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Abstract 17 

The advancements in genome editing techniques over the past years have rekindled interest 18 

in rational metabolic engineering strategies. While Metabolic Control Analysis (MCA) is a well-19 

established method for quantifying the effects of metabolic engineering interventions on 20 

flows in metabolic networks and metabolic concentrations, it fails to account for the 21 

physiological limitations of the cellular environment and metabolic engineering design 22 

constraints. We report here a constraint-based framework based on MCA, Network Response 23 

Analysis (NRA), for the rational genetic strain design that incorporates biologically relevant 24 

constraints, as well as genome editing restrictions. The NRA core constraints being similar to 25 

the ones of Flux Balance Analysis, allow it to be used for a wide range of optimization criteria 26 

and with various physiological constraints. We show how the parametrization and 27 

introduction of biological constraints enhance the NRA formulation compared to the classical 28 

MCA approach, and we demonstrate its features and its ability to generate multiple 29 

alternative optimal strategies given several user-defined boundaries and objectives. In 30 

summary, NRA is a sophisticated alternative to classical MCA for rational metabolic 31 
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engineering that accommodates the incorporation of physiological data at metabolic flux, 32 

metabolite concentration, and enzyme expression levels. 33 

 34 

  35 
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Introduction 36 

Recent improvements in genome editing techniques have paved the way for more 37 

sophisticated and performant metabolic engineering designs for achieving desired 38 

physiological states of host organisms. Two approaches for reaching the targeted states exist: 39 

(i) integrating heterologous pathways to disruptively overcome native control patterns, and 40 

(ii) modifying the endogenous regulatory architecture by removal of the existing control loops 41 

(Bailey, 1991). The former method can be rather arduous because it requires testing if the 42 

integration of DNA fragments into the original genome sequence perturbs cellular regulation 43 

in the desired fashion. The latter technique demands knowledge about cellular control so that 44 

the DNA sequence can be modified effectively and without unwanted side effects. 45 

Mathematical models are nowadays becoming an indispensable part of strain design. 46 

Available gene-protein-reaction associations of various organisms provide invaluable 47 

information about cellular metabolism and enable the elaboration of these models. The 48 

models can be studied computationally to interrogate and analyze cellular behavior and 49 

derive metabolic engineering strategies for improved cellular performance (Gombert and 50 

Nielsen, 2000). Strain design requires the identification and engineering of pathways toward 51 

the production of desired compounds (Hadadi and Hatzimanikatis, 2015), and mathematical 52 

models can provide an invaluable insight in the process of selection of deletions, insertions, 53 

and up- and down-regulation of genes encoding for metabolic enzymes. Reviews of the most 54 

prominent computational tools and workflows for the strain design are provided elsewhere 55 

(Costa et al., 2016; Long et al., 2015; Wang et al., 2017).  56 

Metabolic control analysis (MCA) is a mathematical formalism that uses models to quantify 57 

the distribution of control over metabolic states in a network such as fluxes and 58 

concentrations (Kacser et al., 1995).  In MCA, Control Coefficients (CCs) quantify how a given 59 

metabolic flux or metabolite concentration would respond to perturbations of the system 60 

parameters. This information is used in traditional rational metabolic design to identify the 61 

rate-limiting steps of the network and select potential targets for engineering. Strain 62 

engineering typically requires a holistic approach where one simultaneously analyzes the 63 

effects of genetic manipulations on specific productivity of desired molecules, maximum 64 

achievable yield, energetic and redox requirements, etc. Simultaneous analysis of these 65 

effects is a cumbersome task using classical MCA tools, especially if the design requires 66 
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multiple genetic alterations. Moreover, MCA does not allow including explicitly any form of 67 

physiological or design constraints, which can lead to unrealistic predictions.  68 

We present here Network Response Analysis (NRA), a constraint-based workflow that aims 69 

to tackle these obstacles. NRA utilizes populations of CCs to consistently derive metabolic 70 

engineering strategies and trace the effects of multiple parameter perturbations. The 71 

advantage of this method is that physiologically relevant bounds and constraints can be 72 

imposed to the system, as opposed to the classical MCA. NRA is inspired by the work by 73 

Hatzimanikatis et al. (1996a); (1996b) who proposed a Mixed Integer Linear Programming 74 

(MILP) formulation for querying cellular responses upon enzymatic perturbations that uses 75 

MCA-based flux and concentration CCs. Therein, the authors applied their formulation on 76 

simple linear and branched pathways to propose metabolic engineering strategies. Here, we 77 

extend this formulation to allow for studying larger scale metabolic systems with guarantied 78 

thermodynamic feasibility. 79 

To illustrate how NRA can be used to efficiently analyze, enumerate, and propose alternative 80 

metabolic engineering strategies, we used a large-scale thermodynamically-curated, 81 

metabolic model of E. coli (Hameri et al., 2019c), which describes the central carbon pathways 82 

in aerobic growth conditions. Using the stoichiometric model as a scaffold, we employed the 83 

ORACLE framework (Andreozzi et al., 2016a; Chakrabarti et al., 2013; Hameri et al., 2019b; 84 

Miskovic et al., 2017; Miskovic and Hatzimanikatis, 2010; Soh et al., 2012; Tokic et al., 2020) 85 

to generate populations flux and concentration CCs consistent with the experimental 86 

observations. We then used the generated CCs to formulate with NRA the design strategies 87 

in two case studies (i) improvement of glucose uptake rate, and (ii) maximization of specific 88 

productivity rate of pyruvate while preserving a pre-specified yield of pyruvate from glucose. 89 

These studies clearly show the potential, flexibility, and ease of use of NRA when realistic, 90 

multi-objective requirements for the strain design should be met. 91 

Results and Discussion 92 

NRA method 93 

The first step of the NRA method is the selection and curation of a metabolic network that 94 

captures the physiology of a studied organism (Fig. 1). Then, we calculate the relevant flux 95 

and concentration CCs (FCCs and CCCs) that describe the network’s responses to parameter 96 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 26, 2020. ; https://doi.org/10.1101/2020.11.26.399576doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.26.399576
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

perturbations such as modifications of enzymatic activities with the ORACLE framework, 97 

which makes use of Monte Carlo sampling (Miskovic and Hatzimanikatis, 2011; Wang et al., 98 

2004). Finally, we use the computed sets of CCs along with the user-defined requirements 99 

and additional physiological constraints to construct a constraint-based MILP optimization 100 

problem (Fig. 1). The user-defined inputs depend on the studied problem and design 101 

limitations, and these typically include the number of desired gene manipulations, minimal 102 

allowable specific productivity, minimum allowable yield, etc. From experimental 103 

measurements or assumptions on physiology, we can infer physiological constraints such as 104 

allowable (or desired) bounds on fluxes and concentrations in the metabolic network.  105 

The outcome of the NRA optimization are sets of alternative combinations of genes that 106 

should be engineered to improve the cellular performance given the imposed user-defined 107 

inputs and physiological constraints. A principal advantage of the MILP formulation is that it 108 

allows the user to introduce constraints on metabolic states and additional relevant design 109 

constraints to the system, thus simultaneously offering flexibility and tight control over the 110 

rational strain design.  111 

 112 

NRA formulation  113 

The NRA core equations can be expressed in a matrix-vector form (Table 1, Eq. 7) similar to 114 

the ones of Flux Balance Analysis (FBA) (Orth et al., 2010) and Thermodynamics-based Flux 115 

Analysis (TFA) (Henry et al., 2007; Salvy et al., 2019). NRA accommodates a wide gamut of 116 

design objectives, such as the maximization of productivity or product yield (Eqs. 1-2), 117 

biomass-product coupled yield (BPCY) (Eq. 3), the maximization of biomass formation (Eq. 4), 118 

the minimization of required genome-editing interventions (Eq. 5), and the minimization of 119 

oxygen requirements (Eq. 6) (Klamt et al., 2018; Patil et al., 2005; Schneider and Klamt, 2019; 120 

Varma et al., 1993). Since we have defined the NRA variables in logarithmic form, we can 121 

express the otherwise nonlinear objectives like yield or BPCY in a linear form, rendering the 122 

solution of the mathematical problem easier to attain than with formulations such as FBA.  123 
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 124 

Figure 1. The NRA workflow is organized in four main steps. In the first three steps, we formulate the 125 

stoichiometry, integrate available experimental data and compute the steady-state 126 

thermodynamically feasible fluxes and concentrations, and compute the flux and concentration control 127 

coefficients for the studied physiological condition. In the fourth step, metabolic engineering strategies 128 

are devised by solving a MILP. Criterion 𝔉 and additional constraints can be chosen from a set of 129 

metabolic engineering criteria such as the ones provided in Table 1. Variables 𝐹#, 𝑀%  and 𝐸' are the 130 
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logarithmic deviations in flux, metabolite concentration and parameter with respect to their respective 131 

reference steady states (Eq. 23), and their bounds define the solution space of the optimization 132 

problem (Eqs. 8-10). The definition of the other optimization variables and parameters is given in Table 133 

2. 134 

 135 

Table 1. The NRA mathematical formulation together with a non-exhaustive selection of optimization objectives. The 136 
definition of indices, parameters, and variables is provided in Table 2. 137 

Optimize Criterion 𝔉:  

 FBA NRA 

Max productivity max 	 𝑣-./0123  max 	 𝐹4-./0123 (1) 

Max yield max 	
𝑣-./0123
𝑣51653.738

 max 	 𝐹4-./0123 − 𝐹451653.738  (2) 

Max BPCY 
max 	 𝑣6#/:755

∗
𝑣-./0123
𝑣51653.738

 
max 	 𝐹46#/:755 + 𝐹4-./0123

− 𝐹451653.738 
(3) 

Max biomass max 	 𝑣6#/:755 max 	 𝐹46#/:755 (4) 

Min # interventions  — min 	 ?(1 − 𝑧')
'∈𝒦	

 (5) 

Min 𝑶𝟐 requirement min 	 𝑣HI,	1-37'8  min 	 𝐹4HI,	1-37'8  (6) 

 

subject to constraints: 
 

 FBA NRA 

Balance 
(Mass / Response) 

𝑁 ∙ 𝑣 = 0 

𝐾 ∙ 𝑢 = 0	

⇔ 	

⎩
⎪
⎨

⎪
⎧𝐹# − ?V𝐶XY

Z[ ∗ 𝐸'\
'∈𝒦

= 0

𝑀% − ? ]𝐶XY
^_ ∗ 𝐸'`

'∈𝒦 ⎭
⎪
⎬

⎪
⎫

 
(7) 

Variable bounds  𝑙𝑏 ≤ 𝑣# ≤ 𝑢𝑏 

𝑙𝑏g ≤ 𝐹# ≤ 𝑢𝑏g 
𝑙𝑏h ≤ 𝑀% ≤ 𝑢𝑏h 

𝑙𝑏X ≤ 𝐸' ≤ 𝑢𝑏X ⇔ i
0 ≤ 𝐸'j ≤ 𝑢𝑏X
0 ≤ 𝐸'k ≤ −𝑙𝑏X

l 

(8) 
(9) 

(10) 

Binary variable 
usage 

— 

𝐸'j + 𝐸'k + 𝜉 ∗ 𝑧' ≤ 𝜉 
𝐸'jj + 𝐸'kj ≤ 1 
𝐸'j − 𝜉 ∗ 𝐸'jj < 0 
𝐸'k − 𝜉 ∗ 𝐸'kj < 0 

(11) 
(12) 
(13) 
(14) 
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Thermodynamic 
feasibility 

— 𝛥.𝐺#q < 0 ⇔ 𝛥.𝐺#q/ + 𝑅𝑇 ? 𝑀t:#
:∈ℳ

< 0 (15) 

 

and 
 

 FBA NRA 

Production robustness 
(min productivity) 

𝑣-./0123 ≥ 𝛼x 𝐹4-./0123 ≥ 𝛽x (16) 

Production robustness 
(min yield) 

𝑣-./0123
𝑣51653.738

≥ 𝛼z 𝐹4-./0123 − 𝐹451653.738 ≥ 𝛽z (17) 

Production robustness 
(min biomass) 𝑣6#/:755 ≥ 𝛼{ 𝐹46#/:755 ≥ 𝛽{ (18) 

Design parameters 
(max # interventions)  — ?(1− 𝑧')

'∈𝒦	

≤ 𝛽| (19) 

Design parameters 
(max 𝑶𝟐 
requirement) 

𝑣HI,	1-37'8 ≤ 𝛼| 𝐹4HI,	1-37'8 ≤ 𝛽} (20) 

 
where 

 
 

𝐾 = ~
−𝐼[𝑖 × 𝑖] 0[𝑖 × 𝑗] 𝐶-Z[𝑖 × 𝑘] −𝐶-Z[𝑖 × 𝑘]
0[𝑗 × 𝑖] −𝐼[𝑗 × 𝑗] 𝐶-^[𝑗 × 𝑘] −𝐶-^[𝑗 × 𝑘]

� 

 

(21) 
 

𝑢 =

⎣
⎢
⎢
⎢
⎡ 𝐹#

[𝑖 × 1]
𝑀%[𝑗 × 1]
𝐸'j[𝑘 × 1]
𝐸'k[𝑘 × 1]⎦

⎥
⎥
⎥
⎤
 

 

(22) 
 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝐹# = ln �

𝑣#
𝑣#,.8�

�

𝑀% = ln �
𝑥%

𝑥%,.8�
�

𝐸' = ln �
𝑝'

𝑝',.8�
�
⎭
⎪⎪
⎬

⎪⎪
⎫

 

 

(23) 
 

𝐹4# = 𝐹# + lnV𝑣#,.8�\ (24) 
 

𝑀t% = 𝑀% + lnV𝑥%,.8�\ (25) 

 138 
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Table 2. Indices, variables, and parameters used in the NRA formulation. 139 

Index 
letter Type Refers to Set or unit 

𝒊 Index Reaction 𝑖 ∈ ℐ 

𝒋 Index Metabolite 𝑗 ∈ 𝒥 

𝒌 Index Enzyme 𝑘 ∈ 𝒦 

𝒎 Index Metabolite participating in reaction 𝑖 𝑚 ∈ℳ 

𝒗𝒊 Variable Flux of reaction 𝑖 𝑚𝑚𝑜𝑙 ∙ 𝑔𝐷𝑊�z ∙ ℎ�z 

𝒙𝒋 Variable Concentration of metabolite 𝑗 𝑀 

𝒑𝒌 Variable Catalytic activity of enzyme 𝑘 𝑚𝑚𝑜𝑙 ∙ ℎ�z 

𝑭t𝒊 Variable Scaled flux deviation of reaction 𝑖 𝐹4# ∈ ℝ 

𝑭𝒊 Variable Flux deviation of reaction 𝑖 𝐹# ∈ ℝ ∩ [𝑙𝑏g, 𝑢𝑏g] 

𝑴t 𝒋 Variable Scaled concentration deviation of metabolite 𝑗 𝑀t% ∈ ℝ 

𝑴𝒋 Variable Concentration deviation of metabolite 𝑗 𝑀% ∈ ℝ∩ [𝑙𝑏h,𝑢𝑏h] 

𝑬𝒌 Variable Catalytic activity deviation of enzyme 𝑘 𝐸' ∈ ℝ ∩ [𝑙𝑏X, 𝑢𝑏X] 

𝑬𝒌𝑼 Variable Upregulation of catalytic activity of enzyme 𝑘 𝐸'j ∈ ℝ ∩ [0, 𝑢𝑏X] 

𝑬𝒌𝑫 Variable Downregulation of catalytic activity of enzyme 𝑘 𝐸'k ∈ ℝ ∩ [0,−𝑙𝑏X] 
𝜟𝒓𝑮𝒊q Variable Gibbs free energy change of reaction 𝑖 𝛥.𝐺#q ∈ ℝ 

𝜟𝒓𝑮𝒊q𝒐 Variable Standard Gibbs free energy change of reaction 𝑖 𝛥.𝐺#q/ ∈ ℝ ∩ ®𝛥.𝐺#,853q/ ± 𝑒𝑟𝑟² 

𝒖 Variable Vector of NRA variables 𝑢 ∈ ℝ(ℐ´𝒥´{𝒦) 
𝑬𝒌𝑼𝑼 Variable Binary upregulation of catalytic activity of enzyme 𝑘 𝐸'jj ∈ {0,1} 

𝑬𝒌𝑫𝑼 Variable Binary downregulation of catalytic activity of enzyme 𝑘 𝐸'kj ∈ {0,1} 

𝒛𝒌 Variable Deregulation of enzyme 𝑘 𝑧' ∈ {0,1} 
𝑪𝒑𝒗 Parameter Flux control coefficient 𝐶-Z ∈ ℝ 

𝑪𝒑𝒙  Parameter Concentration control coefficient 𝐶-^ ∈ ℝ 

𝒗𝒊,𝒓𝒆𝒇 Parameter Reference flux of reaction 𝑖 𝑚𝑚𝑜𝑙 ∙ 𝑔𝐷𝑊�z ∙ ℎ�z 

𝒙𝒋,𝒓𝒆𝒇 Parameter Reference concentration of metabolite 𝑗 𝑀 

𝒑𝒌,𝒓𝒆𝒇 Parameter Reference catalytic activity of enzyme 𝑘 𝑚𝑚𝑜𝑙 ∙ ℎ�z 

𝑵 Parameter Stoichiometric matrix 𝑁 ∈ ℝ𝒥×ℐ 

𝑲 Parameter NRA matrix 𝐾 ∈ ℝ(ℐ´𝒥)×(ℐ´𝒥´{𝒦) 
𝒍𝒃𝑭 Parameter Flux deviation lower bound 𝑙𝑏g ∈ ℝ 

𝒖𝒃𝑭 Parameter Flux deviation upper bound 𝑢𝑏g ∈ ℝ 

𝒍𝒃𝑴 Parameter Concentration deviation lower bound 𝑙𝑏h ∈ ℝ 

𝒖𝒃𝑴 Parameter Concentration deviation upper bound 𝑢𝑏h ∈ ℝ 

𝒍𝒃𝑬 Parameter Catalytic activity deviation lower bound 𝑙𝑏X ∈ ℝ 

𝒖𝒃𝑬 Parameter Catalytic activity deviation upper bound 𝑢𝑏X ∈ ℝ 

𝜟𝒓𝑮𝒊,𝒆𝒔𝒕q𝒐  Parameter Estimated standard Gibbs free energy change of reaction 
𝑖 

𝛥.𝐺#,853q/ ∈ ℝ 

𝒆𝒓𝒓 Parameter Associated error on the estimated standard Gibbs free 
energy change of reaction 𝑖 𝑒𝑟𝑟 ∈ ℝ 

𝑹 Parameter Gas constant 𝑅 = 1.9872× 10�|𝑘𝑐𝑎𝑙 ∙ 𝐾�z

∙ 𝑚𝑜𝑙�z 
𝑻 Parameter Temperature 𝐾 

𝝃 Parameter User-defined large constant 𝜉 ∈ ℕ ∶ 𝜉 > 𝑚𝑎𝑥{|𝑢𝑏X|, |𝑙𝑏X|} 

𝜶𝟎 Parameter Minimum user-defined productivity 𝑚𝑚𝑜𝑙 ∙ 𝑔𝐷𝑊�z ∙ ℎ�z 

𝜶𝟏 Parameter Minimum user-defined yield 𝛼z ∈ ℝ 

𝜶𝟐 Parameter Minimum user-defined growth rate ℎ�z 
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𝜶𝟑 Parameter Maximum user-defined 𝑂{ requirement 𝑚𝑚𝑜𝑙 ∙ 𝑔𝐷𝑊�z ∙ ℎ�z 

𝜷𝟎 Parameter Minimum user-defined productivity 𝛽x ∈ ℝ ∩ [𝑙𝑏g, 𝑢𝑏g] 

𝜷𝟏 Parameter Minimum user-defined yield 𝛽z ∈ ℝ 

𝜷𝟐 Parameter Minimum user-defined growth rate 𝛽{ ∈ ℝ ∩ [𝑙𝑏g, 𝑢𝑏g] 

𝜷𝟑 Parameter Maximum user-defined number of interventions 𝛽| ∈ 	ℕ 

𝜷𝟒 Parameter Maximum user-defined 𝑂{ requirement 𝛽} ∈ ℝ ∩ [𝑙𝑏g, 𝑢𝑏g] 

 140 

Importantly, the NRA formulation allows us to prevent thermodynamically infeasible designs 141 

because it naturally includes thermodynamic constraints regarding the Gibbs free energy 142 

change (𝛥.𝐺#q) of each reaction (eq. 15). Furthermore, the proposed formulation allows 143 

imposing additional design criteria such as production robustness and operational 144 

parameters (Eqs. 16-19). The NRA optimization problems can be solved with the TFA toolbox 145 

(Salvy et al., 2019). We provide more details about the NRA formulation in Methods. 146 

 147 

Strain design with physiological and design constraints for improved glucose uptake  148 

Metabolic engineering interventions on pathways inevitably result in altered reaction rates 149 

as well as metabolite concentration levels. NRA, being a constraint-based method, allows for 150 

setting appropriate constraints on these quantities. Both fluxes and concentrations need to 151 

be constrained within realistic physiological bounds, conditional to each case study. For 152 

instance, severe changes in metabolic concentrations upon metabolic engineering 153 

interventions could significantly influence the organism’s growth or even lead to an excess of 154 

toxic byproducts. The strain design should likewise consider that enzyme expression levels 155 

cannot increase beyond the currently reported experimentally achievable levels, and it 156 

cannot allow an infinite increase of reaction fluxes in the network. In contrast, the design 157 

should also be able to model gene knockouts by allowing both enzyme activities and reaction 158 

fluxes to decrease close to zero. 159 

Here, we examined the effects of the imposed physiological and design constraints on the 160 

strain design for improved glucose uptake. To this end, we analyzed the achievable glucose 161 

uptake rates with 2-fold, 5-fold, and 10-fold maximum allowable deviation of enzyme 162 

activities from the reference level for a set of designs ranging from 1 to 25 gene manipulations 163 

(Figure 2a). The metabolite concentrations were subject to the thermodynamic feasibility 164 

constraints (Methods), and within the predefined physiological ranges (10nM - 0.1M) for each 165 

cellular compartment. We allowed the fluxes to increase up to 10-fold of their reference level, 166 
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and both fluxes and enzyme activities could reduce to zero. The latter means that solutions 167 

can include potential gene knockouts. As a mean to investigate the sensitivity of obtained 168 

solutions, we repeated the study for one reference and 18 extreme sets of control coefficients 169 

(Methods). 170 

As the allowable enzyme activity change (Eqs. 10 and 23) increased from 2- to 10-fold, the 171 

predicted attainable glucose uptake rate was about the same for up to 10 gene 172 

manipulations, indicating that for a small number of gene manipulations the upper limits on 173 

enzyme activity were not a limiting factor (Figure 2a). However, starting from 13 gene 174 

manipulations, the difference between the predictions increased considerably. As expected, 175 

the higher limits on enzyme activity, the larger predicted improvement of glucose uptake was 176 

observed. For example, NRA predicted for 25 gene manipulations that glucose uptake rate 177 

would increase by 26%, 39%, and 46% for 2-, 5-, and 10-fold change in enzyme activity, 178 

respectively. Interestingly, the predicted fold change of the glucose uptake across the 179 

nineteen studied reference and extreme CC-sets varied similarly for the designs with 13 or 180 

more gene manipulations (Figure 2a whiskers). This rather constant variability as we go 181 

toward a higher number of gene manipulations suggests that variability among 19 sets is 182 

primarily determined by the activity of a relatively small number of enzymes, which 183 

predominantly have control over the glucose uptake rate. This finding is in line with previous 184 

studies of metabolic systems demonstrating that just a few enzymes in the network (or 185 

corresponding parameters) determine the key metabolic properties such as system stability 186 

(Andreozzi et al., 2016b) or control over production fluxes (Miskovic et al., 2019a). A similar 187 

observation was reported in a more general context of biological systems (Daniels et al., 2008; 188 

Gutenkunst et al., 2007). 189 

Next, we investigated how constraints on concentration deviations (Eqs. 9 and 23) affect the 190 

attainable glucose uptake. This is a salient aspect of strain design because metabolic 191 

engineers have to ensure that metabolite concentrations remain within physiological bounds. 192 

For instance, it is vital not to exceed toxicity levels for some compounds. The studies on the 193 

effects of metabolite concentration constraints have also to consider thermodynamics 194 

because it is well known that the standard free Gibbs energy change of reactions couples the 195 

reaction directionalities and the metabolite concentrations (Ataman and Hatzimanikatis, 196 

2015). For this analysis, we have performed several studies by imposing different 197 
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concentration bounds together with and without thermodynamic constraints (Figure 2b). In 198 

general, our results suggest that NRA without thermodynamic constraints tends to 199 

overpredict the increase in glucose uptake (Figure 2b), meaning that thermodynamic 200 

constraints are limiting factors of strain design. The notable exception was that, starting from 201 

19 gene manipulations, the 2-fold constraints on concentrations are more limiting than the 202 

thermodynamic ones (Figure 2b blue & orange lines). As expected, our results also show that 203 

the tighter the concentration deviation bounds we impose, the less important improvements 204 

of glucose uptake could be attained (Figure 2b). For example, the attainable increase of 205 

glucose uptake rate with the thermodynamic and additional 2-fold and 10-fold constraints for 206 

25 gene manipulations were 17% and 24%, respectively (Figure 2b, green and violet). We also 207 

observed that the variance of glucose uptake increase was smaller as the concentration 208 

bounds became more constrained. Similarly, we observed a trend that the variance in the 209 

studies with the thermodynamic constraints was smaller than in the ones without 210 

thermodynamic constraints. 211 

 212 
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 213 
Figure 2. Effects of the physiological and design constraints on glucose uptake rate for a set of designs 214 
with different number of gene manipulations. Effects of: (a) allowed 2-fold (blue), 5-fold (orange), and 215 
10-fold (yellow) changes in enzyme perturbation magnitude, and (b) different imposed metabolite 216 
concentration bounds. The study was performed for one reference and 18 extreme sets of CCs selected 217 
using PCA (Methods). In all cases, the fluxes were allowed to increase 10-fold and decrease to zero. 218 
The whiskers and the respective symbols indicate the interquartile ranges and the means of the 219 
considered CC-sets, respectively, as adjusted by the Bonferroni correction (Methods). Blue lines 220 
correspond in both graphs. 221 

 222 

Metabolite concentrations limiting the glucose uptake 223 

Having demonstrated that limits on metabolite concentrations, either thermodynamic 224 

constraints or physiological limitations, significantly affect the attainable glucose uptake, we 225 

investigated how many and which metabolite concentrations should violate the 226 

thermodynamic constraints to achieve a higher glucose uptake. For simplicity and clarity of 227 

exposition, we allowed designs with one, two, four, and seven gene manipulations (Figure 3).  228 

In the cases of one and two gene manipulations, the flux through glucose uptake could not 229 

be modified with the thermodynamically feasible concentrations (zero violations). For a larger 230 

number of gene manipulations, a small increase in glucose uptake could be achieved even 231 

without violating the thermodynamics. For example, the manipulation of seven genes would 232 

yield ~2% of glucose uptake increase for zero violations. However, when we allowed some 233 

concentration deviations to exceed their bounds, the potential violations pushed the 234 

attainable glucose uptake to higher values (Figure 3). For instance, the seven gene 235 

manipulations design with ten concentration violations would result in 5.5% increase in 236 

glucose uptake. 237 
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 238 
Figure 3. Maximal attainable increase in glucose uptake as a function of a different number of 239 
metabolite concentration violations for one, two, four, and seven gene modifications. The fluxes were 240 
allowed to increase 10-fold and decrease to zero, the non-violated concentration bounds were subject 241 
to the thermodynamic constraints, and the enzymatic bounds were set to 2-fold. The reference model 242 
was used for all cases. 243 

Next, we focused on finding which were the metabolites whose concentration constraints 244 

should be violated to improve glucose uptake. To this end, we studied the case of four 245 

violations and two, four, and seven gene manipulations. For each gene manipulation study, 246 

we obtained the unique sets of four metabolite concentrations violating constraints (Table 247 

3a). The three gene manipulation studies involved, in total, seven species with concentrations 248 

violating the thermodynamic constraints. Among the seven species, peroxisomal protons 249 

appeared in all three studies. Moreover, irrespectively of the study, to achieve a higher 250 

glucose uptake, the concentrations of protons (both cytosolic and peroxisomal), AMP, and 251 

phenylalanine needed to be increased, while the ones for CTP, dCTP and glutamine needed 252 

to be decreased. The violations ranged from 2% for the case of cytosolic hydrogen to 57% for 253 

the case of CTP (Supplementary Table S1). 254 

This analysis provides an opportunity to focus on each of the identified molecules, draw 255 

hypothesis about their role in the system limitations, and investigate these interplays and 256 

ways to overcome them in vitro. For example, it suggested that the pH value in compartments 257 

can be a limiting factor for metabolic design. 258 

 259 

Table 3. Sets of four metabolite species with concentrations violating thermodynamic constraints for 260 
designs with two, four, and seven gene manipulations. The arrows indicate should a metabolite 261 
concentration be increased or decreased to improve glucose uptake. c: cytosol, p: periplasm. 262 
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 AMP (c) ↑ ✗ - ✗ 

CTP (c) ↓ - ✗ ✗ 

dCTP (c) ↓ - ✗ - 

H+ (c) ↑ ✗ ✗ - 

H+ (p) ↑ ✗ ✗ ✗ 

L-Glutamine (c) ↓ - - ✗ 

L-Phenylalanine (c) ↑ ✗ - - 

 263 

NRA design for Pyruvate production considers together specific production rate and yield 264 

Pyruvate (pyruvic acid) is widely used in the food, chemical, and pharmaceutical industries. It 265 

is a precursor for the synthesis of various amino acids, and has been used for the production 266 

of antioxidants, food additives and supplements, pharmaceutical precursors, and biofuels 267 

(Atsumi et al., 2008; Kalman et al., 1999; Li et al., 2001; Zhang et al., 2010). The microbial 268 

production of pyruvate has been largely explored, and has involved both strain and process 269 

engineering and development (Maleki and Eiteman, 2017). In E. coli, pyruvate has been 270 

identified as one of the main hubs for the production of non-native commercial products 271 

(Zhang et al., 2016). The most common approach in microbial engineering for the 272 

overproduction of pyruvate is through deletions of the downstream utilization of pyruvate 273 

towards byproducts such as acetate, acetyl-CoA, and ethanol among others (Akita et al., 2016; 274 

Causey et al., 2004; Zhu et al., 2008). 275 

To illustrate the features and flexibility of the NRA method, we showcase design for the 276 

improved specific productivity rate of pyruvate while taking into account the yield of pyruvate 277 

from glucose, design constraints, and thermodynamic feasibility. We imposed the following 278 

design and physiology constraints: (i) up to five gene/enzyme activity manipulations, (ii) the 279 

genes encoding for metabolic enzymes could either be upregulated up to 50-fold or 280 
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downregulated down to a knockout, (iii) the fluxes could increase up to 100-fold for 281 

upregulation and decrease down to zero for knockouts, and (iv) the concentration values 282 

were subject to the thermodynamic feasibility constraints and the physiological ranges (10nM 283 

- 0.1M). Given these constraints, we first performed an optimization to determine the 284 

maximum yield of pyruvate from glucose. Then, we added the pyruvate yield to be at least 285 

90% of this value to the set of constraints and maximized the specific pyruvate productivity 286 

rate. In this manner, we were able to implicitly account for the potential tradeoffs of yield 287 

and productivity that can occur in such designs.  288 

We generated 51 alternative designs with five gene manipulations providing at least 99% of 289 

the maximum specific productivity rate of pyruvate and fulfilling the imposed constraints. The 290 

alternative designs involved the manipulation of genes corresponding to 48 distinct enzymes 291 

(Supplementary Table S2). All cases provided over a 22-fold increase in both the pyruvate 292 

yield and specific productivity rate compared to the reference state. To understand better 293 

the mechanisms and identify metabolic patterns behind improved pyruvate production and 294 

yield, we performed clustering analysis over 51 designs with respect to (i) the 48 enzyme 295 

activity manipulations (Figure 4), and (ii) predicted change in metabolic fluxes upon changes 296 

in enzyme activities (Figure 5). For the clustering based on the absolute change in fluxes, we 297 

used the set of 67 reactions that had an absolute flux change of more than 0.01 mmol/gDW/h. 298 

The transport of pyruvate from the cytosol to the periplasm (PYRt2rpp) appeared as a target 299 

in all designs with 50-fold upregulation of the PYRt2rpp encoding gene (Figure 4). The 300 

upregulation of glycolytic enzymes and enzymes leading to pyruvate synthesis would also 301 

improve pyruvate production, with the most prominent target being glycerate kinase 302 

(GLYCK2). We also observed knockouts (or significant downregulations) with the majority of 303 

downregulated genes involving the consumption of pyruvate towards the formation of 304 

byproducts. Among these, the periplasmic transport of glycerate (GLYCAt2rpp) was present 305 

in most generated sets, being replaced by the extracellular transport of citrate (CITtex) in a 306 

few cases (Figure 4). We also observed the knockout of PPS (Phosphoenolpyruvate synthase), 307 

which is associated with the conversion of pyruvate to phosphoenolpyruvate. 308 
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 309 
Figure 4. Hierarchical clustering of the 51 alternative designs for the increase of pyruvate productivity, 310 
based on the suggested deregulation of individual enzymes. 311 

 312 

A closer cross-inspection of the two figures together with the Supplementary Table S2 reveals 313 

that there are five groups of alternative ways to satisfy design specifications. Alternatives 1-314 

4, 20, 32, 34, 35, 37, 38, 44, and 49 (Figures 4 and 5, Supplementary Table S2) constituted the 315 

first group that improves pyruvate production while maintaining at least 90% of the yield by: 316 

(i) a strong upregulation of pyruvate transport PYRt2rpp; (ii) a strong downregulation of 317 

GLYCAt2rpp; and (iii) a slight upregulation of glycolysis either via enolase (ENO) for Alternative 318 

49 or via fructose 6-phosphate aldolase (F6PA) for other alternatives in this group 319 
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(Supplementary Table S2); (iv) a knockout of PPS for alternatives 1-4, 49 or a slight 320 

downregulation of fructose-bisphosphate aldolase (FBA) for alternatives 20, 32, 34, 35, 37, 321 

38, and 44. 322 

 323 
Figure 5. Hierarchical clustering of the 51 alternative designs for the increase of pyruvate productivity, 324 
based on the absolute change in flux value of the 67 most affected reactions in the network. 325 

 326 

As a result of these manipulations, the carbon flow was re-directed from the secretion of (R)-327 

glycerate toward the production of phosphoenolpyruvate through glycerate kinase (GLYCK), 328 

phosphoglycerate mutase (PGM), and ENO (Figure 6 and Supplementary Figure S1). 329 

Downstream, phosphoenolpyruvate is converted to pyruvate through dihydroxyacetone 330 
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phosphotransferase (DHAPT), whose activity was also increased. This group is further 331 

characterized by a slight increase in acetate production and CO2 secretion, and a deregulation 332 

of the ATP metabolism such as an increase of the ATP non-growth associated maintenance 333 

(ATPM) or a decrease in activity of adenylate kinase (ADK1) for alternatives 1-4, 49. Moreover, 334 

the conversion of fructose-6-phosphate to glyceraldehyde-3-phosphate instead through FBA 335 

and phosphofructokinase (PFK) was diverted through F6PA. 336 

The second group consisting of alternatives 8, 13, 15, 16, 18, 19, 25-27, and 29 shared the 337 

manipulations (i) and (ii) with the first group. In addition, this group involved: (iii) an 338 

upregulation of glycerate kinase GLYCK2; and (iv) a slight upregulation of pyruvate kinase 339 

(PYK). The observed effects of these manipulations were similar to the ones of the first group 340 

with the increased activity of lower glycolysis and acetate secretion pathway (Figures 5, 6 and 341 

Supplementary figure S2). The notable difference was that the carbon diverted from glycerate 342 

secretion was channeled through GLYCK2, ENO, and PYK to pyruvate. Furthermore, we 343 

observed a slight increase in activity of the TCA cycle and pyruvate dehydrogenase (PDH), 344 

whereas the ATP metabolism remained mostly unchanged. 345 

The third group formed by alternatives 46-48, 50, and 51 was distinct from the other groups 346 

because it involved strategy to knockout citrate transport CITtex instead of GLYCAt2rpp 347 

(Figure 4). Additional manipulations in these group were a slight downregulation of citrate 348 

synthase (CS) and a slight upregulation of glycolytic enzymes PGM (Alternatives 46, 47, 50, 349 

51) or ENO (Alternative 48). Overall, these manipulations resulted in increased activity of the 350 

upper and lower glycolysis, pentose phosphate pathway, and the TCA cycle (Figure 6 and 351 

Supplementary Figure S3). This was the only group with increased activity of the upper 352 

glycolysis. We have also observed a decrease in activity of PDH (Figures 5 and Supplementary 353 

Figure S3). 354 

The fourth group constituted by alternatives 14, 17, 36, 39-42 had a distinct pattern in the 355 

network flux distributions while sharing manipulations (i)-(iii) with the first group (Figure 5, 6 356 

and Supplementary Figure S4). A slight downregulation of PFK together with manipulations 357 

(i)-(iii) had a considerable impact by reducing the activity of the reactions in the upper 358 

glycolysis (PFK, FBA, triose-phosphate isomerase (TPI), glyceraldehyde-3-phosphate 359 

dehydrogenase (GAPD), phosphoglycerate kinase(PGK)), the ETC chain (NADH dehydrogenase 360 

(NADH18pp), Cytochrome oxidase bo3 (CYTBO3_4pp) and the ATP metabolism (ATPM and 361 
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ATP synthase (ATPS4rpp)). We have also observed, in contrast to other groups, a reduced 362 

activity in CO2 and acetate secretion pathways. 363 

 364 
Figure 6. Overview of metabolic engineering strategies devised using NRA for the improved specific 365 
production rate of pyruvate while preserving the prespecified yield of pyruvate from glucose. 51 366 
strategies devised with NRA were categorized in 5 distinct groups. The thick arrows on the graph 367 
denote the principal ways of carbon re-direction from the wild-type strain steady-state fluxes. The 368 
arrows in the colored boxes denote if the activity of the corresponding metabolic subsystem 369 
(glycolysis, pentose phosphate pathway (PPP), TCA cycle, acetate production, and CO2 production) or 370 
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reaction (PDH) was increased (arrow up), decreased (arrow down), or remained unchanged (dash). 371 
The thicker arrow in the colored boxes, the higher change in the activity occurred. 372 

 373 

The fifth group, composed of alternatives 5-7, 9-12, 21-24, 28, 30, 31, 33, 43, 45, and the 374 

second group have in common manipulations (i), (ii), and (iv) (Figure 4 and Supplementary 375 

Table S2). Additionally, the fifth group involved either a very slight upregulation of glycolytic 376 

enzymes PGM, ENO, and PGK (alternatives 11, 12, 21-24, 31, 43, and 45) or a very slight 377 

downregulation of PDH (alternatives 5-7, 10, 28, and 30). As expected, the resulting flux 378 

distribution was similar to the one of the second group (Supplementary Figure S5). The 379 

difference was that in this group the carbon from (R)-glycerate was diverted to 2-380 

phosphoglycolate through GLYCK and PGM instead through GLYCK2 as it was done in the 381 

second group. Overall, compared to other groups, the manipulations of this group have 382 

changed the least the network flux distribution (Figure 5). 383 

Once the principal strategies are determined, the final decision is made by experts based on 384 

the comparative analysis of the proposed alternative groups and on considerations about the 385 

practical implementation of the designs. 386 

 387 
Comparison with targets determined by looking only at unconstrained specific productivity 388 

We proceeded by examining how different are the targets obtained with the NRA design from 389 

the ones determined by looking only the specific productivity rate of pyruvate. This 390 

comparison will reveal how the physiology and design constraints affect our design decisions. 391 

To this end, we computed the mean values of the control coefficient of the specific 392 

productivity rate of pyruvate with respect to network enzyme activities, and then ranked 393 

them according to their absolute value. Most of the top 15 enzymes represent either 394 

extracellular transports such as oxygen uptake and ammonium secretion, as well as glycolysis 395 

reactions leading to the synthesis of pyruvate (Table 4). Interestingly, the majority of these 396 

enzymes do not appear as targets in any of the NRA alternatives (Table 4 and Supplementary 397 

Table S2). Some of these enzymes exhibit a large control over multiple fluxes and 398 

concentrations across the metabolic network. These are, therefore, severely constrained by 399 

the imposed specifications in the constrained NRA design. This suggests that the NRA 400 

formulation will favor parameters that have less control over the network, ensuring that 401 

cellular balance will not be excessively perturbed.  402 
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 403 

Table 4. Top ranked parameters based on their control over pyruvate production flux PYRtex. Ranking 404 
was computed based on the mean values of 50’000 sets of Control Coefficients. 405 

Rank Parameter Name Control over PYRtex 

1 NH4tex negative 

2 O2tpp negative 

3 NH4tpp negative 

4 ATPS4rpp positive 

5 GLCtex positive 

6 O2tex negative 

7 TPI positive 

8 PGI positive 

9 PFK positive 

10 RPI negative 

11 PItex positive 

12 PGM positive 

13 GLCptspp positive 

14 RPE positive 

15 PYRt2rpp positive 
 406 

Materials and Methods  407 

Metabolic Control Analysis notions 408 

In MCA, the CCCs, 𝐶-^, and the FCCs, 𝐶-Z, are defined as the fractional change of metabolite 409 

concentrations x and metabolic fluxes v, respectively, in response to a fractional change of 410 

system parameters p (Hatzimanikatis and Bailey, 1996; Kacser et al., 1995). These CCs serve 411 

as measurable outputs that provide information about the levels of control that system 412 

parameters have on the studied biological system and physiology. From the log(linear) 413 

formalism (Hatzimanikatis et al., 1996a; Reder, 1988), 𝐶-^ and 𝐶-Z can be derived through the 414 

following expressions: 415 

𝐶-^ = −(𝑁𝑉𝐸)�z𝑁𝑉𝛱 416 

𝐶-Z = 𝐸𝐶-^ + 𝛱 417 
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 418 

where N is the stoichiometric matrix, V is the diagonal matrix whose elements are the steady-419 

state fluxes, E is the elasticity matrix with respect to metabolites and 𝛱 is the matrix of 420 

elasticities with respect to parameters. 421 

Hence, flux and concentration control coefficients are computed for each reaction flux i and 422 

metabolite concentration j with respect to the system parameter k as: 423 

𝐶-Y
Z[ =

𝑑	𝑙𝑛𝑣#
𝑑	𝑙𝑛𝑝'

=
𝑝'	𝑑𝑣#
𝑣#	𝑑𝑝'

 424 

𝐶-Y
^_ =

𝑑	𝑙𝑛𝑥%
𝑑	𝑙𝑛𝑝'

=
𝑝'	𝑑𝑥%
𝑥%	𝑑𝑝'

 425 

 426 

Model description and calculation of control coefficients 427 

The stoichiometric model that was used in this study (Hameri et al., 2019c) was systematically 428 

reduced from the E. coli iJO1366 genome-scale model (Orth et al., 2011) around the originally 429 

defined reaction subsystems of glycolysis, pentose phosphate pathway (PPP), tricarboxylic 430 

acid (TCA) cycle, glyoxylate cycle, pyruvate metabolism and the electron transport chain 431 

(ETC), and describes the aerobically grown physiology of E. coli (Supplementary Table S3). The 432 

reduction was performed through the redGEM and the lumpGEM algorithms (Ataman et al., 433 

2017; Ataman and Hatzimanikatis, 2017), thus ensuring preservation of as much information 434 

as possible as well as that thermodynamic feasibility constraints are respected. This model 435 

constitutes of 337 metabolites participating in 647 reactions, which are in turn associated 436 

with 271 enzymes that serve as parameters in the NRA formulation. The model was curated 437 

with thermodynamic feasibility constraints using TFA (Henry et al., 2007; Salvy et al., 2019) 438 

and relevant fluxomics data (McCloskey et al., 2014). The representative steady state profiles 439 

of the metabolite concentrations and metabolic fluxes were chosen with Principal 440 

Component Analysis (PCA) as detailed in (Hameri et al., 2019b). Then, the populations of 441 

control coefficients were built using the ORACLE workflow (Andreozzi et al., 2016a; Miskovic 442 

et al., 2017; Miskovic and Hatzimanikatis, 2010; Tokic et al., 2020).  443 

The CCs of the analyzed quantities (glycose uptake, pyruvate production, yield of pyruvate 444 

from glucose) with respect to the lumped reactions, exchange reactions, individual biomass 445 
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building block contributions, and moieties were not considered in any study (Supplementary 446 

Table S3).  447 

 448 

Addressing variability in control coefficients 449 

A common issue in MCA and in kinetic modeling is the uncertainty stemming from the scarcity 450 

of knowledge concerning the kinetic properties of enzymes (Miskovic and Hatzimanikatis, 451 

2011; Miskovic et al., 2015; Miskovic et al., 2019b; Wang et al., 2004). The usual approach in 452 

addressing this issue involves the generation of a population of the CCs, and statistical analysis 453 

thereof. To form the NRA models, we need to select sets of CCs that will be representative of 454 

the generated population. 455 

To select a representative set of CCs for our analysis, we took the population of 50’000 sets 456 

of FCCs and CCCs computed with ORACLE for the aerobically grown E. coli in (Hameri et al., 457 

2019c). We first identified the vector of FCCs that was closest to the mean of the FCC 458 

distribution with respect to glucose uptake and selected it as the representative set. Four 459 

glucose uptake reactions in the model of E. coli exist with GLCptspp being responsible for 460 

91.21% of the total flux through these reactions. We enforced this ratio in all performed NRA 461 

studies. 462 

Since the model is constrained to grow on minimal media with glucose as its sole carbon 463 

source, the choice of the representative set will have a strong impact on the design criteria 464 

we wish to explore. To investigate the variability in results that this choice can induce, we 465 

additionally selected several “extreme” CC-sets through the use of PCA. We used nine 466 

principal components to describe the space of CCs with respect to glucose uptake, which lead 467 

to a coverage of 96.63% of the space variance. We selected the minimum and maximum 468 

corresponding CC-sets for each component (2 x 9), leading to a total of 19 sets. We then 469 

constructed 19 NRA models with these CC-sets and used them in the performed studies. 470 

 471 

Confidence Intervals and Bonferroni correction 472 

For the computation of confidence intervals in Figure 2, we have used the Bonferroni 473 

correction in order to account for the multivariate nature of our study. In univariate studies, 474 

to account for the variability in samples, confidence intervals that contain the population 475 
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mean with the probability 1 – α (typically, α = 5%) are added around each sample mean 476 

(Hameri et al., 2019a). However, univariate confidence intervals cannot be used when 477 

multivariate problems are studied, instead the Bonferroni’s correction of confidence intervals 478 

is frequently applied. In Bonferroni’s correction, for a problem with p variables, to ensure the 479 

level 1 – α for all variables simultaneously, we need to choose level 1 – α/p for each of 480 

individual variables. For instance, if we want to form confidence intervals for 10 variables with 481 

an overall 95% confidence level, then we need to use individual 99.5% confidence intervals. 482 

 483 

Thermodynamic constraints 484 

To integrate thermodynamic constraints, we assumed that reactions operate in the 485 

directionality determined by the computed reference steady state. Thus, the concentrations 486 

of each metabolite in the respective cellular compartment need to be such as the 𝛥.𝐺#q of 487 

each reaction remains negative. These constraints are written as a function of the standard 488 

Gibbs free energy change of the reaction (𝛥.𝐺#q/) and the logarithmic concentrations of the 489 

participating metabolites, as introduced by (Henry et al., 2007). The 𝛥.𝐺#q/ of each reaction is 490 

computed using the Group Contribution Method (Mavrovouniotis, 1990; Mavrovouniotis, 491 

1991). These values are further adjusted to take into account the thermodynamic properties 492 

of the relevant cellular compartments; the pH gradient and electrochemical potential for 493 

transport reactions, and ionic strength of dissociated metabolites (Henry et al., 2006). 494 

 495 

Constraints on enzyme activities 496 

Since the activity of an enzyme in the metabolic network could either be increased or 497 

decreased, but not both at the same time, we made use of integer variables in the 498 

formulation. Therefore, we split the catalytic activity deviations of our system, 𝐸' , into the 499 

continuous variables 𝐸'j  and 𝐸'k, which denote the upregulation and downregulation of the 500 

gene encoding for enzyme k, respectively (Eqs. 11-14). As these should not have nonzero 501 

values simultaneously, we define the integer binary variables 𝐸'jj  and 𝐸'kj.  𝐸'jj  equals one 502 

if the gene catalyzing the enzyme k is upregulated and equals zero otherwise. In contrast, 503 

𝐸'kjequals zero in the case of upregulation, and it is one for downregulation. As expressed in 504 

Eq. 12, only one of these variables can be active at a time, since deregulation cannot occur in 505 

both directions simultaneously, or they can both be inactive for the case of no change in the 506 
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respective enzyme’s catalytic activity. To complete the formulation, these variables are 507 

further coupled to the above defined split enzymatic deviation variables through Eqs. 13 and 508 

14. The integer binary variable 𝑧' is equal to zero if the activity of enzyme k is modified in the 509 

solution, and it equals to one otherwise (Eq. 11). ξ is a constant selected to be larger than the 510 

absolute value of the largest enzymatic deviation constraints,	𝑙𝑏X	and 𝑢𝑏X, defined in Eq. 10. 511 

 512 

Software and optimization parameters 513 

The computations were made on a Mac Pro workstation running Mac OS X version 10.11.6, 514 

equipped with a 2.7 GHz 12-Core Intel Xeon E5 processor and 32GB DDR3 memory, using 515 

MATLAB version R2016a and the IBM CPLEX solver version 12.5.1. Time limits for the solver 516 

were set as following: in Figure 2(a), for 2-fold (blue line) to 10 minutes, for 5-fold (orange 517 

line) to 30 minutes, and for 10-fold (yellow line) to 3 hours; in Figure 2(b), for all cases to 10 518 

mins; in Figure 3, for all cases to 30 minutes; in Table 2, for all cases to 30 minutes; in the 519 

pyruvate case study (Figures 4-7), for all cases 3 hours. 520 

 521 

Conclusions 522 

The NRA framework enables the consistent and sophisticated design of metabolic engineering 523 

strategies using MCA-based control coefficients. NRA is computationally faster and simpler 524 

than other approaches since the derivation of control coefficients does not require the 525 

numerical integration of non-linear kinetic models, and offers the implementation of a wide 526 

variety of metabolic engineering criteria. To our knowledge, this type of approach has never 527 

been applied to large or genome scale kinetic models of metabolism. Using a previously 528 

published large-scale kinetic model of E. coli, we demonstrated that the NRA formulation can 529 

be applied to large-scale metabolic networks. We used the PCA method to select a number 530 

of representative sets of kinetic parameters among their population, in order to effectively 531 

represent the uncertainty and flexibility of the kinetic model in respect to parametrization. 532 

One of the main advantages of NRA is that, being a constraint-based modeling method, it can 533 

accommodate the integration of biologically relevant bounds and constraints, which ensure 534 

that the proposed strategies are consistent with the entire system capabilities and limitations 535 

thereof. Since the NRA model predictions can be sensitive to the user-defined bounds on the 536 
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allowable reaction flux, metabolite concentration and enzymatic expression deviations, the 537 

importance of including relevant physiological constraints, such as thermodynamic feasibility 538 

constraints, was discussed extensively. Focusing on the case of pyruvate production, a 539 

compound of great industrial interest, viable metabolic engineering strategies were shown to 540 

be readily derived using this formulation. Alternative solutions could also be generated and 541 

evaluated on their efficiency and potential implementation. We believe that this formulation 542 

will provide a refined alternative to computational genetic design, due to its simplicity and 543 

modularity, and that it will continue to be enhanced through the introduction of ever-growing 544 

omics data, and additional specialized constraints and objectives. 545 
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Supplementary Material 554 

Table S1: Metabolite concentration violation magnitudes for designs with two, four, and 555 

seven gene manipulations. 556 

Table S2: List of the 51 generated alternative designs with the corresponding manipulations 557 

and magnitudes of manipulations, pyruvate productivity, and yield. 558 

Table S3: List of aerobically grown E.coli model reactions, metabolites, and parameters 559 

considered in the study. 560 

Figure S1: Absolute differences of fluxes in the network for the Alternative 1 design (Group 561 

1). Blue/pink arrows and numbers denote an up-/down-regulation of the genes encoding for 562 

the respective enzyme and the corresponding fold-change value. 563 

Figure S2: Absolute differences of fluxes in the network for the Alternative 25 design (Group 564 

2). Blue/pink arrows and numbers denote an up-/down-regulation of the genes encoding for 565 

the respective enzyme and the corresponding fold-change value. 566 

 567 
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Figure S3: Absolute differences of fluxes in the network for the Alternative 51 design (Group 568 

3). Blue/pink arrows and numbers denote an up-/down-regulation of the genes encoding for 569 

the respective enzyme and the corresponding fold-change value. 570 

Figure S4: Absolute differences of fluxes in the network for the Alternative 40 design (Group 571 

4). Blue/pink arrows and numbers denote an up-/down-regulation of the genes encoding for 572 

the respective enzyme and the corresponding fold-change value. 573 

Figure S5: Absolute differences of fluxes in the network for the Alternative 45 design (Group 574 

5). Blue/pink arrows and numbers denote an up-/down-regulation of the genes encoding for 575 

the respective enzyme and the corresponding fold-change value. 576 

  577 
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