitations of the validation of the proposed protocol should be addressed. The need for 
simulated data to test and compare the estimation methods requires the adoption of a specific motor 
control model that requires assumptions about the underlying computational mechanisms driving motor 
processes. Here we used a Bayesian model of motor control which has been shown to be supported in 
many (1,14) but not all motor contexts (16). Other models could have been used including state-space 
only models (17,18) or cost-function models (26–28). Nevertheless, the estimation improvements we 
observed in the empirical data were similar to those observed with simulated data, suggesting the 
assumptions required to generate simulated motor data have not affected our findings. The primary 
motivation was in overcoming qualitative issues with the conventional regression estimation, further 
emphasizing that the specific model chosen is not critical. Even if the underlying motor control model to 
generate simulated data were different, the estimation methods should produce qualitatively similar 
results. Any effect on the results associated with choosing a different model would be represented by a 
consistent shift in quantitative results, something we may expect when going from simulated to 
empirical data anyway.  

In collecting empirical data to test the proposed method, a few limitations arose. Since we wanted a 
precise estimate of control noise and we were comparing against the silver estimate that requires 
knowledge of the noise added to each movement trial, we focused only on the noise we experimentally 
added. This approach ignored the baseline control noise inherent in any moving human. Since we were 
most interested in qualitative trends, we were justified in ignoring baseline noise for the silver and 
analytic approaches. It is not possible to ignore the baseline noise in the conventional regression 
approach but since the noise we added was much greater than baseline noise, we were still able to 
observe and compare qualitative trends. 

Another limitation was the possible impact of order effects in our within-subjects experimental design. 
We randomized the order of conditions for each participant to average out any order effect, with the 
consequence of potentially noisier results. And finally, differences in sensory noise between participants 
could have affected the results. We tried to eliminate as much feedback as possible by using noise 
reducing headphones and by visually occluding the moving arm, but proprioceptive inputs were not 
eliminated. The ability to interpret proprioceptive inputs to drive motor adaptation will vary for each 
individual research participant, leading to noisier empirical data that may be differentially impactful 
across control noise conditions. Again, since the focus was on qualitative trends, these individual 
differences should not affect the conclusions of the study. In our simulations we were able to keep 
sensory noise constant and we observed similar results. If sensory noise is a concern to others using 
these methods, it can be measured using a separate experimental protocol (29). 

Here we have demonstrated that current motor adaptation analysis is biased by noise, and we provide 
an important methodological advance to correct this issue. The result is a more accurate estimation of 
trial-by-trial adaptation that better captures what makes this metric useful: the adaptation of motor 
intent based on perceived error. Not only will the analytic adaptation rate estimation solution we 
provide support improved laboratory analysis and the correction of possible misinterpretation of data in 
previous studies, but it will allow for the analysis of a wide range of motor behavior in real-world 
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settings. Using trial-by-trial adaptation rates as an informative clinical motor metric is promising, and 
now possible with the advances presented here.  
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