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Abstract     
Inter-residue  distance  predic�on  by  deep  ResNet  (convolu�onal  residual  neural  network)  has  greatly              
advanced  protein  structure  predic�on.  Currently  the  most  successful  structure  predic�on  methods             
predict  distance  by  discre�zing  it  into  dozens  of  bins.  Here  we  study  how  well  real-valued  distance  can                   
be  predicted  and  how  useful  it  is  for  3D  structure  modeling  by  comparing  it  with  discrete-valued                  
predic�on  based  upon  the  same  deep  ResNet.  Different  from  the  recent  methods  that  predict  only  a                  
single  real  value  for  the  distance  of  an  atom  pair,  we  predict  both  the  mean  and  standard  devia�on  of  a                      
distance  and  then  employ  a  novel  method  to  fold  a  protein  by  the  predicted  mean  and  devia�on.  Our                    
findings  include:  1)  tested  on  the  CASP13  FM  (free-modeling)  targets,  our  real-valued  distance  predic�on                
obtains  81%  precision  on  top  L/5  long-range  contact  predic�on,  much  be�er  than  the  best  CASP13                 
results  (70%);  2)  our  real-valued  predic�on  can  predict  correct  folds  for  the  same  number  of  CASP13  FM                   
targets  as  the  best  CASP13  group,  despite  genera�ng  only  20  decoys  for  each  target;  3)  our  method                   
greatly  outperforms  a  very  new  real-valued  predic�on  method  DeepDist  in  both  contact  predic�on  and                
3D  structure  modeling;  and  4)  when  the  same  deep  ResNet  is  used,  our  real-valued  distance  predic�on                  
has  1-6%  higher  contact  and  distance  accuracy  than  our  own  discrete-valued  predic�on,  but  less                
accurate   3D   structure   models.   

Introduc�on   
Immense  progress  has  been  made  on  protein  structure  predic�on  due  to  the  applica�on  of  deep  ResNet                  
(convolu�onal  residual  neural  network)  that  can  accurately  predict  inter-residue  or  inter-atom             
rela�onships [1]–[6] .  These  predicted  outputs,  such  as  inter-residue  contact  or  distance,  are  key  to               
currently  the  most  successful  structure  predic�on  methods [7] .  Early  contact  predic�on  algorithms  like              
MetaPSICOV  use  tradi�onal  machine  learning  methods  to  predict  contacts  individually [8] .  However,  this              
is  subop�mal  because  they  predict  contacts  between  two  atoms  regardless  of  the  other  atoms.  To                 
address  this,  RaptorX  introduced  a  deep  ResNet  to  predict  all  contacts  of  a  protein  (or  a  big  chunk)                    
simultaneously [2] .  Deep  ResNet  is  able  to  learn  complex  sequence-structure  rela�onships  and  make  use               
of  high-order  contact  correla�on  to  achieve  much  be�er  accuracy.  Right  a�er  its  success  on  contact                 
predic�on,  RaptorX  moved  to  distance  predic�on  by  ResNet  because  distance  conveys  more  informa�on               
for  structure  modeling [5],  [9] .  Distance  predic�on  is  also  adopted  by  AlphaFold [3] ,  a  leading  method  in                 
CASP13.  However,  both  RaptorX  and  AlphaFold  discre�ze  distance  into  dozens  of  bins  and  formulates  the                 
distance   predic�on   problem   as   a   mul�-class   classifica�on   problem.     

Alterna�vely,  as  suggested  in  the  RaptorX  paper [5] ,  it  is  also  possible  to  predict  real-valued  distance  by                  
deep  learning.  A  natural  ques�on  to  ask  is  how  well  real-valued  distance  can  be  predicted  and  how                   
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useful  it  is  for  3D  structure  modeling.  DeepDist [10]  is  one  of  the  very  few  methods  that  predict                   
real-valued  distance  by  ResNet.  DeepDist  is  very  complex,  as  it  trains  mul�ple  deep  models  of  different                  
architectures  on  different  types  of  data.  For  3D  structure  modeling,  DeepDist  converts  real-valued               
predic�on  to  distance  bounds  and  then  feeds  them  into  CNS [11] ,  a  so�ware  designed  for  experimental                 
structure  determina�on.  However,  DeepDist  did  not  report  how  well  real-valued  distance  predic�on              
alone  can  fold  a  protein,  but  only  showed  that  protein  folding  may  be  improved  by  adding  real-valued                   
predic�on  on  top  of  discrete-valued  predic�on.  Ding  et  al.  developed  another  real-valued  predic�on               
method  by  adding  genera�ve  adversarial  networks  (GANs)  on  top  of  ResNet  to  enforce  global  distance                 
consistency [12] .  Similar  to  DeepDist,  Ding  et  al.  also  derived  distance  bounds  from  real-valued               
predic�on,  which  are  then  fed  into  CNS  for  3D  structure  modeling.  However,  even  with  recent  progress                  
in  improving  the  stability  of  GANs,  they  are  s�ll  notoriously  difficult  to  train  and  scale  to  larger                   
networks [13] .  Neither  DeepDist  nor  Ding  et  al’s  work  have  compared  their  real-valued  predic�on  to                
discrete-valued  predic�on  based  upon  the  same  deep  network  and  thus,  cannot  accurately  evaluate  the                
strength   and   weakness   of   real-valued   distance   predic�on   compared   to   discrete-valued   predic�on.   

In  this  paper,  we  present  a  new  method  for  real-valued  predic�on  of  inter-atom  distance  and                 
inter-residue  orienta�on.  Our  method  differs  from  DeepDist  and  Ding  et  al’s  method  in  that  we  predict                  
both  mean  and  standard  devia�on  (i.e.,  a  normal  distribu�on)  of  distance  and  orienta�on  while  they                 
predict  only  a  single  value  (which  can  be  interpreted  as  mean).  Our  predic�on  pipeline  is  much  simpler                   
than  DeepDist  and  easier  to  train  than  GANs.  We  also  introduce  a  novel  way  of  using  the  predicted  mean                     
and  devia�on  to  build  3D  models  that  is  dis�nct  from  how  discrete  distance  is  used.  Our  experimental                   
results  show  that  our  real-valued  predic�on  exceeds  the  best  in  CASP13  in  terms  of  both  contact                  
accuracy  and  3D  structure  modeling  and  that  our  method  greatly  outperforms  DeepDist  and  compares               
favorably  to  Ding  et  al’s  method.  Finally,  we  will  rigorously  compare  real-valued  predic�on  to                
discrete-valued  predic�on  based  upon  the  same  deep  network,  which  is  missing  in  both  DeepDist  and                 
Ding  et  al’s  work.  We  find  that  when  the  same  deep  ResNet  is  used,  real-valued  predic�on  has  higher                    
contact   and   distance   accuracy,   but   less   accurate   3D   models   than   discrete-valued   predic�on.     

Results   
Overview   of   the   method   
Our  real-valued  predic�on  method  consists  of  two  steps  1)  predic�ng  the  mean  and  standard  devia�on                 
of  backbone  conforma�on  a�ributes  by  a  deep  ResNet.  We  simultaneously  predict  the  distance  of                
backbone  atom  pairs  (Cb-Cb,  Ca-Ca,  and  N-O)  and  inter-residue  orienta�on  angles  defined  in               
trRose�a [4] ;  2)  fi�ng  the  harmonic  func�on  with  the  predicted  mean  and  devia�on  as  constraints  to                 
build  3D  structure  models  by  gradient  descent.  We  use  PyRose�a  to  build  3D  models  by  performing                  
gradient-based  minimiza�on  and  then  the  fast  relaxa�on  protocol  to  pack  side  chains  and  reduce  steric                 
clashes [14] .  In  contrast,  our  discrete-valued  predic�on  uses  a  spline  func�on  to  construct  distance  and                
orienta�on   poten�al   for   gradient-based   minimiza�on [15] .   

For  both  real-valued  and  discrete-valued  predic�ons,  we  train  six  deep  ResNet  models  of  the  same                 
architecture  on  the  same  training  data  and  ensemble  them  to  make  predic�ons.  Please  see   [5]  for  a                   
detailed  descrip�on  of  our  ResNet  network,  but  here  we  use  a  much  larger  ResNet.  In  par�cular,  our                   
current  ResNet  has  ~60  ResNet  blocks,  each  consis�ng  of  two  2D  convolu�on  layers  and  2  batch                  
normaliza�on  layers.  On  average,  each  convolu�onal  layer  has  ~170  filters  and  in  total  a  deep  ResNet                  
model  has  ~50  million  parameters.  We  use  mixed-precision  training  to  reduce  the  training  �me  and  GPU                  
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memory  usage  by  half  without  losing  accuracy [16] .  The  ResNets  for  our  real-valued  and  discrete-valued                
predic�ons  are  the  same  except  the  output  layer.  For  real-valued  predic�on,  the  output  layer  generates                 
two  values  for  an  atom  (or  residue)  pair,  represen�ng  predicted  mean  and  standard  devia�on.  For                 
discrete-valued  predic�on,  the  output  layer  yields  one  value  for  each  discrete  bin,  represen�ng  its                
predicted   probability.   

We  use  the  following  input  features  for  our  deep  ResNet:  1)  primary  sequence  represented  by  one-hot                  
encoding;  2)  sequence  profile  derived  from  mul�ple  sequence  alignments  (MSA)  that  encode              
evolu�onary  informa�on  at  individual  residues.  We  also  use  secondary  structure  and  solvent              
accessibility  predicted  from  sequence  profile;  3)  co-evolu�on  informa�on  including  mutual  informa�on             
and   the   output   matrices   generated   by   CCMpred [17] .   

Accuracy   of   predicted   contacts   on   CASP13   FM   and   FM/TBM   targets     
Using  the  predicted  mean  and  devia�on,  we  may  es�mate  the  probability  of  two  residues  forming  a                  
contact  (i.e.,  having  distance<8Å).  As  shown  in  Table  1,  our  real-valued  contact  predic�on  has  slightly                 
be�er  accuracy  than  our  discrete-valued  predic�on  and  both  of  them  outperform  the  best  methods  in                 
CASP13  by  a  good  margin.  Our  real-valued  method  greatly  outperforms  DeepDist,  a  very  new  method  for                  
real-valued  distance  predic�on.  While  our  top  L/5,  L/2,  and  L  contact  precisions  (L  is  sequence  length)  for                   
the  43  FM  and  FM/TBM  targets  are  84.6%,  72.6%,  and  61.8%,  DeepDist’s  contact  precisions  are  78.6%,                  
64.5%,  and  49.6%   [10] .  Our  methods  also  have  be�er  contact  precision  than  trRose�a [4] ,  a  method                 
developed  a�er  CASP13  that  employs  discrete-valued  predic�on,  although  trRose�a  used  a  newer              
sequence  database  uniclust30  (dated  in  August  2018)  and  a  larger  metagenome  database  to  generate                
MSAs   (mul�ple   sequence   alignment)   than   us.   

Real-valued  vs.  discrete-valued  predic�on.  We  use  the  same  hyperparameters  that  are  op�mized  on  the                
discrete-valued  ResNet  for  our  real-valued  ResNet.  Our  real-valued  predic�on  s�ll  produces  marginally              
be�er  (0.5-1.0%)  top  L  long-range  contact  accuracy  than  our  discrete-valued  predic�on.  When  the  extra                
long-range  contact  predic�on  is  evaluated,  our  real-valued  method  achieves  a  top  L/5,  L/2,  and  L                 
precision  of  65.5%,  55.4%,  and  49.2%,  respec�vely,  whereas  our  discrete-valued  predic�on  has  precision               
63.1%,  53.6%  and  47.8%,  respec�vely.  We  say  one  contact  is  extra  long-range  if  its  two  involving  residues                   
are  separated  by  at  least  48  residues  along  the  primary  sequence.  If  we  were  to  more  vigorously  tune                    
the  hyperparameters  for  our  real-valued  deep  ResNet  models,  our  results  would  be  even  be�er.  There  is                  
a  high  correla�on  (CC=0.98)  between  our  discrete-valued  and  real-valued  L/5  contact  precision  on  the  43                 
hard  targets,  but  there  are  s�ll  9  test  proteins  with  precision  difference  greater  than  5%,  indica�ng  that                   
there   are   situa�ons   where   real-valued   predic�on   may   be   more   useful   (see   Figure   1).   

Table  1.  Precision  and  F1  (%)  of  long-range  contact  predic�on  of  FM  and  FM/TBM  CASP13  targets  by  several  compe�ng                     
methods.   The   F1   of   AlphaFold   is   taken   from    [5] .   The   trRose�a   result   is   taken   from    [4] .   

  31   CASP13   FM   targets   12   CASP13   FM/TBM   targets   
  Top   L/5   Top   L/2   Top   L   Top   L/5   Top   L/2   Top   L   
  F1   of   long-range   contact   predic�on   

AlphaFold   in   CASP13   22.7   36.9   41.9   31.4   48.7   55.1   
RaptorX   in   CASP13   23.3   36.2   41.1   28.8   43.2   51.8   
Zhang   in   CASP13   21.2   34.1   39.2   28.4   43.3   49.5   
Discrete   (our   work)  27.5   44.1   51.1   31.9   52.9   62.0   
Real-Valued   (our   work)   27.9   44.6   51.8   31.8   52.4   62.4   
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  Precision   of   long-range   contact   predic�on   
RaptorX   in   CASP13   70.0   58.0   45.0   85.8   70.1   56.9   
Zhang   in   CASP13   65.7   54.8   39.1   82.3   70.0   54.8   
trRose�a   78.5   66.9   51.9   NA   NA   NA   
Discrete   (our   work)  80.2   67.6   57.6   93.9   83.5   70.7   
Real-Valued   (our   work)   81.2   68.7   58.1   93.6   82.8   71.3   

  

  

Figure  1.  Top  L/5  contact  precision  of  our  discrete-valued  and  real-valued  methods  on  the  43  FM  and  FM/TBM  CASP13  targets.  A                       
dot   above   the   diagonal   line   indicates   that   real-valued   predic�on   is   be�er   than   its   corresponding   discrete-valued   predic�on.   

Distance   predic�on   accuracy   on   CASP13   FM   and   FM/TBM   targets     
We  use  a  few  metrics  to  evaluate  distance  accuracy  of  our  real-valued  and  discrete-valued  predic�ons,                 
including  absolute  error,  rela�ve  error,  precision,  recall,  F1,  pairwise  distance  test  (PDT),  and               
high-accuracy  pairwise  distance  test  (PHA),  which  are  explained  in  sec�on  Methods.  While  evalua�ng               
distance  predic�on,  we  consider  only  those  long-range  atom  pairs  with  predicted  distance  <15Å  and                
na�ve  distances  <15Å.  To  evaluate  our  discrete-valued  predic�on,  we  convert  discrete  probability              
distribu�ons  to  real-valued  distance  by  compu�ng  the  expected  value  of  a  discrete  distribu�on,  which  is                 
detailed  in  [5].  As  shown  in  Table  2  and  Appendix  Fig.  S1,  our  real-valued  distance  predic�on  is  be�er                    
than  our  own  discrete-valued  predic�on  by  1-6%  in  terms  of  all  the  metrics  except  recall.  We  do  not                    
compare  our  distance  accuracy  with  Ding  et.  al.’s  GAN  method  because  they  only  reported  distance                 
accuracy  on  their  valida�on  set  but  not  on  the  CASP13  targets.  In  addi�on,  because  it  is  not  clear  how                     
DeepDist  precisely  defines  their  distance  measures,  it  is  challenging  for  us  to  compare  our  distance                 
accuracy   with   DeepDist,   but   we   have   much   be�er   contact   accuracy   than   DeepDist.   

Table  2.  Average  distance  accuracy  of  our  real-valued  and  discrete-valued  predic�on  methods.  The  accuracy  is  measured  by                   
absolute   error,   rela�ve   error,   precision,   recall,   F1,   PHA   and   PDT.     

  CbCb   CaCa   NO   
  Real   Discrete   Real   Discrete   Real   Discrete   

Abs.   Error     4.069335   4.232118   3.759566   3.974853   3.643687   3.872508   
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Rel.   Error     0.241389   0.251571   0.220723   0.232381   0.215353   0.227033   
Precision     0.682059   0.650375   0.691564   0.670452   0.692480   0.676140   
Recall     0.712129   0.736852   0.728711   0.745034   0.748851   0.759924   
F1     0.686266   0.679169   0.698683   0.694299   0.710045   0.705230   
PHA     0.431603   0.412376   0.462826   0.444350   0.481869   0.464568   
PDT     0.610425   0.589494   0.637133   0.617010   0.650349   0.630967   

  
Accuracy   of   predicted   3D   models   on    CASP13   FM   and   FM/TBM   targets   
We  use  the  predicted  real-value  a�ributes  to  generate  only  20  decoys  for  each  target  and  then  select  5                    
decoys  with  the  lowest  energy  as  our  predic�on  of  3D  models.  On  the  32  CASP13  FM  targets,  the                    
average  quality  (measured  by  TMscore [18] )  of  the  first  and  best  (of  5)  models  is  0.582  and  0.599,                   
respec�vely.  On  the  13  FM/TBM  targets,  the  average  TMscore  of  the  first  and  best  (of  5)  models  is  0.641                     
and  0.651,  respec�vely.  When  the  best  models  are  considered  and  TMscore>0.5  is  used  to  judge  if  a                   
predicted  3D  model  has  a  correct  fold  or  not,  our  real-valued  method  predicts  correct  folds  for  23  of  the                     
32  FM  targets  and  11  of  the  13  FM/TBM  targets.  Despite  genera�ng  only  20  decoys  per  target,  our                    
real-valued  method  performs  as  well  as  AlphaFold  in  CASP13,  which  has  an  average  TMscore  0.583  for                  
the  first  models  of  the  32  FM  targets  and  correctly  folds  23  of  the  32  targets [3] .  It  is  reported  that                      
AlphaFold   generated   thousands   of   decoys   per   target.   

DeepDist  reported  an  average  TMscore  0.487  and  0.522  for  the  first  and  best  models  of  the  43  CASP13                    
hard  (FM  and  FM/TBM)  targets,  respec�vely.  In  total  DeepDist  predicted  correct  folds  for  23  of  the  43                   
targets  (see  Table  3).  In  contrast,  our  real-valued  predic�on  method  obtains  an  average  TMscore  of  0.604                  
and  0.619  for  the  first  and  best  models,  respec�vely,  and  predicts  correct  folds  for  33  of  the  43  targets.                     
Our  method  also  vastly  outperforms  another  distance-based  folding  method  DMPfold [19] ,  which  has              
average  TMscore  0.438  for  the  first  models.  Ding  et.  al.  evaluated  their  real-valued  predic�on  on  only  20                   
FM  and  FM/TBM  targets  and  reported  an  average  TMscore  of  0.620,  whereas  we  can  achieve  a  similar                   
TMscore  of  0.612  with  real-valued  predic�on [12],  [19] .  However,  the  comparison  with  Ding  et  al.’s  result                 
is  not  rigorous,  as  they  used  the  official  domain  sequences  as  inputs  while  we  do  not.  To  simulate  the                     
real-world  predic�on  scenarios,  we  predicted  3D  models  on  the  domains  determined  by  our  server                
during  the  CASP13  season  in  the  absence  of  the  na�ve  structures  of  the  test  proteins.  When  evalua�ng                   
the  quality  of  our  predicted  3D  models,  we  only  count  the  segments  that  overlap  with  the  official                   
domains.  As  such,  when  our  own  domain  defini�on  deviates  significantly  from  the  official  one,  our                 
predicted  3D  models  have  a  low  quality  score  even  if  we  may  build  a  good  3D  model  for  our  own                      
domain.     

Real-valued  vs.  discrete-valued  predic�on.   Similarly,  we  also  generate  20  decoys  for  each  target  using                
our  discrete-valued  predic�on  and  select  the  top  5  decoys  for  each  target  by  energy.  On  the  32  CASP13                    
FM  targets,  the  average  TMscore  of  the  first  and  best  models  generated  by  our  discrete-valued                 
predic�on  is  0.646  and  0.672,  respec�vely.  On  the  13  FM/TBM  targets,  the  average  TMscore  of  the  first                   
and  best  3D  models  is  0.671  and  0.683,  respec�vely.  Our  discrete-valued  method  can  predict  correct                 
folds  for  26  of  the  32  FM  targets  and  11  of  the  FM/TBM  targets.  That  is,  although  our  real-valued                     
predic�on  generates  be�er  contact  accuracy,  its  3D  modeling  accuracy  is  not  as  good  as  our                 
discrete-valued  predic�on.  The  correla�on  between  our  real-valued  3D  model  quality  (measured  by              
TMscore)  and  discrete-valued  model  quality  is  0.95,  but  our  discrete-valued  method  predicts  be�er  3D                
models  for  nearly  all  targets  (Figure  2).  The  correla�on  between  the  top  L/2  contact  precision  of  the  31                    
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FM  targets  with  their  first  model  TMscore  is  0.626  for  discrete-valued  predic�on  and  0.543  for                 
real-valued  predic�on.  That  is,  there  is  s�ll  room  for  improvement  in  real-valued-based  3D  structure                
modeling.  This  also  implies  that  contact  precision  is  a  be�er  indicator  for  3D  model  quality  of                  
discrete-valued  predic�on  than  real-valued  predic�on.  The  correla�on  between  the  logarithm  of  MSA              
depth  (i.e.,  ln(Meff)  )  and  model  quality  for  real-valued  and  discrete-valued  predic�ons  is  0.572  and                 
0.557,  respec�vely.  When  ln(Meff)>4.0,  our  discrete-valued  method  can  predict  the  correct  folds  for  all                
targets   while   our   real-valued   method   fails   on   one   target   (Appendix   Fig.   S2).   

Table   3.   Average   TMscore   obtained   by   3   compe�ng   methods   on   the   43   CASP13   FM   and   FM/TBM   targets.   The   DeepDist   and   
DMPfold   results   are   taken   from   the   DeepDist   paper [10] .   

Method   Top   1   Top   5       #Correct   Folds   
Ours   0.604  0.619  33   

DeepDist   0.487  0.522  23   
DMPfold   0.438  0.449  16   

  

  

Figure   2.   TMScore   of   the   first   models   of   our   discrete-valued   vs   real-valued   predic�ons   for   the   32   CASP13   FM   targets.     

Strength   and   weakness   of   real-valued   predic�on   
Real-valued  predic�on  has  both  advantages  and  down-sides.  First,  dozens  of  parameters  are  needed  to                
represent  a  discrete  distance  distribu�on  while  only  two  parameters  (mean  and  standard  devia�on)  are                
used  for  real-valued  predic�on.  Second,  discre�zing  distance  possibly  reduces  the  amount  of  informa�on               
that  can  be  learned  by  a  machine  learning  method.  Indeed,  our  experiments  showed  that  real-valued                 
predic�on  has  slightly  be�er  contact  and  distance  accuracy.  Because  we  model  the  energy  func�on  for                 
real-valued  predic�on  using  the  harmonic  func�on  that  has  only  two  parameters,  our  real-valued  energy                
func�on  is  symmetric  across  the  mean,  much  smoother,  and  much  simpler  than  our  discrete-valued                
poten�al.  As  shown  in  Appendix  Fig.  S3,  discrete  distance  poten�als  have  troughs  followed  by  peaks                 
followed  by  another  through,  which  is  an  undesirable  characteris�c  for  energy  minimiza�on.  The               
smoothness  of  real-valued  energy  func�on  makes  gradient-based  minimiza�on  easier.  However,            
discrete-valued  predic�on  uses  dozens  of  parameters  to  define  a  probability  distribu�on  and  thus,  result                
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in  a  higher  resolu�on  energy  func�on  for  3D  structure  modeling  than  real-valued  predic�on.  This  shall                 
be   the   major   reason   why   our   real-valued   predic�on   underperforms   in   3D   structure   modeling.     

Case   study   
Our  real-valued  and  discrete-valued  methods  perform  differently  on  two  CASP13  hard  targets  T0990-D1               
and  T1008-D1.  For  T0990-D1,  our  discrete-valued  predic�on  works  be�er,  while  for  T1008-D1  our               
real-valued   predic�on   works   be�er.   

T0990-D1  has  76  residues  and  the  logarithm  of  its  MSA  depth  is  3.308.  Our  real-valued  and                  
discrete-valued  predic�ons  have  similar  contact  precision.  The  top  L/5,  L/2,  and  L  long-range  contact                
precision  of  both  methods  are  0.933,  0.605,  and  0.6.  The  top  L/5  short-range  contact  precision  is  0.733.                   
But  our  real-valued  predic�on  has  be�er  top  L/5  medium-range  contact  precision  (0.8)  than               
discrete-valued  predic�on  (0.667).  Both  methods  have  slightly  different  distance  accuracy.  Our             
discrete-valued  predic�on  has  a  smaller  rela�ve  and  absolute  distance  predic�on  error  (0.124,  1.424)               
than  our  real-valued  predic�on  (0.145,  1.624).  Our  discrete-valued  predic�on  also  has  slightly  be�er  PDT                
and  PHA  (0.794,  0.619)  than  our  real-valued  predic�on  (0.764,  0.580).  However,  our  discrete-valued               
predic�on  produces  much  be�er  3D  models  than  real-valued  predic�on  in  terms  of  TMscore  (0.75  vs                 
0.382),  RSMD  (2.512  vs  9.819),  GHA  (0.536  vs  0.276),  and  GDT  (0.75  vs  0.418).  This  suggests  that  contact                    
accuracy  may  not  necessarily  be  a  good  predictor  of  3D  model  quality  as  it  does  not  capture  the  overall                     
informa�on  of  the  predicted  distance  map.  In  addi�on,  the  real-valued  predic�on  may  not  necessarily                
predict   be�er   distance   than   the   discrete-valued   method.   

  

Figure  3.  Distance  map  for  T0990-D1  predicted  by  real-valued  ResNet  (Le�)  and  discrete-valued  ResNet  (Middle).  Only  distances                   
less  than  15Å  are  displayed  in  colors.  In  each  picture,  na�ve  and  predicted  distance  is  shown  below  and  above  the  diagonal  line,                        
respec�vely.  The  right  picture  shows  the  superimposi�on  of  T990-D1  na�ve  structure  (gray),  real-valued  model  (green),  and                  
discrete-valued   model   (blue).   

For  T1008-D1,  our  discrete-valued  predic�on  has  top  L/5,  L/2,  and  L  long-range  contact  precision  0.933,                 
0.684,  and  0.508,  respec�vely,  be�er  than  our  real-valued  predic�on  (  0.933,  0.631,  and  0.492).  Our                 
real-valued  predic�on  has  be�er  predicted  distance  accuracy  in  terms  of  rela�ve  error  (2.633  vs  3.014),                 
absolute  error  (0.213  vs  0.231),  PDT  (0.608  vs  0.574),  and  PHA  (0.385  vs  0.352).  The  3D  model  built  from                     
our  real-valued  predic�on  is  be�er  across  all  metrics,  including  TMscore  (0.587  vs  0.433),  GDT  (0.444  vs                  
0.416),  RMSD  (3.671  vs  7.923),  and  GHA  (0.393  vs  0.312).  This  suggests  that  an  improved  distance                  
predic�on   can   help   improve   3D   structure   modeling.   
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Figure  4.  Distance  map  for  T1008-D1  predicted  by  real-valued  ResNet  (Le�)  and  discrete-valued  ResNet  (Middle).  Only  distances                   
less  than  15Å  are  displayed  in  colors.  In  each  picture,  na�ve  and  predicted  distance  is  shown  below  and  above  the  diagonal  line,                        
respec�vely.  The  right  picture  shows  the  superimposi�on  of  T1008-D1  na�ve  structure  (gray),  real-valued  model  (green),  and                  
discrete-valued   model   (blue).   

Conclusion   and   Discussions   
We  have  presented  a  new  method  for  real-valued  distance  predic�on  using  a  deep  ResNet.  This  method                  
can  achieve  a  top  L/5  contact  precision  of  81.2%,  more  than  10%  greater  than  the  best  methods  in                    
CASP13.  Even  genera�ng  only  20  decoys  per  target,  our  method  can  correctly  fold  the  same  number  of                   
CASP13  FM  targets  as  the  best  human  group  in  CASP13.  Our  method  also  outperforms  exis�ng                 
real-valued  predic�on  methods  such  as  DeepDist  in  terms  of  both  contact  accuracy  and  3D  model                 
quality.  When  the  same  ResNet  is  used,  our  real-valued  predic�on  can  achieve  a  1-6%  improvement  over                  
its  discrete  version  in  terms  of  contact  and  distance  accuracy,  but  it  falls  short  in  3D  structure  modeling                    
accuracy.  Even  though  the  energy  func�on  predicted  by  our  real-valued  method  is  smoother  and  more                 
symmetric,   its   resolu�on   is   not   as   high   as   our   discrete-valued   predic�on.     

There  is  s�ll  much  room  to  improve  real-valued  predic�on.  For  example,  DeepDist  trains  both  real  and                  
discrete  predic�ons  at  the  same  �me  and  then  combines  the  results,  which  can  further  improve  contact                  
accuracy  and  folding  ability.  Ding  et  al.  show  that  using  the  GAN  on  top  of  the  deep  ResNet  can  further                      
improve  the  global  consistency  of  distance  predic�on,  which  is  something  worth  trying.  It  is  also  possible                  
that  we  can  employ  be�er  loss  func�ons  to  deal  with  the  class  imbalances  for  protein  distance                  
predic�on [20] .  Recently,  there  has  been  much  progress  in  making  convolu�on  layers  more  efficient  and                
powerful,  and  it  would  be  interes�ng  to  see  how  this  can  improve  the  ResNet  architecture [21]–[25] .                 
There  has  also  been  interest  in  end-to-end  training  for  protein  structure  predic�on,  which  can  improve                 
the  learned  rela�onship  between  structure  and  output  while  speeding  up  predic�on  �me [26]–[28] .  And               
lastly,  we  would  con�nue  to  inves�gate  ways  in  which  we  can  reduce  the  gap  between  real-valued  and                   
discrete-valued   predic�on   in   3D   structure   modeling.   

Methods   
Training   and   valida�on   data     
To  conduct  our  experiments,  we  train  and  validate  our  models  on  the  Cath  S35  protein  dataset                  
downloaded  in  December  2019,  which  is  a  set  of  32511  CATH  domains  ( h�ps://www.cathdb.info/ )  in                
which  two  domains  share  at  most  35%  sequence  iden�ty.  We  remove  short  domains  (<25  residues)  and                  
those  with  too  many  missing  Ca  and  Cb  atoms.  For  each  protein  domain  in  Cath  S35,  we  generate  their                     
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mul�ple  sequence  alignments  (MSAs)  by  running  HHblits  with  E-value=0.001  on  the  uniclust30  library               
dated  in  October  2017  and  then  derive  input  features [29],  [30] .  We  randomly  split  the  dataset  into  a                   
train  and  valida�on  set  (1800  domains).  We  generate  6  splits  and  train  deep  ResNets  on  each  split.  As                    
shown  in  Xu  et.  al   [31] ,  there  is  very  li�le  difference  between  this  Cath  S35  dataset  and  the  version  dated                      
in  March  2018.  The  deep  ResNet  models  trained  on  them  have  almost  the  same  (contact  predic�on  and                   
3D   modeling)   performance   on   the   CASP13   FM   and   FM/TBM   targets.   

Independent   test   data   
We  use  the  45  CASP13  hard  targets  (32  FM  targets  and  13  FM/TBM  targets)  to  evaluate  all  methods.                    
Since  T0953s1  and  T0955  have  very  few  long-range  contacts,  they  are  not  used  to  evaluate  contact  or                   
distance  accuracy.  We  use  HHblits  (with  E-value=0.01)  and  TMalign  to  check  sequence  profile  and                
structural  similarity  between  the  CASP13  FM  targets  and  our  training  set.  When  searching  through  our                 
training  set,  HHblits  returns  a  large  E-value  (>10)  for  most  of  the  32  FM  targets.  The  only  excep�ons  are                     
targets  T0975  and  T1015s1;  T0975  is  related  to  4ic1D  (HHblits  E-value=4.2E-12)  and  T1015s1  is  related  to                  
4iloA  (HHblits  E-value=0.024).  However,  since  both  4ic1D  and  4iloA  were  deposited  to  PDB  well  before                 
2018  and  the  structure  similarity  (as  measured  by  TMscore)  between  them  is  both  less  than  0.5,  it  is  fair                     
to   include   them   into   our   training   set.     

MSA   genera�on   and   input   features   
To  generate  mul�ple  sequence  alignments  (MSAs)  for  the  test  targets,  we  run  HHblits [29]  with                
E-value=1E-3  and  1E-5  on  the  uniclust30  database  dated  in  October  2017  and  jackhammer [32]  with                
E-value=1E-3  and  1E-5  on  the  uniref90  database  dated  in  March  2018.  If  any  target  has  a  shallow  MSA                    
depth  (ln(Meff)<6),  we  also  search  a  metagenome  database  dated  in  June  2018  to  see  if  more  sequence                   
homologs  can  be  found.  We  chose  these  databases  because  they  ensured  fairness  for  comparisons,  as                 
they  were  created  before  the  start  of  CASP13.  The  input  features  include  both  sequen�al  and  pairwise                 
features.  For  sequen�al  features,  we  use  1)  the  primary  sequence  represented  as  a  one-hot  encoding;  2)                  
sequence  profiles  derived  from  MSAs  that  encoded  evolu�onary  informa�on  at  each  residue;  3)               
secondary  structure  and  solvent  accessibility  predicted  from  the  sequence  profile.  Our  pairwise  features               
include  coevolu�on  informa�on  and  consist  of  1)  mutual  informa�on;  2)  CCMpred [17]  output.  The               
CCMpred  output  includes  one  L×L  co-evolu�on  matrix  and  one  full  precision  matrix  of  dimension                
L×L×21×21   where   L   is   the   protein   sequence   length.   

Protein   structure   representa�on   
We  represent  protein  backbone  conforma�on  using  inter-atom  distance  matrices  (C a -C a ,   C b -C b,   and   N-O)               
and  inter-residue  orienta�on  matrices  as  employed  by  trRose�a [4] .  When  training  the  real-valued              
ResNet  models,  all  distances  greater  than  20Å  are  set  to  20Å.  If  we  do  not  do  this,  our  model  focuses  on                       
learning  large  distances  instead  of  more  useful  small  distances  (<16Å).  We  tried  se�ng  the  distance  limit                  
to  16Å  instead  of  20Å,  but  did  not  obtain  be�er  performance.  We  normalize  distances  and  angles  to  be                    
bounded  by  0  and  1  and  the  dihedral  angles  to  be  bounded  by  -1  and  1.  This  normaliza�on  not  only                      
allows  the  gradients  to  flow  more  easily  in  the  deep  ResNet,  but  it  also  equally  weights  the  loss  func�on                     
across  the  inter-atom  predic�ons.  For  discrete-valued  predic�on,  we  discre�ze  distance  into  47  bins:               
0-2Å,   2-2.4Å,   2.4-2.8Å,...,19.6-20Å,   and   >20Å.   
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Deep   model   training   
We  follow  AlphaFold  and  trRose�a’s  technique  of  subsampling  MSAs.  During  subsampling,  we  randomly               
sample  40-60%  of  the  sequence  homologs  from  an  MSA  (with  at  least  2  sequences)  and  then  derive                   
input  features  from  the  sampled  MSA.  To  save  training  �me,  we  generated  10  different  samples  on  disk                   
so  that  our  training  program  just  needs  to  randomly  select  one  sample  from  the  disk  during  training.  Our                   
deep  ResNet  learns  to  predict  the  mean  and  standard  devia�on  of  a  normal  distribu�on  for  real-valued                  
distances  and  orienta�ons.  Because  it  is  challenging  for  the  deep  ResNet  to  learn  the  mean  and  standard                   
devia�on  simultaneously,  we  first  train  it  to  learn  the  mean  and  then  the  standard  devia�on  while  fixing                   
the  mean.  We  use  the  AdamW [33]  op�mizer  with  β 1  set  to  0.1,  β 2  set  to  0.001,  and  L 2  regulariza�on                     
factor  of  0.35.  We  train  our  deep  ResNet  to  predict  the  mean  for  20  epochs  with  a  learning  rate  of                      
0.0002,  1  more  epoch  with  a  learning  rate  of  0.00004,  and  the  last  epoch  with  a  learning  rate  of                     
0.000008.  We  train  the  standard  devia�on  parameters  similarly,  but  for  only  10  epochs  because  it                 
converges  much  more  quickly.  We  train  up  to  6  deep  ResNet  models  with  the  same  hyperparameters  on                   
different   subsets   of   our   data   and   ensemble   them   to   predict   the   final   mean   and   standard   devia�on.     

Instead  of  predic�ng  a  normal  distribu�on  for  the  dihedral  angles,  we  tried  to  predict  the  von  Mises                   
distribu�on [34] .  However,  because  we  train  our  models  to  predict  distances  and  orienta�ons              
simultaneously  and  it  is  hard  for  our  models  to  learn  with  different  loss  func�ons  at  the  same  �me,                    
those  models  did  not  converge  well.  We  also  tried  to  train  our  models  to  predict  discrete-valued  and                   
real-valued   distance   at   the   same   �me   but   failed   for   similar   reasons.   

Building   protein   3D   models   and   model   clustering   
We  build  our  3D  models  from  distance  and  orienta�on  predic�on  with  PyRose�a  as  follows:  1)  convert                  
the  predicted  mean and  devia�on to  energy  poten�al  by  fi�ng  them  to  the  harmonic  func�on.  That    μ  σ            

is,  the  poten�al  of  an  orienta�on  angle   is   and  the  poten�al  of  a  distance  d  func�on  is          x    σ2
(x  μ)− 2

           σ2
(d  μ)− 2

 

if  d  is  <19,  otherwise  .  (2)  minimize  the  energy  poten�al  by  gradient-based  minimiza�on       σ2
(19.0  μ)− 2

         
algorithm  LBFGS.  To  get  out  of  a  local  minimum,  we  perturb  all  phi/psi  angles  by  a  small  devia�on  and                     
then  apply  LBFGS  again  to  see  if  a  lower  energy  poten�al  may  be  reached.  We  then  apply  fast  relaxa�on                     
to  add  side-chain  atoms  and  reduce  steric  clashes.  We  generate  20  decoys  for  each  test  target  and  then                    
simply  select  5  decoys  with  the  lowest  energy  as  our  predic�ons.  We  have  also  tried  the  Gaussian                   
func�on  for  energy  poten�al,  but  folding  with  the  harmonic  func�on  is  faster  because  its  deriva�ve  is                  
simpler  to  compute.  The  harmonic  func�on  also  improves  the  average  TMscore  by  about  0.01.  For                 
discrete-valued  predic�on,  we  convert  our  predicted  discrete  distance  probability  distribu�on  into             
distance   poten�al   using   the   spline   func�on   and   then   build   3D   models   by   the   same   protocol.   

Performance   metrics   
We  use  precision  and  F1  value  to  evaluate  contact  predic�on.  To  convert  discrete  probability                
distribu�ons  over  the  bins  to  real-valued  distance,  we  compute  a  weighted  average  of  the  distance  bins,                 
which  is  detailed  in   [5] .   To  evaluate  distance  accuracy,  we  use  absolute  error,  rela�ve  error,  precision,                  
recall,  F1,  pairwise  distance  test  (PDT),  and  high-accuracy  pairwise  distance  test  (PHA).  For  all  these                 
metrics,  we  only  consider  the  distance  pairs  <15Å.  Absolute  error  is  the  absolute  difference  between                 
predicted  and  na�ve  distance  while  the  rela�ve  error  is  the  absolute  error  normalized  by  the  average  of                   
predicted  and  na�ve  distance.  We  measure  the  recall  by  the  ra�o  of  atom  pairs  with  na�ve  distance                   
<15Å  that  are  predicted  to  have  distance  <15Å  and  precision  by  the  ra�o  of  atom  pairs  with  predicted                    
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distance  <15Å  that  have  na�ve  distance  <15Å.  To  calculate  PDT  and  PHA,  we  first  calculate  the  frac�on                   
(R(i))  of  predicted  distance  with  an  absolute  error  less  than  i  (i  =  0.5,  1,  2,  4,  and  8Å).  PDT  as  the  average                         
of   R(1),   R(2),   R(4),   and   R(8)   and   PHA   is   the   average   of   R(0.5),   R(1),   R(2),   and   R(4).   

We  use  TMScore [18]  to  evaluate  the  3D  model  quality,  which   measures  the  similarity  between  a  3D                  
model  and  its  experimental  structure  (i.e.,  ground  truth).  It  ranges  from  0  to  1  and  we  assume  that  a  3D                      
model   has   a   correct   fold   when   its   TMscore≥0.5.     
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Appendix   

  

Figure   S1.   Distance   predic�on   accuracy   of   our   discrete-valued   and   real-valued   method   on   the   43   FM   and   FM/BM   CASP13   
targets.   The   accuracy   is   evaluated   by   precision,   F1,   PHA   and   PDT.   
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Figure   S2.   The   rela�onship   between   the   logarithm   of   MSA   depth   (i.e.,   ln(Meff)   )   and   3D   model   quality   on   the   32   CASP13   FM   
targets.   

  

  

Figure  S3.  Comparison  of  predicted  distance  poten�als  on  one  target  T1015s1-D1  for  short-range  (top  row),  medium-range                  
(middle  row),  and  long-range  (last  row)  residue  pairs.  Columns  correspond  to  <8Å,  8-15Å,  and  >15Å.  The  green  line  marks  the                      
na�ve  distance  of  a  residue  pair;  the  blue  line  corresponds  to  real-valued  predic�on  and  the  orange  line  to  discrete-valued                     
predic�on.   
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