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1. Abstract

Millions of Americans suffer from illnesses with non-existent or ineffective drug treatment.
Identifying plausible drug candidates is a major barrier to drug development due to the large
amount of time and resources required; approval can take years when people are suffering
now. While computational tools can expedite drug candidate discovery, these tools typically
require programming expertise that many biologists lack. Though biomedical databases con-
tinue to grow, they have proven difficult to integrate and maintain, and non-programming
interfaces for these data sources are scarce and limited in capability. This creates an oppor-
tunity for us to present a suite of user-friendly software tools to aid computational discovery
of novel treatments through de novo discovery or repurposing. Our tools eliminate the need
for researchers to acquire computational expertise by integrating multiple databases and
offering an intuitive graphical interface for analyzing these publicly available data. We built
a computational knowledge graph focused on biomedical concepts related to drug discovery,
designed visualization tools that allow users to explore complex relationships among enti-
ties in the graph, and served these tools through a free and user-friendly web interface. We
show that users can conduct complex analyses with relative ease and that our knowledge
graph and algorithms recover approved repurposed drugs. Our evaluation indicates that our
method provides an intuitive, easy, and effective toolkit for discovering drug candidates. We
show that our toolkit makes computational analysis for drug development more accessible
and efficient and ultimately plays a role in bringing effective treatments to all patients.

Our application is hosted at: https://biomedical-graph-visualizer.wl.r.appspot.com/

Keywords: Drug discovery, Drug re-purposing, Knowledge graph, Relation prediction

2. Introduction

The Global Burden of Disease Study conducted in 2013 reported that approximately 95.7% of
the world’s population had health problems and 2.3 billion people were experiencing more than
five ailments20. Even though many of these major health challenges – including cancer, neu-
rodegenerative diseases, and infectious diseases – are in desperate need of drug discovery and
innovation, only a third of the around 30,000 currently known diseases have any treatment17.
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Even with the advancement of technology and the accumulation of scientific knowledge, drug
discovery still takes an average of 12 to 15 years and costs billions of US dollars11.

One of the major bottlenecks for drug discovery is the process of identifying potential drug
candidates. Most of the preclinical drug discovery efforts are performed using high through-
put screening technologies, which automate the screening of the entire chemical compound
library to identify molecules that interact with a particular target of interest9. However, high
throughput screening does not consider prior knowledge and known pharmacology of the drug
candidates, and can only test for a single target9,12. It has become increasingly clear in the
scientific literature that diseases are driven by multiple molecular abnormalities, and thus
identifying drug candidates without prior knowledge is unlikely to be effective18. This tradi-
tional method of drug discovery requires a tremendous amount of time and resources yet only
averages a success rate of 9.6% across all types of diseases28.

The exponential growth of biomedical data with heterogeneous data types ranging across
several domains including genomics, proteomics, and diseases, has facilitated a new paradigm
of drug discovery through computational methods2. Computational tools allow researchers to
identify and prioritize drug candidates more efficiently, reducing time and resource costs com-
pared with the traditional drug development process35,15. Many studies have demonstrated the
efficacy of computational methods for drug discovery and repurposing by leveraging publicly
available datasets, including: drug focused, disease focused, and ’omics databases10,7,13,16,19,5.
However, almost all of these studies used data from a single source, which can introduce bio-
logical and technical bias24. The multifaceted nature of drug discovery requires intersections
of many disparate data types, yet all of the studies mentioned above only used a single type
of data.

Though research shows that using multiple data sources can make drug discovery more
efficient14, integrating these databases and performing algorithmic analysis creates a huge
barrier to entry for most drug developers. Integrating and mapping different datasets is a
nontrivial task and involves several issues including conflicting nomenclature (brand name vs.
generic name) and spelling of medications (American vs. British spellings)35. Selecting the
appropriate subset from numerous publicly available datasets and creating a data pipeline
for drug discovery poses another time-consuming challenge. Glicksberg et al. attempted to
mitigate these issues by prescribing a step-by-step workflow for leveraging public data for
drug discovery; this framework has proven successful in two separate studies35,32,31. However,
this method has limited accessibility and utility as it only uses a handful of datasets and
requires programming knowledge to execute. Various computational tools have also been made
available for linking drug and disease databases, but each has its shortcomings, including:
limited data types and sources, limited disease types, and requirements for programming
knowledge21,22,26,29,27,8. Reducing the number of steps needed for a researcher to begin network
analysis on a graph specifically curated for their research task will significantly reduce the
barrier to entry for effective computational analysis.

Wikidata is a free and comprehensive knowledge graph covering a variety of concepts and
relationships. Researchers have begun to utilize Wikidata for biological reasoning tasks [39,
23, 33]. In this paper we evaluate whether Wikidata is of sufficient quality to construct a
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biomedical knowledge graph and make inferences about drug use and repurposing. To ad-
dress the broad problem of access to network analysis, we provide tools that allow users to
take advantage of the rich information stored in our biomedical knowledge graph. Our core
contribution is to provide two simple, free, and lightweight visual tools for effective network
analysis on complex graphs: a subgraph explorer and concept similarity visualizer. We design
and extract a biomedical knowledge subgraph from Wikidata and build tools that utilize se-
mantic and clinically salient relationships present in the graph. Our evaluation indicates that
our methods can recover known repurposed drugs and that they are intuitive and accessible.

Figure 1. Flowchart of the Biomedical Graph Visualizer, which includes two free visual tools for
effective network analysis on complex graphs - the Subgraph Tool and the Similarity Tool. Each also
includes 2 modes for performing flexible analyses.

3. Data

3.1. Wikidata

Wikidata is a free, open, and editable knowledge graph that contains information derived from
Wikipedia, third party databases like Uniprot, Gene Ontology, and NCBI, as well as medical
literature from PubMed. Wikidata allows programmatic access to its knowledge graph through
the use of nodes and edges. A Wikidata node is described by its Wikidata ID, an integer
prefixed with a Q (such as Q3025883 for Type-2 Diabetes), and contains a list of relationships,
or edges, which are described by the property whose identifier is prefixed with a P (such as
P31 for instance of ).

3.2. DrugBank

DrugBank is a database comprised of drugs and their known binding proteins [4]. Every drug
in DrugBank is a hypothesis for drug candidates that could treat specific medical conditions.
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DrugBank v5.1.7 contains 13,670 drug entries and 5,228 non-redundant protein (i.e. drug
target) sequences linked to these drug entries.

4. Methods and Results

4.0.1. Extracting Biomedical Data with SPARQL Queries

Because Wikidata stores information in a Resource Description Framework (RDF) triplestore
format, the network is stored as semantic triples describing relationships in the form (Concept
1, Property, Concept 2). This allows computational access of its data through SPARQL, an
language used to query triple patterns found in graphs. We queried Wikidata using the Python
package SPARQLWrapper40, and downloaded all instances of biomedical concepts and their
relationships enumerated in Figure 2.

Table 1. List of core biomedical concepts and peripheral biomedical
concepts that we have curated to be a part of our knowledge graph.
All instances of core concepts are in our graph, and instances of
peripheral concepts are included if they are directly connected to a
core concept. Some peripheral concepts do not have a QID.

Core Concept QID

Drug Q8386
Gene Q7187
Protein Q8054
Disease Q12136
Symptom Q169872

Peripheral Concept QID

Molecular Function Q14860489
Biological Process Q2996394
Cell Component Q5058355
Chemical Compound Q11173
Pharmaceutical Product Q28885102
ICD10 -
Gene Ontology ID -
Protein Family Q417841
Protein Domain Q7251502
Anatomical Location -
Chromosome Q37748
Drug Function -

Wikidata contains millions of nodes and edges covering a large variety of concepts. We
filter the entire Wikidata graph to only include a subset of biomedical concepts and properties
useful for drug discovery. The core and peripheral concepts chosen are listed in Table 1. The
main distinction between core and peripheral concepts is that all instances of core concepts
in Wikidata are included in our graph, whereas peripheral concepts are only included if they
have a direct connection via a curated relationship with a core concept.
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Figure 2. Schema illustrating the concepts and relationships that make up our biomedical knowledge
graph. The chosen concepts and relationships were manually curated and taken from Wikidata, and
therefore is a subset of Wikidata. Wikidata nodes are in white boxes, and edges display the property
ID that connects two nodes together (black boxes). The core concept Drug is centrally located in
the subgraph.

4.1. Biomedical Graph Library

4.1.1. Graph Construction

We use SPARQL queries to download all Wikidata nodes and edges included in our manually-
curated schema (the full schema can be seen in Figure 2). SPARQL queries operate on tuples
of the form (Concept 1, Property, Concept 2). For example, we can form a SPARQL query
to grab all instances of (Gene, encodes, Protein). “Gene” and “Protein” are Concepts, and
“encodes” is a Property. In this way, we import all the Concepts listed in table 1, and the
Properties that connect them as an adjacency list. Our graph library connects all of edges in
this adjacency list to form our biomedical knowledge graph.

We represent this graph as a custom Graph class in Python, based on a NetworkX Di-
Graph3, a directed graph which allows self loops. The DiGraph structure allows us to encode
two-sided relationships such as (Gene, encodes, Protein) and (Protein, encoded by, Gene) into
one set of bidirectional edges between the same two nodes. An useful feature of NetworkX
graphs is that metadata can be added onto each node and edge. We represent each node by its
id (e.g. Q17853272) and attach its name (e.g. BRCA2) and concept (e.g. Gene) as metadata
on that node. We represent each edge by its id (e.g. P688) and attach its name (e.g. encodes)
as metadata on that edge. Furthermore, our Graph class wraps common NetworkX functions
such as getting, adding, and deleting nodes and edges. In addition, our library allows getting
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neighbors, getting metadata, and getting a subgraph, all of which are used by our algorithms.
Our custom Graph class abstracts away detailed NetworkX syntax from other parts of our
program and preserves the ability to change the underlying graph architecture from NetworkX
to other libraries without changing the entire code base.

Table 2. Node counts by concept type in the biomedical knowledge graph.
The abundance of nodes in Gene, Protein, Molecular Function and Biological
Process suggests that our graph includes an abundance of molecular detail that
could describe drug processes.

Concept Node Count

Drug 2842
Gene 21160
Protein 25557
Disease 5074
Symptom 604
Molecular Function 11095
Biological Process 12689
ICD10 100

Concept Node Count

Protein Family 9017
Protein Domain 5091
Gene Ontology ID 11037
Chromosome 27
Drug Function 373
Pharmaceutical Product 2187
Cell Component 1770
Anatomical Location 607

4.1.2. Graph Analysis and Results

The current version of our biomedical knowledge graph contains 109,230 nodes (concepts) and
570,972 edges (relationships and links between the concepts). See Table 2 for a breakdown of
nodes by concept type, and see Figure 3 for a visualization of the distribution of edge types.

We investigate the network topology by traversing the graph and recording the distribution
of node types encountered at each traversal as in Previde et al. [34]. Figure 4 shows an example
of this analysis.

4.2. Subgraph Tool

4.2.1. Subgraph Computation

The subgraph tool allows users to visualize small portions of the knowledge graph starting at
source nodes of their choosing. Users could use it as an exploratory interface for hypothesis
generation in drug discovery and repurposing, such as viewing all Drugs that is an activator
of a particular Gene of interest. The back-end of the subgraph tool involves three applications
of the Breadth First Search (BFS) graph traversal algorithm starting at a specific node that
the user specifies. See the Appendix for screenshots of the applications.

The first application explores node neighborhoods, for initial exploration of a concept of
interest. The user specifies a source node (e.g. BRCA2) and a maximum number of hops (k)
to traverse in the graph. The tool will return a subgraph containing the source node and
all nodes of all types (e.g. Drugs, Proteins, Diseases) within k hops. The interface emulates
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Distribution of Edge Counts by Source and Destination Concept Types

Figure 3. Distribution of edges. Edges in the graph were counted based on the source node concept
type and destination node concept type. Natural logarithm was applied to the counts due to the big
range, and visualized as a heatmap. White grids denote zero counts in that category. Among the
most abundant connections are between Proteins and Biological Processes, Proteins and Molecular
Functions, as well as Drugs to Diseases, other Drugs, and Drug Functions. These edges should all be
helpful in our drug discovery application.

Average Node Concept Type Distribution at each Hop Starting at 100 Random Proteins

Figure 4. For each of 100 proteins, we conduct BFS and analyze the distribution of neighbor node
concept types at each hop of size k averaged across the 100 proteins. k = 0 refers to the starting
protein itself so that for 100 proteins all neighbor node concept types at k = 0 should be of type
Protein. This analysis shows for proteins, disease concepts are primarily reached after k = 6 hops.

Previde et al. [34]. BFS is used to explore all adjacent neighbors at each hop before moving to
the next set of neighbors. For this application, we keep track of a node’s id and current hop
number in the BFS queue. When we pop an item off the queue, we add it to the subgraph
and append its neighbors to the queue only if the current hop number is less than k.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 28, 2020. ; https://doi.org/10.1101/2020.11.27.368811doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.368811
http://creativecommons.org/licenses/by-nc-nd/4.0/


8

The second application explores how a specific node is related to a concept domain, suitable
for situations when a general relationship between two domains may be hypothesized. The
user specifies a source node of interest (e.g. Insulin), an ending concept type (e.g. Disease),
and the maximum number of hops (k) to traverse. The tool returns a subgraph containing the
source node, all nodes of the ending concept type (Disease) within k hops, and other nodes
on the shortest path between the source node and each ending node. For this application, we
keep track of the entire path leading up to the node for each item in the BFS queue, as well as
its current hop number. When we pop an item off the queue, we make sure that the current
hop number is less than k. If the last node in the path is our desired concept, we add all nodes
in that path into the subgraph. If not, we continue exploring.

The third application finds the shortest path between two nodes, suitable for finding the
relationship between two very specific concepts. Our intuition is that nodes connected by
shorter paths are more directly related to each other. We also consider another measure of
node relatedness that incorporates relationship types in Section 2.4. The user specifies a source
node (e.g. Type-2 Diabetes) and end node (e.g. Liraglutide). The tool returns the nodes and
edges on the shortest path between the source and end nodes, irrespective of the number of
hops. If the nodes are not connected, the tool will return the source and end nodes with no
connections. For this application, we keep track of the entire path leading up to the node for
each item in the BFS queue. When we pop an item off the queue, we check if the last node in
the path is the ending node specified by the user. If so, we return a subgraph with nodes on
this path. Otherwise, we continue exploring.

4.2.2. Subgraph Visualization

Once a subgraph is computed via one of the three methods mentioned above, we employ
strategies to visualize the computed subgraphs in an informative way. First, we color the
nodes by their concept type and present the users with a labelled legend (not shown). Second,
we label the nodes and edges with their names. Both the node and edge labels can be toggled
on and off. Third, the size of the nodes represent their estimated connectivity in the graph.
For visualization purposes only, we estimate connectivity via PageRank, an algorithm initially
developed by Google for ranking web pages on the internet1. In our context, PageRank works
by counting the number of incoming links at a particular node to determine node importance
(centrality). We assume that more important nodes in the graph will receive more connections
from other nodes. PageRank assigns a real number between 0 and 1, with higher values
denoting higher importance, and therefore a larger node size.

Finally, all of the nodes and edges in the subgraph, along with metadata such as their
names, concept types, and PageRank values, are packed into a custom JSON format in an
adjacency list form and passed to the web server to be displayed.

4.2.3. Subgraph Tool Evaluation and Results

Since the Subgraph Tool is designed to be intuitive and easily accessible, we evaluated this tool
with a user survey. Survey respondents came from biomedical backgrounds. We asked users
to pick a biomedical concept and an ending node of their choice. They then rated whether the
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results were plausible on a scale from 1-5. Survey examples incorporated all three applications
of the subgraph tool. Users generally tested queries in fields that were familiar to them. Out
of a total of 13 respondents, 5 rated whether the results made sense as 5/5, and 8 rated the
results as 4/5. There were no scores lower than 4. Users also wrote open-ended suggestions
for what could be improved about the tool. Many users asked for additional features, which
are elaborated in the Discussion section.

4.3. Similarity Tool

4.3.1. Node Embeddings

The Similarity Tool takes in one or more input nodes of the same type, and generates other
similar nodes based on a trained embedding. We generate several node embeddings to compare
our results: node2vec, STransE, and attention-based link prediction (henceforth referred to as
relation embeddings). Node2vec uses a bag-of-words model and does not take into account
relationship types25. STransE and relation embeddings take into account edge type (relation-
ship) and direction between nodesSTransE, 37. STransE embeddings are used as a warm-start
initialization for the relation embeddings.

We use the default hyperparameters for each embedding algorithm and create embeddings
with dim = 50 based on prior work on data with comparable underlying graphs.

Passing our graph to the different embedding algorithms requires minimal processing. We
feed an edge list of (src, dst) node tuples to node2vec and an edge list of (src, relation, dst)
tuples to the STransE and relation embedding algorithms. For post-processing, we simply
split the embeddings by concept type so that only the embeddings required for a particular
query are loaded onto memory. The live website uses embeddings produced by the relation
algorithm.

4.3.2. Finding Similar Nodes given a Node

The backbone of our similarity tool is the k Nearest Neighbors algorithm, which finds nodes
similar to each other in our high-dimensional embedding space. Given a source node, the
nearest neighbor algorithm returns a list of the k most similar nodes based on particular
similarity metrics, where k is a parameter chosen by the user. For each input source node,
distances to all nodes within the same concept (e.g. Drugs) are computed based on our node
embeddings. Nodes that have the shortest distance to the input source node are considered to
be more similar. The choice of similarity metrics includes (1) cosine distance, (2) Manhattan
distance, and (3) Euclidean distance.

Our similarity tool currently supports two different modes: Mode 1 finds a list of nearest
neighbors for each of the source nodes independently, while Mode 2 aggregates the results of
the individual nearest neighbors and returns a single list of neighbors that are closest to all
source nodes simultaneously. The choice of aggregation method includes nearest, mean, and
majority. Nearest aggregation concatenates the nearest neighbors for all source nodes, sorts
them based on distance, and returns the closest k unique neighbors. Mean aggregation takes
an average of the distances for a particular node if it appears as a neighbor to multiple source
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nodes. Majority aggregation sorts the neighbors based on how many times they appear in the
top k most similar nodes for the source nodes. The variable k is user-specified. A user can
conduct a similar analysis to that in Figure 4 to determine a reasonable value for k for their
user case. The value for k is capped at k = 4 for our graph since higher values of k tend to
clutter the visualization and hinder readability.

4.3.3. Similarity Tool Evaluation and Results

We evaluate the biomedical graph with a cross-validation and by measuring sensitivity on a
held-out set of drug candidate hypotheses from DrugBank. We consider several well-known
medical conditions to minimize the effects of noise on the results. The medical conditions we
test are: ADHD, Depression, Diabetes, Pulmonary Embolism, Hepatitis B, Heart Attack, and
High blood pressure.

Cross Validation on the Biomedical Graph We ran a cross validation on our biomed-
ical graph by taking a set of all nodes 1-hop away from the condition, split the data into n = 5

folds (this is equivalent to a 80% train 20% test split of the data), remove all direct edges be-
tween the medical condition and drug used for treatment in the test set, generate embeddings
for each of the training splits, and evaluate each fold’s STransE embeddings on the respective
test set. The results are summarised in Table 3.

DrugBank We use DrugBank as a test set for evaluating our graph. We measure how
well our biomedical subgraph can recover drug candidates listed on DrugBank but not yet
present in our biomedical graph as treatment for a chosen set of medical conditions. If the
drugs are in Wikidata and DrugBank and have either a “medical condition treated P2175” or
“drug used for treatment P2176” edge between Disease and Drug instances in our graph, it is
in the train set. If the drugs are in Wikidata and DrugBank and do not have either a “medical
condition treated P2175” or “drug used for treatment P2176” edge between condition and
drug in our graph, it is in the test set. We take the train and test sets and measure how well
our embeddings are. The results are summarised in Table 4.

Table 3. Cross validation to recover known drugs used for treatment
of ADHD using only Wikidata as ground truth. We see that our embed-
dings are able to recover drugs used for treatment of ADHD according
to Wikidata. The low mean accuracy (0.13) can be attributed in part
to small sample sizes; each fold’s embeddings do not vary significantly
from the others as the number of removed edges for each fold is small
compared to the overall number of connections in the graph, thus we
do not expect performance to vary drastically across runs as the CV
graphs are highly similar and folds are not well de-correlated.

Condition n k Mean acc. Median acc. Min acc. Max acc.

ADHD 18 5 0.13 0.00 0.00 0.33
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Table 4. Sensitivity results on held-out DrugBank set. We include the highest
sensitivity results for each condition using the STransE embedding type, nearest
aggregation method, and L2 distance metric, which achieved the highest sensi-
tivity. Many low-sensitivity results had either very few training examples or very
few targets, indicating that our test method is susceptible to noise due to insuf-
ficient data. With more samples, we expect sensitivity to increase based on the
following results.

Condition Sensitivity n

ADHD 0.33 3
Depression 0.38 21
Diabetes 0.58 33
Heart Attack 0.06 17
Hypertension 0.22 9
Pulmonary Embolism 0.00 4

5. Discussion

5.1. Validation

One main challenge to robust validation is the small set of known drugs used for treatment
of medical conditions (for example, our validation set size for ADHD is only n = 18); despite
this, we are able to successfully recover known drugs used for treatment from both Wikidata
and DrugBank data using the embeddings generated from our biomedical knowledge graph.
Identifying drugs used for treating medical conditions is a difficult and open problem, and the
results discussed in this paper show some success using our approach.

Though our validation methods (recovering known repurposed drugs) were motivated by
methods used in prior work38,36, larger scale validation is a natural extension of this research.
Future work can leverage repurposed drug databases such as repoDB to validate a larger set
of conditions than those presented in this paper30.

5.2. Biomedical Graph Construction

Because Wikidata has millions of nodes, it is likely that we did not include all relevant biomed-
ical concepts. We manually chose gene, protein, drug, disease, and symptom as the core con-
cepts, and then explored several examples of each concept to look at the surrounding node
types which we called peripheral concepts. While we believe we captured the majority of
biomedical concept nodes related to our application, we do not provide a quantitative anal-
ysis of concept coverage and retrieval rates from Wikidata. Similarly, we aimed to capture
all the properties that describe how both the core and peripheral concepts are related. We
were able to capture the properties through exploring many example nodes, but there are per-
haps missing relationships that could be informative in our knowledge graph. Finally, not all
property-value pairs are correctly stated in Wikidata. For instance, type-2 diabetes contains
“healthy diet” listed under “drug used for treatment”. Therefore, we classify “healthy diet” as
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a drug. This would require extensive testing to fix this manually for each relationship, so our
application will simply display information from Wikidata exactly as is, including any flaws
that exist in its underlying structure.

5.3. Features and User Interface

As we created a non-programmatic interface to aid users in drug discovery tasks, we necessarily
lose the precision and flexibility of programmatic interfaces. In designing features, we had to
constantly evaluate the balance between more precise user control over features, and the
simplicity and clarity of the website. In our user surveys, many respondents, when performing
drug discovery related tasks, asked for more features, such as the ability to export data
and interoperability with other systems. For the Subgraph Tool, users asked for ways to
block certain relationships in the graph and explore different links in a dynamic way. For the
Similarity Tool, users expressed a desire for greater interpretability of the results. Finding
the appropriate balance between abstracting away algorithmic details and giving the user
sufficient information to make inferences from the displayed results is a design challenge that
merits further research.

6. Conclusion

We built an intuitive, freely available, and effective toolkit for recovering plausible drug can-
didates. The survey results and validation discussed above indicate that our knowledge graph,
subgraph tool, similarity tool, and web interface jointly make substantial progress towards our
goal. Several areas merit further research: User interface; embeddings and nearest neighbor
sensitivity; comprehensiveness of the graph; embedding pipeline automation. We hope that
further progress on these fronts will provide further evidence that computational methods are
central to efficient de novo drug development and repurposing.

7. Code Availability

All code related to this project is available at https://github.com/ashtonteng/

biomedical-graph-visualizer
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9. Appendix

9.1. User Interface

The website we produced contains the visualizations for our subgraph tool and similarity
tool. We used D3.js6, a comprehensive Javascript framework for interactive and dynamic
visualizations. Images of the pages can be seen in Figures 5, 6, and 7. Our application can be
viewed at https://biomedical-graph-visualizer.wl.r.appspot.com.

9.1.1. Front-end Development

The display of the website was created using HTML5, CSS5, and ES6 Javascript. For styling,
we used Bootstrap to structure our display. For the subgraph tool, we implemented the D3
force-directed graph, an interactive network widget that allowed us to display the concepts
and properties that bind them in a beautiful manner. We were able to specify node color based
on node domain and node size based on the output from PageRank1. For the similarity tool,
we used the D3 scatterplot. We were able to customize point color by index of listed target
nodes, and zoom in and out by changing the axis range.

Results from both tools were stored in a dynamic table. We used the publicly available
Table Sortable jQuery plugin41. This table allowed us to filter results through a search bar at
the top and paginate results to display the information in a concise manner.

9.1.2. Back-end Development

We served our templates using Flask42, a lightweight Web Server Gateway Interface (WSGI).
The Flask server is responsible for serving the HTML, CSS, Javascript, and image files to the
user on request.

Additionally, we hosted the web application using Google Cloud Platform. Specifically,
we used Google App Engine to run the flask server which dynamically generates a publicly
accessible Uniform Resource Locator (URL) to access the application. The virtual machine
that is hosting the application is free to use.
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Figure 5. Display of the Home Page for the Biomedical Graph Visualizer tool and tutorial on how
to navigate the webpage. The user will see the Bootstrap navigation bar at the top, with each link
directing you as follows: (1) Home Page - a portal to all other links and assets used by the tool,
including references and how to cite; (2) Home Page; (3) Subgraph Tool - used to visualize subgraphs
around biomedical concepts; (4) Similarity Tool - used to visualize similar concepts on a scatterplot;
(5) Github Repo - used to inspect and fork the open source code for this project; (6) Wikidata -
source of all data used in this project.
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Figure 6. Display of the Subgraph Tool page and tutorial on how to use it. (1) Starting node input
form - enter a specific entity here; (2) Mode select - Mode 1 will generate a graph around the concept
in (1) to nodes of a given type specified in (3), whereas Mode 2 will generate the shortest path
from the entity specified in (1) to the specific entity entered in (3); (3) Ending node input form -
takes either a concept type for Mode 1 or specific entity for Mode 2; (4) The depth of the subgraph
generated when using Mode 1; (5) D3 force directed graph visualization which will populate a graph
according to the parameters specified above when the search button is clicked. Color of each node
represents the concept type, whereas the size is proportional to the page rank weight; (6) Table with
search bar and pagination, containing an entry for every node rendered in the graph, which will be
populated when the search button is clicked.
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Figure 7. Display of the Similarity Tool page and tutorial on how to use it. (1) Source node form
- enter a specific concept here using the autocomplete functionality and click Add Source Node.
Repeat this process for each concept to add to the plot, but make sure that the concept types are
the same (the colored name that appears in the autocomplete dropdown); (2) Mode selection - Mode
1 computes an individualized KNN on each specified source node and combines the results together
(in parallel), whereas Mode 2 will do the same as Mode 1 except the distance is averaged across all
specified source nodes; (3) Number of results k; (4) D3 scatterplot visualization which is populated
based on the parameters specified above when the search button is clicked. Each source node is
assigned a unique color, and the bold intensity points represent the source nodes themselves. In this
figure, remdesiver was assigned turqoise whereas hydroxychloroquine was assigned purple - this can be
checked by hovering over the point with the cursor. With Mode 1, since a KNN is run for each source
node, there will be different classes of points corresponding to each source. In this case, we have two
classes, remdesivir and hydroxychloroquine, with turoquoise corresponding to remdesivir and purple
corresponding to hydroxychloroquine; (5) Table with search bar and pagination containing an entry
for each point on the scatterplot, populated when the search button is clicked. Results are displayed
by decreasing distance from the source nodes, indicating that Baricitinib and Favipiravir are similar
drug candidates to remdesivir and hydroxychloroquine (Candidate drugs to treat COVID-19).
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