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Abstract 10 

The process of crop breeding over the last century has delivered new varieties with increased 11 

genetic gains, resulting in higher crop performance and yield. However in many cases, the 12 

underlying alleles and genomic regions that have underpinned this success remain unknown. This 13 

is due, in part, to the difficulty in generating sufficient phenotypic data on large numbers of 14 

historical varieties to allow such analyses to be undertaken. Here we demonstrate the ability to 15 

circumvent such bottlenecks by identifying genomic regions selected over 100 years of crop 16 

breeding using the age of a variety as a surrogate for yield. Using ‘environmental genome-wide 17 

association scans’ (EnvGWAS) on variety age in two of the world’s most important crops, wheat 18 

and barley, we found strong signals of selection across the genomes of our target crops. 19 

EnvGWAS identified 16 genomic regions in barley and 10 in wheat with contrasting patterns 20 

between spring and winter types of the two crops. To further examine changes in genome structure 21 

in wheat and barley over the past century, we used the same genotypic data to derive eigenvectors 22 

for deployment in EigenGWAS. This resulted in the detection of seven major chromosomal 23 

introgressions that contributed to adaptation in wheat. The deployment of both EigenGWAS and 24 

EnvGWAS based on variety age avoids costly phenotyping and will facilitate the identification of 25 

genomic tracts that have been under selection during plant breeding in underutilized historical 26 

cultivar collections. Our results not only demonstrate the potential of using historical cultivar 27 

collections coupled with genomic data to identify chromosomal  regions that have been under 28 
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selection but to also guide future plant breeding strategies to maximise the rate of genetic gain and 29 

adaptation in crop improvement programs.  30 

Significance Statement 31 

100 years of plant breeding have greatly improved crop adaptation, resilience, and productivity. 32 

Generating the trait data required for these studies is prohibitively expensive and can be 33 

impossible on large historical traits. This study reports using variety age and eigenvectors of the 34 

genomic relationship matrix as surrogate traits in GWAS to locate the genomic regions that have 35 

undergone selection during varietal development in wheat and barley. In several cases these were 36 

confirmed as associated with yield and other selected traits. The success and the simplicity of the 37 

approach means it can easily be extended to other crops with a recent recorded history of plant 38 

breeding and available genomic resources. 39 

Introduction 40 

In the last century, significant improvements in yield and quality have been reported in 41 

almost all crop species as a result of plant breeding driven by market demand (1). However, the 42 

growing demand for food, feed and fibre to meet the expanding global human population requires 43 

an acceleration in the pace of crop genetic improvement (2). Identification of the genetic loci 44 

responsible for these changes will help accelerate the genetic gains required to meet future food 45 

security needs, via their incorporation in marker assisted selection breeding strategies (3). Over 46 

the last decade, genome wide association studies (GWAS) has become a prominent method for 47 

genetic analysis in plants (4). In crops, GWAS require trait data on large collections of varieties or 48 

accessions, which is typically expensive to collect and can therefore result in underpowered 49 

studies with relatively low numbers of lines (5, 6). An alternative is to exploit the availability of 50 

historical data, such as that collected during varietal development programmes. 51 

For almost every major crop, yield is the most important breeding target. Breeding 52 

programmes invest large amounts of resources into realising the incremental genetic gains in yield 53 

that are required for continual varietal improvement. Accordingly, the process of developing new 54 

crop varieties involves rigorous screening in large multi-location and multi-environmental trials over 55 
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several years. Large historical phenotypic data sets from such trials have been successfully 56 

employed for GWAS in the past (7), and in several cases have identified the functional genes 57 

underlying the genetic control of the investigated traits (8–11).  However, the availability of seed for 58 

variety collections with appropriate trait data is not common for many crops. Alternatively, seed of 59 

historical varieties may be available, but the associated trait data may be lost or disjointed. In both 60 

cases, the cost of collecting de novo trait data can be prohibitive.  In many cases however, the 61 

release date, subsequently termed here ‘age’, of varieties is known. Given that in most crops, the 62 

breeding process has improved the genetic potential of key agronomic traits over time, variety age 63 

can be used as a surrogate measure of merit and mapped in GWAS. This approach, in which 64 

environmental or non-genetic variables are treated as traits in GWAS to map loci associated with 65 

those variables, has been termed  EnvGWAS (12). For many crops, the predominant genetic 66 

change over time has been to increase yield (e.g.(13)), and the age of a variety may function 67 

directly as a surrogate for yield, although loci detected may also be associated with other temporal 68 

changes. EnvGWAS on variety age can also be regarded as a simple genome-wide test for genetic 69 

loci under directional selection, which may be subsequently associated with traits. This approach 70 

may also provide a way of identifying alleles associated with adaptation (14) which otherwise have 71 

been difficult to detect. Finally, EnvGWAS can be a cost effective strategy since it can access large 72 

pre-existing datasets but is not dependent on historical or de novo trait data.  73 

A related approach requiring no trait data is EigenGWAS (15). Using genotypic data alone, 74 

the singular value decomposition of the genomic relationship matrix provides loadings 75 

(eigenvectors) for each variety on each eigenvalue of the matrix. For the largest eigenvalues, these 76 

loadings are then treated as independent traits for GWAS. Significant associations with any 77 

particular component highlight genomic regions or markers of greatest importance for that 78 

eigenvalue, and therefore the potential major drivers of population structure. Subsequent study of 79 

varieties differing in these regions may also be interpretable in terms of drivers of adaptation. 80 

EigenGWAS and EnvGWAS have recently been used to study diversity among maize landraces 81 

and identify lines and traits suitable for downstream analysis without large scale phenotyping (12). 82 
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In this study, we demonstrate for the first time the utility of treating variety age as a 83 

surrogate trait for crop productivity when combined with EnvGWAS and EigenGWAS to identify 84 

target regions and quantitative trait loci (QTL) underpinning genetic improvements in crop 85 

performance that have occurred during modern plant breeding. This is a powerful but cost effective 86 

method that does not require extensive trait data or complex software.  We demonstrate the utility 87 

of these complementary approaches by: i) using EnvGWAS on variety age to identify loci 88 

responsible for genetic improvement in four complimentary datasets of modern winter and spring 89 

types of wheat (Triticum aestivum) and barley (Hordeum vulgare) from the United Kingdom (UK) 90 

and Brazil. ii) Validating the results from (i) by GWAS on subsets of these varieties for which 91 

historic yield data were also available. iii) Evaluating the temporal changes of allelic state at the loci 92 

identified. iv) Performing EigenGWAS on the same four datasets. EigenGWAS compliments 93 

EnvGWAS in that it too does not required trait data and may also identify genomic regions that 94 

have undergone selection. However, unlike EnvGWAS, it does not explicitly search for regions 95 

associated with variety age and is more likely to detect features associated with local adaptation, 96 

which may change little in frequency over time.  As far as we are aware, no EnvGWAS analysis 97 

has been published in plants for which variety age has been used as a trait. The combination of 98 

EnvGWAS with EigenGWAS used here provides insights into the recent breeding history and 99 

population structure of two of the world’s most important crops, and highlights the effectiveness 100 

and simplicity of these approaches to study recent selection history without the requirement for 101 

phenotype data. 102 

Results 103 

Year of variety release as a surrogate measure for yield 104 

The Pearson correlations between historical yield data and age of variety were calculated for the 105 

subsets of 192 UK wheat and 197 UK barley varieties for which historical yield data were available 106 

(SI Appendix, Fig. S1).  High correlations between yield and year of release (range 0.896 – 0.974) 107 

were found in both UK data sets.  This confirms year of release could be used as a good measure 108 

of genetic progress in UK wheat and barley yield potential. No historical yield data for the Brazilian 109 

wheat panel were available. 110 
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EnvGWAS for variety age 111 

EnvGWAS wheat. Using variety age for EnvGWAS in the UK winter wheat panel (n=404) identified 112 

thirteen significant (-log10 (p) >4.0) genomic regions, of which four loci were found to be highly 113 

significant (-log10 (p) >6.0), located on chromosomes 1A, 2A, 2D and 6A (Fig. 1A, Table 1, SI 114 

Appendix, Table S1). For Brazilian spring wheat (n=355), three significant genetic loci were 115 

detected, two on chromosome 2B (251 cM, 318 cM) and one on 5A (710 cM), none of which were 116 

identified in the UK winter wheat panel (Fig. 1B, Table 1, SI Appendix, Table S1). 117 

EnvGWAS Barley. We identified three highly significant genetic loci in the winter barley panel 118 

(n=297), and seven in the spring barley panel (n=406) (Table 1; Fig. 1C-D); a summary of the 119 

associated markers is listed in SI Appendix, Table S2. Two significant loci were identified in both 120 

barley panels (chromosome 3H, ~68-70 cM; 5H, ~20 cM) (Fig. 1 and Table S2). Subsequently, 121 

EnvGWAS was performed on the combined winter and spring panels (n=704), identifying the same 122 

four significant loci we identified in the spring panel alone (SI Appendix, Fig. S2A, Table S2 and 123 

Table 1). We repeated the analysis using seasonal growth habit (‘spring’ or ‘winter’ types) as a 124 

covariate, without any major changes in results (SI Appendix, Fig. S2B). In addition, we 125 

performed GWAS on seasonal growth habit itself, identifying three major genetic loci on the long 126 

arms of chromosomes 1H, 4H and 5H (SI Appendix, Fig. S2C), corresponding to major flowering 127 

time and vernalization genes known to be the major determinants of winter and spring seasonal 128 

growth type (PPD-H2 on chromosome 1H, VRN-H2 on 4H and VRN-H1 on 5H) (16, 17). 129 

EnvGWAS for variety age was then repeated with these QTL as covariates (SI Appendix, Fig. 130 

S2D).  The most significant results mainly on chromosome 5H from the analyses with and without 131 

covariates changed little. However, the magnitude of other significant peaks differed, such as the 132 

locus on chromosome 1H. 133 

Validation of EnvGWAS based on trait analysis and a multi-founder experimental population 134 

To validate the EnvGWAS analyses, we performed GWAS on the subset of 192 UK winter wheat 135 

varieties for which historical yield data were available together with EnvGWAS on variety age for 136 

direct comparison of the results. In this subset, we found that GWAS for yield identified the same 137 

genomic region on chromosome 1A (Fig. S3A) as was detected by EnvGWAS for variety age (SI 138 
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Appendix, Fig. S3, Table S1).  This is the same region that we identified in EnvGWAS for variety 139 

age in the complete set of 404 UK wheat varieties. Interestingly, while the chromosome 5A QTL 140 

was detected with low-significance (-log10 (p) = 4.45) by GWAS on yield, it was not identified using 141 

EnvGWAS on variety age. In addition, EnvGWAS analysis of variety life-span also detected a locus 142 

on chromosome 1B that was not detected in any other of our analyses. 143 

Similarly, EnvGWAS on variety age and GWAS on yield was repeated using the subset of 197 144 

winter and spring barley varieties for which historic yield data was available, detecting highly 145 

significant hits (-log10 (p) > 4.0) on chromosome 5H for variety age, variety life-span and yield, 146 

using seasonal growth habit as a covariate (SI Appendix, Fig. S4, Table S2). Although not 147 

identified in the larger panel of 703 varieties, analysis of our subset of 197 lines consistently 148 

identified a highly significant genetic locus on the short arm of chromosome 3H for variety age, 149 

variety life-span and yield. An additional peak was detected with EnvGWAS for variety life-span on 150 

the long arm of chromosome 2H.  151 

To further validate our EnvGWAS findings, we analysed data from a 16 founder wheat multiparent 152 

advanced generation inter cross (MAGIC) population consisting of 550 recombinant inbred lines 153 

generated by inter-crossing 16 wheat varieties released between 1935 to 2004 (18). We found that 154 

the four major genomic regions previously identified by EnvGWAS of variety age on chromosomes 155 

1A, 2A, 2D and 6A were also significant in the MAGIC population for several yield and grain related 156 

traits, height, and yellow-rust resistance (Table 2). Further details of the 213 agronomic and 157 

disease resistance traits analysed and the corresponding significance levels are listed in (SI 158 

Appendix, Table S3).  159 

Allele-shift over time 160 

To illustrate the changes in allele frequency present in our variety collections over time, we 161 

generated rocket plots (SI Appendix, Fig. S5–S8) for the major genomic regions identified by 162 

EnvGWAS on variety age (SI Appendix, Table S4-S7). Different patterns and intensity of selection 163 

were evident across chromosomal regions over time. For wheat, these fell into three broad 164 

classes: (1) Late introduction of ‘modern’ alleles followed by a rapid increase in frequency (SI 165 

Appendix, Fig. S5A), (2) retention of both ‘modern’ and ‘old’ alleles at similar frequency across 166 
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time (e.g. SI Appendix S5E), (3) relatively early introduction of the ‘modern’ allele, followed by its 167 

retention at low frequency (e.g. SI Appendix S5F). Details of the alleles-shifts examples are 168 

provided in the Supplementary Notes. In barley, the rocket plots illustrated both gradual and rapid 169 

shifts in allele frequency at the genomic regions identified by EnvGWAS on variety age (SI 170 

Appendix, Fig. S5I-N). For example, for the UK spring barley genetic locus on chromosome 7H 171 

(~8.8 Mbp), only one allele was present until 1992 (SI Appendix, Fig. S5N and Table S6), after 172 

which the ‘modern’ allele remained at low frequency, even among modern varieties. A genomic 173 

region on chromosome 5H which was identified separately in winter and spring barley displays a 174 

pattern where the ‘modern’ allele is introduced in 1986, after which both alleles are found at 175 

intermediate frequencies among the most recent varieties in winter barleys. However, modern 176 

spring barleys were predominantly of ‘modern’ allele type.  177 

EigenGWAS scans 178 

While EnvGWAS allowed us to use variety age to investigate the genomic regions underlying QTL 179 

for yield and adaptation, we hypothesised that the complementary method, EigenGWAS, would 180 

allow us to detect changes in larger scale structural variants in our target crop genomes over time.  181 

After determining the first ten PCs in each of our UK and Brazilian wheat populations (SI 182 

Appendix, Table S8), EigenGWAS detected numerous significant hits (N=11567 SNPs with -log10 183 

(p) >4.0) (Fig. 2 & SI Appendix, Table S9). Seven genetic loci distributed on chromosomes 1A, 184 

1B, 2B, 5B, 6A and 6B were found to be significant with multiple PCs, as well as within the 185 

Brazilian (spring) and UK (winter) panels (Fig. 2). These loci corresponded to major chromosomal 186 

introgressions from related cereal species into wheat (SI Appendix, Table S9). For instance, the 187 

1B locus co-locates with the chromosome 1B/1R introgression from rye (Secale cereale), which is 188 

known to regulate multiple traits including disease resistance and yield (19, 20). We identified an 189 

additional seventeen putative introgressions that were supported by a recent introgression survey 190 

by (21), along with another 58 novel putative introgressions (SI Appendix, Table S9). Among 191 

these novel putative introgressions were regions on chromosome 5A, depicted in Fig. 2 as 5A_2 192 

and 5A_3, which displayed amongst the most significant hits across the UK and Brazilian wheat 193 

data sets and multiple PCs. Interestingly, two highly significant genomic regions (1A_2 and 5A_5) 194 
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identified by EigenGWAS on PC2 in winter wheat were also detected by GWAS on yield in the 195 

validation data set (SI Appendix, Table S13). In addition, three genomic regions (5B_2, 6A_1 and 196 

7B_1) identified in the winter wheat EigenGWAS analysis were also detected in EnvGWAS on 197 

variety age, suggesting both approaches are not exclusively identifying different genomic regions 198 

(SI Appendix, Table S13).  199 

In contrast to wheat, EigenGWAS in the winter and spring barley varieties did not detect any major 200 

loci with highly significant peaks across multiple PCs (Fig. 3 and SI Appendix. PCs variation in 201 

Table S8 & results in Table S11). Although two genomic regions in winter (1H_3 and 4H_3) and 202 

three in spring barleys (2H_3, 3H_1 and 7H_1) were identified in at least three PCs. Nevertheless, 203 

peaks were also identified close to the locations of known genes controlling flowering time and 204 

height (SI Appendix. Table S11), e.g. the PC5 hit on chromosome 3H ~632 Mbp (explaining 205 

2.46% of the variation) is near the semi-dwarfing gene sdw1 in spring barley. Interestingly, one of 206 

the most significant hits in the spring barley panel (3H_1, identified using PC1 and explaining 207 

6.91% of the variation) was also detected using EnvGWAS on variety age and by GWAS on yield 208 

(SI Appendix. Table S14). Given the location of this hit in a highly recombinogenic region of the 209 

barley genome, and that it was detected only in the spring barley panel, this may indicate a major 210 

locus under selection specific to spring barley breeding. No strong peak in winter barley was found 211 

for PC1, with the most significant peak obtained using PC6.  As UK elite winter barley is more 212 

genetically diverse than UK elite spring barley, these results indicate that UK elite winter barley 213 

may be subjected to weaker selection pressures.  Interestingly, hits on genomic regions (5H_2 and 214 

7H_1) from the spring barley EigenGWAS analysis were also identified in GWAS analysis of 215 

seasonal growth-habit and variety age, highlighting the importance of these loci under selection (SI 216 

Appendix. Table 14). 217 

Discussion 218 

We demonstrate that use of variety age for EnvGWAS can detect regions of crop genomes 219 

under selection during breeding. In addition, we show variety age is a good proxy for yield, with the 220 

genetic loci identified for wheat validated in an independent experimental multi-founder population 221 

(18). Lastly, we showed that the genetic loci detected by EnvGWAS showed gradual, as well as 222 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.27.400333doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.400333
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

sharp, shifts in allele-frequency over time, indicating subtle changes at these loci by breeders, 223 

which are less discernible to detection using approaches such as partitioning the populations on 224 

age and searching for differences based on Fst. 225 

It is perhaps not surprising that selection of loci varies between the UK winter and Brazilian spring 226 

wheat, given that the target agricultural environments and growth types are very different.  Wheat 227 

yields in both Brazil and the UK have improved greatly over the years (13, 22). Our contrasting 228 

results in wheat indicate that different sets of genes have been selected over the years, and are 229 

likely involved in both yield component and local adaptation traits. Future efforts will shed more 230 

lights on the types of genes underpinning these loci, allowing changes in allelic diversity over the 231 

years to be investigated. 232 

Our results for UK barley contrast with those for UK wheat. Firstly, more hits were associated with 233 

variety age in spring compared to winter barley, and secondly an identical peak on chromosome 234 

5H (at ~19cM, ~7.5 Mbp) was identified in both panels (as well as in the combined spring and 235 

winter analysis). This is surprising as breeders rarely cross spring and winter barley, and since the 236 

breeding targets in the two pools differ (malting and largely animal feed, respectively). To further 237 

investigate this region, we tested the candidate SNPs against phenotypic data available from 238 

national trial data (SI Appendix, Table S10), finding it to be associated with several malting quality 239 

traits, powdery mildew resistance and yield in fungicide untreated trials. These findings suggest the 240 

potential importance of this region for breeding for disease resistance and end use quality. 241 

Interestingly this region on 5H houses a cluster of terpene synthases that have been implicated in 242 

fungal disease resistance in other species (23) and that potentially have been selected alongside 243 

direct targets such as Mla and mlo genes (24).   244 

The detection of significant hits with EnvGWAS provides an opportunity to explore their relationship 245 

with yield and other agronomically important traits. Some hits coincide with previously published 246 

QTL in wheat and barley, for example the highly significant loci on wheat chromosomes 1A and 6A 247 

(25–27). Our EnvGWAS hits on chromosomes 1A and 2A also overlapped with the reduced 248 

diversity peaks identified in the recent analysis of the UK wheat pedigree by (28). Specifically, the 249 
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2A locus may correspond to a stripe rust resistance gene described by (29), as the peak markers 250 

overlap. Interestingly a group of R genes Lr37-Yr17-Sr38 (30) which were important sources of 251 

resistance in the past also lie in this region and might be more plausible candidates, rising in 252 

frequency before their resistance broke down. Similarly the highly significant genetic locus on the 253 

short arm of barley chromosome 3H for variety age and yield found in the subset of 197 barley 254 

lines corresponds to the genomic region associated with the a malting quality trait, hot water 255 

extract, in UK spring barley that demonstrated a major change in allele frequency over the last 256 

thirty years (31). In addition, the region identified on chromosome 3H (~68cM) for variety age in 257 

winter barley in the larger dataset has been shown previously to be associated with yield 258 

component traits (grain length and grain area) in European winter barley (32).  259 

Similarly, in barley, the region identified on chromosome 2H (~65cM, ~621 Mbp) for variety life-260 

span has been shown previously to be associated with yield and yield component traits (32, 33) 261 

and may correspond to the OsBR1/D61 candidate genes reported previously that are associated 262 

with yield traits in barley (32, 33).  263 

This is interesting as old varieties, despite being less-productive than modern varieties, were under 264 

cultivation for longer periods. It may however be noted that with the introduction of modern 265 

breeding practices yield increases, but with drastic effects on variety life-span due to the more 266 

frequent introduction of new varieties that outperform contemporary varieties. In wheat, EnvGWAS 267 

on variety life-span also identified a hit on chromosome 1A that co-located with a hit for variety age. 268 

This further indicates a direct relationship between variety age and variety life-span in wheat and 269 

barley.    270 

Using EigenGWAS, we detected major introgressions in the wheat varietal panels investigated, 271 

with several of these found to be in common between the UK winter and Brazilian spring wheat 272 

panels, indicating their wide use in breeding. (18), analysing the 16 founder MAGIC population we 273 

used in our validation studies here, proposed a major role for multiple introgressions from wild 274 

species in UK wheat breeding to date. In contrast, EigenGWAS results in barley provide no 275 

evidence of a similar pattern of introgressions in either the winter or spring panels. Wheat and 276 

barley breeding differ in their exploitation of genetic resources. In wheat, several alien-277 
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introgressions from related species are known to have occurred (34). While wheat is an 278 

allohexaploid and can support large tracts of non-recombining alien chromosome, this may not be 279 

the case in diploid barley. However, examples of introgressions in barley from landraces and 280 

spontaneous mutant lines for agronomically important genes have been reported, such as the 281 

semi-dwarfing allele sdw1d from the variety Diamant and the disease resistance gene mlo11 from 282 

Ethiopian landraces (24, 35).  283 

Interestingly, within the genomic region of 6A_1, detected by EigenGWAS in wheat (a non-284 

recombining peri-centromeric region) lies the gene TaGW2 (36) which influences grain-weight and 285 

protein content traits that further suggest that the present approach is very effective in discovering 286 

genomic regions undergoing selection for yield. Another interesting finding is that the semi-287 

dwarfing Rht2 gene in wheat (chromosome 2D) was not detected despite its importance in the 288 

breeding history of the crop. This could be due to population structure control of the analyses. In 289 

the case of Rht2, it is noteworthy that GWAS on a panel of French, German and UK lines failed to 290 

detect an effect on yield or height unless a locus specific marker was used (37, 38), suggesting 291 

weak LD and low marker coverage on the 4D chromosome as the cause of failure here too. 292 

Conclusion  293 

Breeding has resulted in considerable and sustained genetic improvement of wheat and barley in 294 

recent decades, and our results identify at least some of the major loci that have contributed, and 295 

are still contributing, to these improvements. Using EnvGWAS, we demonstrate the utility of 296 

analysing variety age as a surrogate for traits selected by breeders to detect the genetic loci under 297 

selection over time, and to assess the temporal changes in their respective allele frequencies. For 298 

UK cereals, trends over time suggest that these loci are likely QTL for yield or yield components. 299 

While the resolution of this study in the non-recombining peri-centromeric region is insufficient to 300 

definitively associate known QTLs with the loci we have found, several such QTLs were found. 301 

EigenGWAS on the same data proved a simple method of detecting contrasting features of 302 

genome organisation in wheat and barley, and in some cases these too could be related to traits. 303 

We advocate the use of variety age as a surrogate trait, and the use of EnvGWAS and 304 

EigenGWAS to identify the genetic loci under selection that have underpinned the productivity 305 
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gains made via breeding.  These extensions to GWAS that exploit historical datasets are useful 306 

additions to the analysis toolbox of crop quantitative genetics. 307 

Materials and methods 308 

Germplasm, age and trait data. 309 

For both wheat and barley, we selected two panels of varieties representing national list entries 310 

and some older varieties from  the UK (404 winter wheat; 297 winter and 406 spring barleys) and 311 

Brazil (355 spring wheat) (Table S12). The Brazilian spring wheat panel included entries released 312 

between 1922 to 2013. Year of varietal release and trait data were obtained from (39). The UK 313 

wheat panel consists of winter wheat varieties that were either registered or in use from 1916 to 314 

2010. The winter and spring barley panels consisted of varieties grown in the UK from 1960 to 315 

2016.  Only two-rowed spike morphology types were included and all hybrid varieties were 316 

excluded. Variety age for UK germplasm was determined from the year of entry into national list 317 

trials or from the first reported year of trial data  and was manually checked across different local 318 

data and published sources ((13); https://ahdb.org.uk/rl  & 319 

https://www.gov.uk/government/publications/plant-varieties-and-seeds-gazette-2020 320 

https://www.niab.com/services/seed-certification/botanical-descriptions-varieties) with unresolvable 321 

ambiguities removed, reducing the UK wheat panel from 450 to 404 varieties. Following (13), only 322 

varieties with either three years trials data or equivalently which were known to be successful in 323 

national list trials were included in the dataset. In addition to variety age, we computed life-span of 324 

UK varieties as the difference between the last and first year in national trials plus one. This is 325 

usually equally to the total number of years each variety remained in trial, though with some rare 326 

breaks in the testing sequence over years.  Grain yield data for the UK wheat and barley panels 327 

were sourced from (13). 328 

Genotyping 329 

Genotypic data were sourced from NIAB (https://www.niab.com/research/agricultural-crop-re-330 

search/resources) and JHI (http://www.barleyhub.org/projects/impromalt/) by permission through 331 

WAGTAIL and IMPROMALT projects. 332 
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For wheat, 14654 SNPs derived from genotyping with the 90K Illumina iSelect SNP array (Wang et 333 

al. 2014) generated within the Biotechnology and Biological Sciences Research Council grant 334 

BB/J002542/1 were sourced with permission from NIAB, and available at 335 

https://www.niab.com/research/agricultural-crop-research/resources. For barley, 43799 SNPs 336 

genotyped using the 50K Illumina iSelect array (40) were sourced from (31). Genetic maps for 337 

wheat (41) and barley (31, 40) were previously described. The physical map locations of wheat 338 

and barley SNPs were retrieved from (42) and (40), respectively. SNPs with a minor allele 339 

frequency <5%, missing values <10% and heterozygosity >10% were removed, leaving 12656 340 

wheat SNPs and 25562 barley SNPs for downstream analyses.  341 

EnvGWAS and EigenGWAS analysis 342 

EnvGWAS and EigenGWAS analyses were performed using the R-package GWASpoly (43) 343 

implemented in R version 3.5.2 (http://www.R-project.org/). To determine the population structure 344 

of the panels, principal component analysis (PCA) was performed using the R-package SNPRelate 345 

(44). The first ten principal components associated with the largest eigenvalues were used for 346 

EigenGWAS.  Population structure and kinship effects were controlled by inclusion of a mixed 347 

model of a canonical relationship (kinship) matrix (45), generated from a subset of SNPs (741 for 348 

wheat and 2500 for barley) pruned based on genetic positions. For ease of comparison across 349 

GWAS scans, the threshold for significance was set to –log10(p-value)= 4.0 which in several GWAS 350 

scans was above the threshold obtained using false discovery rate 351 

(http://www.strimmerlab.org/software/fdrtool/index.html). Manhattan plots and circular plots were 352 

generated using R-packages qqman (46) and CMplot (47), respectively. 353 

MAGIC wheat analysis 354 

The significant SNPs from the wheat EnvGWAS were used for validation against agronomic traits 355 

identified in the ‘NIAB Diverse MAGIC’ population (18). Analysis was performed in R using 356 

adjustments for the funnel structure of the cross (48). All data used were obtained from the 357 

following websites that hosts the genotyping and phenotyping data of the 550 MAGIC-diverse RILs 358 

http://mtweb.cs.ucl.ac.uk/mus/www/MAGICdiverse/index.html.   359 
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Data availability 360 

Genotypic data sets of the study are available from NIAB, UCL and JHI via following websites: 361 

https://www.niab.com/research/agricultural-crop-research/resources 362 

http://mtweb.cs.ucl.ac.uk/mus/www/MAGICdiverse/index.html 363 

http://www.barleyhub.org/projects/impromalt/. 364 

Acknowledgments 365 

This project was part funded by projects IMPROMALT BB/K/0070251/1 and WAGTAIL 366 

BB/J002542/1, jointly funded by the BBSRC and UK wheat and barley breeders; and by direct 367 

funding of Rajiv Sharma from SRUC. We thank Mark Looseley and Hazel Bull (JHI), for sharing the 368 

genotypic data set of the barley varieties analysed here, as well as Chin Jian Yang, Ian Dawson 369 

and David Marshall (SRUC) for helpful discussion throughout the work. 370 

Figure Legends 371 

Fig. 1. Wheat EnvGWAS for variety age. Manhattan plots of the four panels are shown. On the x-372 

axis genetic positions are based on the consensus map (41) are displayed for (A) UK winter wheat 373 

and (B) Brazilian spring wheat panels; a pseudo-genetic map positions that relates to the physical 374 

positions (40) of the UK winter (C) and spring (D) barley panels are shown. On the y-axis 375 

− log10(p)-values are displayed. The red line indicates the threshold value of the significance 376 

corresponding to − log10(p) = 4. 377 

Fig. 2. Wheat EigenGWAS for the first ten principal components (PCs). Circular plots of the two 378 

wheat panels investigated are shown. Highly significant PCs are in the inner circle and the least 379 

significant outer circle are displayed. Genetic positions based on a consensus map (41) are 380 

displayed for (A) UK winter and (B) Brazilian spring wheat panels. Chromosomal introgressions 381 

significant across multiple PCs are highlighted (See SI Appendix, Table S9). 382 

Fig. 3. Barley EigenGWAS for the first ten principal components (PCs). Circular plots of the four 383 

panels are shown. Highly significant PCs are in the inner circle and the least significant outer circle 384 

are displayed. Pseudo-genetic map positions that relate to the physical positions (40) are displayed 385 

for (A) UK winter and (B) UK spring barley panels. Chromosomal introgressions significant across 386 

multiple PCs are highlighted (See SI Appendix, Table S11). 387 
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Supplementary Figures 506 

Fig S1. Linear trend in variety year of release and yield (t/ha). (A) UK wheat; (B) UK barley.  507 

Fig S2. UK barley Manhattan plots for EnvGWAS from combined winter and spring varieties 508 

(n=704). (A) Manhattan for the age from the analysed barley varieties; (B) analysis using seasonal 509 

growth-habit (winter and spring-type) as a covariate; (C); GWAS analysis of seasonal growth-habit; 510 

(D) GWAS analysis of seasonal growth habit with the four peaks identified in C as covariates.  511 

Fig S3. UK winter wheat Manhattan plots for EnvGWAS validation using a subset of 192 varieties. 512 

Manhattan plots are shown for: (A) the first year of variety in National trial; (B) the last year each 513 

variety is enlisted on the national list; (C) variety life-span, i.e. how long a variety is on the national 514 

list; (D) GWAS on yield. 515 
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Fig S4. UK barley Manhattan plots for EnvGWAS validation using a subset of 197 varieties. 516 

Manhattan plots are shown for: (A) the first year of variety in National trial; (B) the last year each 517 

variety is enlisted in the national list; (C) variety life-span, i.e. how long a variety is on the national 518 

list; (D) GWAS on yield. 519 

Fig S5. Rocket-plots displaying temporal changes in allele frequencies in wheat (UK-wheat: A-D & 520 

Brazilian-wheat: E-H) and barley panels (winter: I-J & spring: K-N). Also displayed wheat 521 

categories in parenthesis within the panel. 522 

Supplementary Tables 523 

 524 
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Table 1. Summary of the singificant hits detected by EnvGWAS on variety age. 

Details in SI Appendix, Table S1 & Table S2. 

Pop-name SNP-name Chrom Position (cM)Ref-allele Ref-Allele-Freq-log(p) Effects

Winter-Wheat wsnp_Ex_c572_11383391A 221.0 A 0.50 6.01 -7.61

Kukri_c18109_6821B 350.0 A 0.92 4.62 11.64

Excalibur_c15379_13052A 20.0 A 0.66 6.31 9.50

RFL_Contig4030_4932A 62.0 A 0.65 5.24 8.32

BS00071630_512A 87.0 A 0.66 6.18 9.26

IACX6178 2A 158.0 A 0.66 6.18 9.26

BS00022799_512D 33.0 A 0.66 6.31 9.50

BobWhite_rep_c60245_1075B 381.0 A 0.13 4.31 6.94

BS00021901_515D 180.0 T 0.85 5.04 9.58

BS00022120_516A 190.0 T 0.83 8.11 12.87

Kukri_c16404_1006B 322.0 A 0.06 4.06 10.33

Kukri_c67076_4797A 383.0 A 0.14 4.29 8.48

BobWhite_c42974_1847B 236.0 A 0.94 4.88 -12.92

Spring-Wheat Ku_c5725_892 2B 251.0 A 0.49 4.44 -7.35

RFL_Contig4849_7022B 318.0 T 0.76 4.20 -9.34

RAC875_c8642_2315A 710.0 A 0.08 4.51 -13.21

Winter-Barley JHI-Hv50k-2016-2003153H 68.7 A 0.29 4.74 -1.95

JHI-Hv50k-2016-2222333H 124.5 C 0.64 4.22 1.71

JHI-Hv50k-2016-2798495H 19.2 A 0.73 5.92 -1.87

Spring-Barley JHI-Hv50k-2016-370111H 51.0 A 0.41 4.08 -3.07

SCRI_RS_1486942H 0.0 A 0.42 5.17 -2.59

JHI-Hv50k-2016-1495443H 1.7 C 0.22 4.40 3.69

JHI-Hv50k-2016-2023323H 77.7 C 0.95 4.52 -4.42

JHI-Hv50k-2016-2803915H 20.5 C 0.12 4.90 3.38

12_30230 6H 53.1 A 0.88 5.22 4.45

JHI-Hv50k-2016-4442897H 7.8 A 0.93 5.40 5.37

Spring&Winter-barleyJHI-Hv50k-2016-585372H 0.0 C 0.74 4.17 -2.15

JHI-Hv50k-2016-712642H 20.3 C 0.92 5.74 -2.86

JHI-Hv50k-2016-1675173H 45.2 C 0.92 4.15 3.07

JHI-Hv50k-2016-2003653H 68.7 C 0.14 7.13 -4.41

JHI-Hv50k-2016-2239883H 126.6 C 0.80 4.29 3.64

JHI-Hv50k-2016-2799075H 19.2 C 0.82 7.67 -3.43

JHI-Hv50k-2016-3256185H 105.0 A 0.09 4.51 3.53

11_20546 5H 160.7 A 0.89 4.70 -2.94

JHI-Hv50k-2016-4396377H 3.8 C 0.05 5.56 -4.65
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Table 2: Collocation of  significant loci (-log(p)>3) in MAGIC with the three major winter wheat GWAS

 peaks. Collocation used 35K and 90K physical maps. 

Trait (MAGIC coding) Trait deciption Region

GLA_on_31_03_17_Year1 Grain Length and Area 1A

waxiness_leaf_score_Year1 Waxiness 1A

FL_length_x_width_Year1 Flag-leaf length 1A

Pigmentation_score_Year1 Pigmentation-score 1A

Height_FL_to_ear_base_Year1 Height 1A

Spikelets_paired_frequency_in_20_Year1 Spikelets-pair-freq 1A

Spring_type_Year1 Spring-type 1A

Yellow_rust_on_11_05_17_Year1 Yellow-rust 2A

GLA_on_20_04_17_Year1 Grain Length and Area 2A

Chlorosis_score_Year1 Chlorosis-score 2A

GS65_DAS_Year1 Heading 2A

FL_width_Year1 Flag-leaf width 2A

Yield_Year1 Yield 2A

GLA_on_07_03_17_Year1 Grain Length and Area 6A

waxiness_leaf_score_Year1 Waxiness 6A

FL_angle_Year1 Flag-leaf angle 6A

FL_length_Year1 Flag-leaf length 6A

FL_length_x_width_Year1 Flag leaf area 6A

FL_length_width_ratio_Year1 Flag leaf length/width ratio 6A

Height_to_FL_Year1 Height 6A

Height_to_ear_base_Year1 Height 6A

Height_to_ear_tip_Year1 Height 6A

Ear_length_Year1 Ear-length 6A

Height_FL_to_ear_base_Year1 Height 6A
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