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Abstract 

Despite significant progress in understanding neural coding, it 1 
remains unclear how the coordinated activity of large populations 2 
of neurons relates to what an observer actually perceives. Since 3 
neurophysiological differences must underlie differences among 4 
percepts, differentiation analysis—quantifying distinct patterns of 5 
neurophysiological activity—is an “inside out” approach that 6 
addresses this question. We used two-photon calcium imaging in 7 
mice to systematically survey stimulus-evoked neurophysiological 8 
differentiation in excitatory populations across 3 cortical layers 9 
(L2/3, L4, and L5) in each of 5 visual cortical areas (primary, 10 
lateral, anterolateral, posteromedial, and anteromedial) in 11 
response to naturalistic and phase-scrambled movie stimuli. We 12 
find that unscrambled stimuli evoke greater neurophysiological 13 
differentiation than scrambled stimuli specifically in L2/3 of the 14 
anterolateral and anteromedial areas, and that this effect is 15 
modulated by arousal state and locomotion. Contrariwise, 16 
decoding performance was far above chance and did not vary 17 
substantially across areas and layers. Differentiation also differed 18 
within the unscrambled stimulus set, suggesting that differentiation 19 
analysis may be used to probe the ethological relevance of 20 
individual stimuli.21 
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1 Introduction 22 

The visual system acts on incoming stimuli to extract meaningful features and guide behavior, a 23 
process that transforms physical input into conscious visual percepts. Since the early 24 
experiments of Hubel and Wiesel (1959), neuroscience has yielded considerable insight into the 25 
visual system by analyzing neural response properties to uncover which features cells are tuned 26 
to and how their activity relates to behavior. Modern decoding approaches have revealed 27 
stimulus information present in population responses (Quiroga & Panzeri, 2009). However, that 28 
a given population of neurons represents or encodes stimulus information does not imply that 29 
this information is used to generate conscious percepts in the subject (Brette, 2019). 30 
Consequently, despite the success of these “outside in” methods (Buzsáki, 2019) in 31 
understanding neural coding, it remains unclear how the coordinated activity of large 32 
populations of neurons relates to what the observer actually sees. 33 

Is there an objective and quantitative approach to analyzing neural responses that can shed 34 
light on this question? Differentiation analysis—measuring the extent to which a population of 35 
neurons expresses a rich and varied repertoire of states—has been proposed as one such 36 
approach (Boly et al., 2015; Mensen et al., 2017, 2018). Differentiation analysis exemplifies 37 
“inside out” methodology (Buzsáki, 2019) in that the spatiotemporal diversity of neural activity 38 
(neurophysiological differentiation or ND) is quantified without reference to the stimulus or other 39 
experimental variables imposed a priori by the investigator, in contrast to feature tuning or 40 
decoding analyses. Supporting this proposal, recent studies in humans have shown that the ND 41 
evoked by a stimulus is correlated with subjective reports of its "meaningfulness" and the 42 
“number of distinct experiences” it elicits (Mensen et al., 2017, 2018).  43 

A visual stimulus can be considered meaningful to the observer if it evokes rich and varied 44 
perceptual experiences (phenomenological differentiation). For example, an engaging movie is 45 
meaningful in this sense, as it evokes many distinct percepts with high-level structure; 46 
conversely, flickering ‘TV noise’ essentially evokes a single percept with no high-level structure 47 
to a human observer, even though, at the level of pixels, any two frames of noise are likely to be 48 
more different from each other than a pair of frames from a movie (stimulus differentiation). 49 
Since conscious percepts are generated by brain states, ND must underlie phenomenological 50 
differentiation. Thus one can expect to see correlations between ND and subjective perception 51 
of the “richness” or “meaningfulness” of stimuli, as has indeed been shown in human studies 52 
using fMRI and EEG (Boly et al., 2015; Mensen et al., 2017, 2018). 53 

Moreover, integrated information theory (IIT) posits a fundamental relationship between ND and 54 
subjective experience itself. This theoretical framework predicts that consciousness requires the 55 
joint presence of integration and differentiation: that is, a system is conscious if it is causally 56 
irreducible to its parts and possesses a rich dynamical repertoire of states (Tononi, 2004; 57 
Oizumi et al., 2014; Tononi et al., 2016). Theoretical work has demonstrated that ND can serve 58 
as a proxy for integrated information in highly recurrent systems where integration can be 59 
assumed, such as the brain (Marshall et al., 2016). Consistent with IIT’s predictions, several 60 
studies have employed differentiation analysis across a range of species and spatiotemporal 61 
scales to show that loss of ND is implicated in loss of consciousness (Casali et al., 2013; 62 
Hudetz et al., 2014; Barttfeld et al., 2015; Wenzel et al., 2019). 63 

However, although the applications of differentiation analysis cited above suggest that ND can 64 
provide a readout of stimulus-evoked phenomenological differentiation (Boly et al., 2015; 65 
Mensen et al., 2017, 2018), the low spatial resolution of fMRI and EEG has so far precluded 66 
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identifying the specific cell populations that underlie this correspondence. Indeed, a 67 
longstanding question of fundamental importance is which populations of neurons contribute 68 
directly to generating conscious percepts (Koch et al., 2016; Tononi et al., 2016; Mashour et al., 69 
2020). According to the considerations above, differentiation analysis can shed light on this 70 
question, but to do so it must be applied to recorded brain signals from specific populations of 71 
neurons. This requires systematically measuring stimulus-evoked ND with cellular resolution. 72 

To address this gap, we leveraged the Allen Institute for Brain Science (AIBS) pipeline for in 73 
vivo two-photon calcium (Ca2+) imaging (de Vries et al., 2020) to measure stimulus-evoked ND 74 
in the visual cortex of the mouse. The present work represents one of the first projects within the 75 
OpenScope initiative, a collaborative model in which the capabilities of the AIBS “brain 76 
observatory” are made available to the wider neuroscientific community. The standardized, 77 
high-throughput OpenScope data acquisition pipeline allowed us to conduct a systematic survey 78 
of ND in excitatory cell populations across 3 cortical layers—layer (L) 2/3, L4, and L5—in each 79 
of 5 visual cortical areas: primary (V1), lateral (L), anterolateral (AL), posteromedial (PM), and 80 
anteromedial (AM), as awake mice were presented with visual stimuli. We used twelve 30 s 81 
movie stimuli chosen to span different levels of putative ethological relevance. The stimuli 82 
included naturalistic video clips of predators, prey, conspecifics, the home cage, movement 83 
through the underbrush of a forest (putatively of high ecological relevance to mice); clips of 84 
roadways, automobiles, and humans (putatively of low ethological relevance); and artificially 85 
generated clips with no ethological relevance. Some of the artificial stimuli were phase-86 
scrambled versions of the naturalistic stimuli, which enabled us to contrast stimuli containing 87 
high-level structure against meaningless stimuli while controlling for low-order statistics.  88 

We hypothesized that unscrambled naturalistic stimuli, which presumably elicit meaningful 89 
visual percepts, would evoke greater ND than their meaningless phase-scrambled counterparts. 90 
Indeed, we find that unscrambled stimuli evoke greater ND than scrambled stimuli specifically in 91 
L2/3 of areas AL & AM (i.e., not in L4 or L5 of any area, nor in any sampled layer of areas V1, L, 92 
and PM). This effect is modulated by arousal and behavioral state and is robust to different 93 
methods of measuring ND. We contrast this layer- and area-specific finding with a decoding 94 
analysis that shows that information about the stimulus category, whether meaningful or 95 
meaningless, is present in most cell populations. This highlights a key difference between the 96 
methodological approaches: ND is more plausibly correlated with stimulus meaningfulness than 97 
the information measured by decoding, since the latter may not be functionally relevant (Brette, 98 
2019). Furthermore, we find differences in evoked ND among the unscrambled stimuli that 99 
suggest that differentiation analysis can probe meaningfulness of individual stimuli. 100 

2 Results 101 

Using the AIBS OpenScope two-photon Ca2+ imaging pipeline (de Vries et al., 2020; Figure 102 
1A–D), we recorded from the left visual cortex of mice while they passively viewed stimuli 103 
presented to the contralateral eye. We used the transgenic lines Cux2, Rorb, and Rbp4 (3 mice 104 
each) in which GCaMP6f is expressed in excitatory neurons predominantly in L2/3, L4, and L5, 105 
respectively. Visual cortical areas were delineated via intrinsic signal imaging (ISI; Figure 1B). 106 
Data were collected from 5 areas (V1, L, AL, PM, and AM; Figure 1E) across 45 experimental 107 
sessions (15 sessions per Cre line; 5 sessions per area; ~5 sessions per mouse). Mice were 108 
head-fixed and free to move on a rotating disc. Pupil diameter and running velocity were 109 
recorded. During each 70-minute session, twelve 30 s movie stimuli were presented in a 110 
randomized block design with 10 repetitions, with 4 s of mean-luminance grey shown between 111 
stimulus presentations (Figure 1F,G; see Stimuli). Stimuli were presented in greyscale but 112 
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were not otherwise modified (in particular, it should be noted that spatial frequencies beyond the 113 
mouse acuity limit will appear blurred to the mice). Representative ∆F/F0 traces and behavioral 114 
data are shown in Figure 1H. One imaging session in L5 of AL was excluded from our analyses 115 
because of technical problems with the two-photon recording. 116 
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 117 

Figure 1. Experimental design. (A) Data were acquired using the AIBS’ standardized two-photon 118 
calcium imaging pipeline (de Vries et al., 2020; Groblewski et al., 2020; see Methods). Briefly, a 119 
custom headframe was implanted; intrinsic signal imaging (ISI) was performed to delineate 120 
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retinotopically mapped visual areas; the mouse was habituated to the passive viewing paradigm 121 
over the course of ~2 weeks; and two-photon calcium imaging was performed in the left visual 122 
cortex while animals viewed stimuli presented to the contralateral eye in several experimental 123 
sessions. During the imaging sessions, head-fixed mice were free to run on a rotating disc. 124 
Locomotion velocity was recorded and pupil diameter was extracted from video of the animal’s right 125 
eye. (B) Example of an ISI map. (C) Example frame from a two-photon movie. Imaging data was 126 
processed as described in de Vries et al. (2020) to obtain ∆F/F0 traces. (D) Schematic of the 5 127 
visual areas targeted in this study. (E) 10 randomized blocks of twelve 30 s movie stimuli were 128 
presented. 4 s of mean-luminance grey was presented between stimuli. The first 60 s was mean-129 
luminance grey (spontaneous activity); the second 60 s period was a high-contrast sparse noise 130 
stimulus (not analyzed in this work). (F) Still frames from the 8 naturalistic (left) and 4 artificial 131 
(right) movie stimuli (see Stimuli). Two of the naturalistic stimuli, “mouse montage 1” and 132 
“mousecam”, were phase-scrambled to destroy high-level image features while closely matching 133 
low-order statistics (see Phase scrambling). (G) ∆F/F0 traces from 5 example cells, locomotion 134 
velocity, and normalized pupil diameter from a representative experimental session. Note: the “man 135 
writing” stimulus frame in (F) has been de-identified for presentation in this preprint in accordance 136 
with bioRxiv policy. 137 

To measure ND, we employed a method from Mensen et al. (2018) for analyzing a set of 138 
timeseries recorded during the presentation of a continuous stimulus (Figure 2). Briefly, the 139 
power spectrum of each cell’s ∆F/F0 trace was estimated in 1 s windows. The cells’ power 140 
spectra during simultaneous windows were concatenated to form a vector representing the 141 
neurophysiological state of the population during that window. We calculated ND for each trial 142 
as the median Euclidean distance between the 30 population states elicited over the course of 143 
the 30 s stimulus. We computed distances in the frequency domain rather than the time domain 144 
in order to focus on differences in overall population state rather than differences in precise 145 
timing of ∆F/F0 transients. To account for variability in the size of the imaged populations we 146 
divided ND values by the square root of the number of cells (see Spectral differentiation). 147 
Spectral differentiation will be zero when the set of ∆F/F0 traces is perfectly periodic with a 148 
period of 1 s (the window size), and it will be high when many traces exhibit temporally varied 149 
patterns across the 30 seconds. The measure scales with the magnitude of the signal and thus 150 
has no well-defined maximum. 151 

 152 

Figure 2. Spectral differentiation analysis. ND was computed as follows: (A) for each cell, the 153 
∆F/F0 trace of each cell during stimulus presentation was divided into 1 s windows; (B) the power 154 
spectrum of each window was estimated; (C) the “neurophysiological state” during each 1 s window 155 
was defined as a vector in the high-dimensional space of cells and frequencies (i.e., the 156 
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concatenation of the power spectra in that window for each cell); (D) the ND in response to a given 157 
stimulus was calculated as the median of the pairwise Euclidean distances between every state 158 
that occurred during the stimulus presentation. 159 

To compare the differentiation of responses to naturalistic and artificial stimuli, we generated 160 
Fourier phase-scrambled versions of two of our movie stimuli (Figure 1G). Phase-scrambling 161 
destroys the natural structure of the stimulus while closely matching the power spectrum (the 162 
spectrum was not conserved exactly because of numerical representational limitations of the 163 
stimulus format; see Phase scrambling). Note that operations that leave the power spectrum of 164 
a signal unchanged will not affect its spectral differentiation. 165 

For the “mouse montage 1” stimulus (a montage of six 5 s naturalistic movie clips), we 166 
performed the phase-scrambling in two ways: (1) along the temporal dimension, on each pixel 167 
independently, and (2) along the two spatial dimensions, on all pixels. For the “mousecam” 168 
stimulus (a continuous 30 s clip of movement at ground level through the underbrush of a forest) 169 
we performed only the spatial phase-scrambling. This yielded 2 unscrambled stimuli and 3 170 
scrambled stimuli. The full set of twelve stimuli was designed to span different levels of putative 171 
ethological relevance; here, we focus on the comparison of the unscrambled stimuli to their 172 
scrambled versions because low-order stimulus statistics are controlled and thus the contrast 173 
can be more easily interpreted. 174 

2.1 Unscrambled stimuli elicit more differentiated responses compared to 175 

scrambled stimuli 176 

We hypothesized that the unscrambled stimuli would elicit higher ND than their phase-177 
scrambled counterparts. We tested this by fitting linear mixed effects (LME) models with 178 
experimental session as a random effect (see Linear mixed effects models); mean differences 179 
in ND of responses to unscrambled vs. scrambled stimuli are shown in Figure 3. We obtained 180 
similar results contrasting naturalistic vs. artificial stimuli across the entire stimulus set 181 
(Supplementary Figure 1). ND values were approximately log-normally distributed, so we 182 
applied a logarithmic transform to ND in all statistical analyses (see Statistics). 183 

2.1.1 Increased differentiation for unscrambled stimuli is specific to excitatory cells in 184 
L2/3 185 

We found that unscrambled stimuli elicited more differentiated responses specifically in L2/3 186 
(Figure 3A). We fitted an LME model with stimulus category (unscrambled or scrambled), layer, 187 
and their interaction as fixed effects and found a significant interaction (likelihood ratio test, χ2(2) 188 
= 13.379, p = 0.00124). Post hoc tests showed that the unscrambled vs. scrambled difference 189 
was specific to L2/3 (one-sided z-test; L2/3, z = 3.866, p = 1.66e–4; L4, z = 0.191, p = 0.810; 190 
L5, z = –1.168, p = 0.998; adjusted for multiple comparisons). 191 

2.1.2 Increased differentiation for unscrambled stimuli is specific to areas AL and AM 192 

The increased ND in response to unscrambled stimuli was area-specific (Figure 3B). We fitted 193 
an LME model with stimulus category, area, and their interaction as fixed effects and found a 194 
significant interaction (likelihood ratio test, χ2(4) = 15.202, p = 0.00430). Post hoc tests showed 195 
that the unscrambled vs. scrambled difference was specific to AL and AM (one-sided z-test; V1, 196 
z = 0.704, p = 0.7479; L, z = –0.234, p = 0.9887; AL, z = 2.873, p = 0.0101; PM, z = –1.843, p > 197 
0.999; AM, z = 2.446, p = 0.0356; adjusted for multiple comparisons). 198 

 199 
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 200 

Figure 3. ND elicited by unscrambled vs. scrambled stimuli is higher in L2/3 of areas AL and 201 
AM. The mean difference in ND of responses to unscrambled vs. scrambled stimuli is plotted for 202 
each session by layer (A), area (B), and layer-area pair (C). (A) and (B): asterisks indicate 203 
significant post hoc one-sided z-tests in the layer (A) and area (B) interaction LME models (*, p < 204 
0.05; ***, p < 0.001). Boxes indicate quartiles; whiskers indicate the minimum and maximum of data 205 
lying within 1.5 times the inter-quartile range of the 25% or 75% quartiles; diamonds indicate 206 
observations outside this range. (C) Mean values are indicated by bars. 207 

2.2 Permutation tests for individual experimental sessions 208 

The above analysis shows that the mean ND elicited by unscrambled stimuli is greater than for 209 
their phase-scrambled counterparts, and that this effect is driven by L2/3 cells in areas AL and 210 
AM. We also analyzed ND at the level of individual sessions with non-parametric permutation 211 
tests. For each session, we obtained a null distribution by randomly permuting the trial labels 212 
(unscrambled or scrambled) 20,000 times and computing the difference in mean ND on 213 
unscrambled vs. scrambled trials for each permutation. P values were computed as the fraction 214 
of permutations for which the permuted difference was greater than the observed difference. 215 

The results of the individual session analyses were consistent with the LME analyses (Table 1). 216 
In all sessions recorded from L2/3 of AL & AM, responses to unscrambled stimuli were 217 
significantly more differentiated than to scrambled stimuli (p < 0.05). 218 
 219 
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 V1 L AL PM AM All areas 

L2/3 1 / 3 1 / 3 3 / 3 0 / 3 3 / 3 8 / 15 

L4 0 / 3 1 / 3 0 / 3 0 / 3 0 / 3 1 / 15 

L5 0 / 3 0 / 3 0 / 2 0 / 3 0 / 3 0 / 14 

All layers 1 / 9 2 / 9 3 / 8 0 / 9 3 / 9  
 220 

Table 1. Permutation tests show increased ND for unscrambled vs. scrambled stimuli in L2/3 221 
of AL & AM at the level of individual experimental sessions. Entries contain the fraction of 222 
sessions in which the mean ND of responses to unscrambled stimuli was significantly greater than 223 
responses to their scrambled counterparts vs. total number of sessions at a threshold of α = 0.05. 224 
For each session, a null distribution was obtained by randomly permuting trial labels (unscrambled 225 
or scrambled) 20,000 times and computing the difference in mean ND on unscrambled and 226 
scrambled trials for each permutation. P values were computed as the fraction of permutations for 227 
which the permuted difference was greater than the observed difference. 228 

Locomotion and pupil diameter can be considered behavioral indications of engagement with 229 
the environment (Jacobs et al., 2018; Ganea et al., 2018; Bennett et al., 2013) and modulate 230 
neuronal activity in visual cortex (Dadarlat & Stryker, 2017; McGinley, David, et al., 2015; 231 
McGinley, Vinck, et al., 2015; Niell & Stryker, 2010; Polack et al., 2013; Reimer et al., 2014; 232 
Salkoff et al., 2020; Vinck et al., 2015). We found that in L2/3 of AL & AM, effect sizes were 233 
positively correlated with locomotion activity (Figure 4, top left; Pearson’s r = 0.896; two-sided t-234 
test; t(4) = 4.030, p = 0.0157) and pupil diameter (Figure 4, top right; r = 0.716; t(42) = 2.054, p 235 
= 0.109), suggesting that the difference in ND is more clear when the animal is engaged with 236 
the stimuli. This pattern was not evident when considering all cell populations (locomotion 237 
activity: Figure 4, bottom left, r = – 0.034 (t(42) = –0.220, p = 0.827); pupil diameter: Figure 4, 238 
bottom right, r = 0.047 (t(42) = 0.302, p = 0.764). 239 
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 240 

Figure 4. Effect sizes in L2/3 of AL & AM are larger in sessions with more locomotion and 241 
larger pupil diameter. Cohen’s d is plotted against the fraction of locomotion activity (left column) 242 
and mean normalized pupil diameter (right column) during the session, with linear fit in grey. Top 243 
row: only sessions recorded from L2/3 and areas AL or AM; bottom row: all sessions (note different 244 
scales). Top left, Pearson’s r = 0.896 (two-sided t-test; t(4) = 4.030, p = 0.0157); top right, r = 0.716 245 
(t(42) = 2.054, p = 0.109); bottom left, r = –0.034 (t(42) = –0.220, p = 0.827); bottom right, r = 0.047 246 
(t(42) = 0.302, p = 0.764). Running velocity greater than 2.5 cm/s was considered locomotion 247 
activity (see Locomotion). Normalized pupil diameter was obtained by dividing by the maximum 248 
diameter that occurred during the session (see Pupillometry). 249 

2.3 Multivariate analysis also shows increased differentiation for unscrambled 250 

stimuli 251 

Spectral differentiation is a univariate measure sensitive to differences within a given cell’s 252 
responses across time. To ensure that our results were not due to this particular measure, we 253 
also employed a multivariate approach that considers spatiotemporal differences in activity 254 
patterns across the cell population. For each session, the dimensionality of the population 255 
response vectors was reduced to 10 using UMAP (McInnes et al., 2018). In the resulting 10-256 
dimensional space, ND was measured as the mean Euclidean distance to the centroid of the set 257 
of responses corresponding to that stimulus (see Multivariate differentiation). 258 

The results of the multivariate analysis were consistent with those found using the spectral 259 
differentiation measure. The mean centroid distance was higher in response to unscrambled 260 
compared to scrambled stimuli (Figure 5), and this effect was specific to L2/3 (layer × stimulus 261 
category interaction: likelihood ratio test, χ2(2) = 8.263, p = 0.0161; post hoc one-sided z-tests: 262 
L2/3, z = 3.610, p = 0.000459; L4, z = 0.397, p = 0.720; L5, z = –0.202, p = 0.926) and areas AL 263 
and AM (area × stimulus category interaction: likelihood ratio test, χ2(4) = 15.659, p = 0.00351; 264 
post hoc tests: V1, z = –0.259, p = 0.990; L, z = –0.828, p > 0.999; AL, z = 2.546, p = 0.0270; 265 
PM, z = –0.051, p = 0.975; AM, z = 3.668, p = 0.000612). 266 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.27.400457doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.400457
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 11 

 267 

Figure 5. Multivariate differentiation analysis. The mean difference in the mean centroid 268 
distance of responses to unscrambled vs. scrambled stimuli is plotted for each session by layer (A), 269 
area (B), and layer-area pair (C). ND elicited by unscrambled vs. scrambled stimuli is higher in L2/3 270 
and areas AL and AM, consistent with the spectral differentiation analysis. (A) and (B): asterisks 271 
indicate significant post hoc one-sided z-tests in the layer (A) and area (B) interaction LME models 272 
(***, p < 0.001). Boxes indicate quartiles; whiskers indicate the minimum and maximum of data 273 
lying within 1.5 times the inter-quartile range of the 25% or 75% quartiles; diamonds indicate 274 
observations outside this range. (C) Mean values are indicated by bars. 275 

2.4 Decoding analysis does not reveal layer or area specificity 276 

We next asked whether the layer and area specificity of our ND results would be reflected in our 277 
ability to decode the stimulus category (unscrambled or scrambled) from population responses. 278 
We performed fivefold cross-validated linear discriminant analysis to decode stimulus category 279 
for each session and scored the classifier using balanced accuracy (see Decoding analysis). 280 
Decoding performance was high for most areas and layers (Figure 6), in contrast to the 281 
unscrambled-scrambled difference in ND. Performance was also high across layers and areas 282 
when we decoded stimulus identity, rather than category, using responses to all 12 stimuli 283 
(Supplementary Figure 1). 284 
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 285 

Figure 6. Stimulus category (unscrambled or scrambled) can be accurately decoded from 286 
most layers and areas. Each point represents the mean fivefold cross-validated balanced 287 
accuracy score of linear discriminant analysis performed on a single session (see Decoding 288 
analysis). Chance performance is 0.5. 289 

 290 

2.5 Differences in ND among individual stimuli 291 

We also investigated whether ND differed among stimuli within the same category. This analysis 292 
was restricted to the set of unscrambled stimuli without jump cuts, i.e., the 5 naturalistic 293 
continuous 30 s clips, to avoid potential confounds in comparing stimuli with and without abrupt 294 
transitions between different scenes. Here we used data from all layers and areas, since 295 
although L2/3 of AL & AM underlies unscrambled/scrambled differences, within-category 296 
differences might not be restricted to that subset. We fitted an LME model with stimulus as a 297 
fixed effect and found it was significant (likelihood ratio test, χ2(4) = 32.115, p = 1.812e–6). Post-298 
hoc pairwise two-sided t-tests (adjusted for multiple comparisons), shown in Figure 7, revealed 299 
that the predator stimulus (a snake) evoked significantly higher differentiation than clips of 300 
conspecifics (t(2156) = 3.229, p = 0.0111); prey (crickets) (t(2156) = 3.928, p = 0.000839), and 301 
a man writing (t(2156) = 5.248, p = 1.670e–6). The “mousecam” clip of movement through a 302 
wooded environment also evoked a significantly higher differentiation than the clip of a man 303 
writing (t(2156) = 3.396 p = 0.00625). Here we present the main effect of stimulus; for an 304 
exploration of interactions with layer and area, and a comparison to decoding, see 305 
Supplementary Figure 3. 306 
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 307 
Figure 7. Pairwise differences in ND among unscrambled, continuous stimuli. Post hoc 308 
pairwise comparisons using data from all neuronal populations are plotted against their p values 309 
(adjusted for multiple comparisons). Boxes show mean ND for each stimulus. ND of the snake 310 
stimulus is significantly greater than that of crickets and man writing at a threshold of α = 0.01, and 311 
greater than conspecifics at α = 0.05. ND of the mousecam stimulus is greater than that of man 312 
writing at α = 0.01.  313 

2.6 Stimulus differentiation does not explain ND 314 

It is possible that ND does not reflect functionally relevant visual processing but is instead 315 
merely inherited from the differentiation of the stimulus itself. To rule out this possibility, we 316 
computed the stimulus differentiation (SD) by treating each pixel of the stimulus as a “cell” and 317 
applying the spectral differentiation measure to the traces of pixel intensities over time. Within 318 
L2/3 of AL and AM, the mean ND elicited by each stimulus was positively correlated with SD 319 
(Pearson’s r = 0.446, one-sided t-test; t(10) = 1.574, p = 0.0733). However, the noise stimulus is 320 
an influential observation (Cook’s D = 0.665, more than twice as large as the next most 321 
influential observation). If we exclude this stimulus, we find a weaker correlation (r = 0.290; one-322 
sided t-test; t(9) = 0.908, p = 0.194). Furthermore, there was no evidence of a relationship with 323 
ND when considering only the scrambled stimuli and their unscrambled counterparts (r = –324 
0.537; two-sided t-test; t(3) = –1.104, p = 0.350). Thus, we conclude that ND is not inherited 325 
from SD. We also did not find a relationship with stimulus luminance, contrast, or spectral 326 
energy (Supplementary Figure 4). 327 

 328 
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 329 

Figure 8. SD does not explain ND. Mean ND elicited by each stimulus in L2/3 of AL and AM, 330 
plotted against SD. SD was computed by treating each pixel of the movie as a “cell” and applying 331 
the spectral differentiation measure to traces of pixel intensities over time. Across all stimuli, mean 332 
ND is positively correlated with SD (Pearson’s r = 0.446; one-sided t-test; t(10) = 1.574, p = 333 
0.0733). However, here the noise stimulus is an influential observation (Cook’s D = 0.665, more 334 
than twice as large as the next most influential observation). With the noise stimulus excluded, the 335 
correlation is weaker (r = 0.290; one-sided t-test; t(9) = 0.908, p = 0.194). Moreover, there was no 336 
evidence of a relationship with ND when considering only the scrambled stimuli and their 337 
unscrambled counterparts (r = –0.537; two-sided t-test; t(3) = –1.104, p = 0.350). 338 

3 Discussion 339 

Our results show that excitatory L2/3 neurons in higher visual areas AL and AM have more 340 
differentiated responses to movie stimuli with naturalistic structure than to phase-scrambled 341 
stimuli with closely matched low-order statistics, indicating that these populations are uniquely 342 
sensitive to high-level natural features in this stimulus set. We found this difference in 343 
neurophysiological differentiation (ND) at the level of single experimental sessions, and it was 344 
robust to complementary methods of measuring ND. Moreover, we found that effect sizes were 345 
larger with increasing pupil diameter and locomotion, suggesting that the increased ND in L2/3 346 
of AL and AM is dependent on the animal's arousal level and behavioral state. Decoding 347 
analysis showed a marked lack of area and layer specificity: stimulus category could be 348 
accurately decoded from the activity of most cell populations we surveyed. In addition to the 349 
differences between unscrambled and scrambled stimuli, we found differences in ND among 350 
unscrambled continuous stimuli. Finally, we argued that ND is not merely inherited from the 351 
differentiation of the stimuli. 352 

The precise functional specialization of individual higher visual areas in the mouse, as well as 353 
that of V1, remains unclear (Glickfeld & Olsen, 2017). Recent large-scale anatomical (J. A. 354 
Harris et al., 2019) and functional (Siegle et al., 2019) studies of feedforward and feedback 355 
connectivity in the mouse visual system have uncovered a "shallow hierarchy" in which V1 lies 356 
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at the base, followed by LM, RL, AL, and PM, with AM at the top. In this light, our findings that 357 
ND in L2/3 of AL and AM is sensitive to high-level naturalistic structure could be interpreted as a 358 
reflection of hierarchical processing, which may be constructing a richer dynamical repertoire for 359 
perception of naturalistic stimuli at higher hierarchical levels. Interestingly, we did not find this 360 
effect in PM, despite its intermediate position between AL and AM in the hierarchy, suggesting 361 
that such hypothetical processing towards richer repertoires is not fully determined by the one-362 
dimensional hierarchy, but may involve specific pathways through subsets of higher visual 363 
areas. These observations indicate that differentiation analysis may be used to refine our 364 
understanding of functional specialization of these areas and uncover differences between them 365 
that can be used to direct further investigations and generate hypotheses. 366 

A recent study found that feedback projections from higher visual areas to L2/3 excitatory 367 
neurons in V1 create a second receptive field (RF) surrounding the feedforward RF and that 368 
these RFs are mutually antagonistic, pointing to a role for these neurons in predictive 369 
processing (Keller et al., 2020). If this pattern is found at higher levels of the visual hierarchy, 370 
then the layer specificity of our findings could be explained by a scenario in which top-down 371 
feedback inputs to AL and AM from areas higher in the putative dorsal stream (Marshel et al., 372 
2011; Wang et al., 2012) are integrated with feedforward inputs in L2/3 to compute and relay 373 
prediction errors about high-level visual features. In this scenario, the naturalistic stimuli, which 374 
contain high-level features that are presumably less predictable, would elicit more prediction 375 
errors and thus more differentiated activity. 376 

Stimulus-evoked activity in cortex is powerfully modulated by arousal level and behavioral state 377 
(McGinley, Vinck, et al., 2015; Salkoff et al., 2020). Locomotion is associated with heightened 378 
arousal, increased membrane depolarization, increased firing rates, increased signal-to-noise 379 
ratio, and enhanced stimulus encoding (Bennett et al., 2013; Dadarlat & Stryker, 2017; Niell & 380 
Stryker, 2010; Polack et al., 2013; Vinck et al., 2015). Pupil diameter can serve as an index of 381 
arousal (Larsen & Waters, 2018), and exhibits an inverted-U relationship with task performance 382 
such that performance is optimal at intermediate arousal levels (McGinley, David, et al., 2015; 383 
McGinley, Vinck, et al., 2015). Larger pupils are associated with increases in the gain, 384 
amplitude, signal-to-noise ratio, and reliability of responses in V1 (Reimer et al., 2014). Thus, 385 
our finding that increased pupil diameter and locomotion activity are associated with larger 386 
effect sizes could be explained by an increase in response gain or amplitude in V1 that is 387 
inherited by downstream AL and AM: since the ND in these areas is selective for naturalistic 388 
structure, increased bottom-up drive could accentuate unscrambled-scrambled differences in 389 
ND.  390 

Alternatively, response gain or amplitude in higher visual areas could be modulated directly by 391 
subcortical arousal systems. The noradrenergic and cholinergic systems are likely candidates, 392 
although it is not clear why noradrenergic modulation would cause an effect specific to L2/3; as 393 
for cholinergic modulation, Pafundo et al. (2016) showed that V1 and LM are differentially 394 
modulated by basal forebrain stimulation such that the response gain and reliability of excitatory 395 
L2/3 neurons was enhanced in V1 but not in LM, despite an even distribution of basal forebrain 396 
axon fibers across all layers in both areas. However, neuromodulatory regulation of activity in 397 
other higher visual areas, in particular AL and AM, has not yet been characterized in great detail 398 
and would be a fruitful topic for future studies. Another possibility is a top-down effect, in which 399 
increases in arousal and locomotion reflect increased cognitive or attentional engagement with 400 
the stimuli that favors processing of high-level stimulus features, selectively increasing ND for 401 
the unscrambled stimuli. In the passive viewing paradigm employed here, in which the animal is 402 
not motivated to attend to the stimuli, it is likely that top-down modulation of sensory processing 403 
varies considerably across the experimental session as arousal and attention fluctuate. 404 
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Though differentiation analysis revealed area- and layer-specific differences in responses to 405 
unscrambled and phase-scrambled stimuli, our ability to decode stimulus category from neural 406 
responses was remarkably similar across areas and layers. This contrast in our results 407 
highlights an important methodological distinction: decoding is a powerful means to reveal 408 
information content, but this information is necessarily measured from the extrinsic perspective 409 
(Buzsáki, 2019, Tononi, 2004; Oizumi et al., 2014; Tononi et al., 2016). The presence of 410 
information about a stimulus in a neural circuit does not imply that the information is functionally 411 
relevant to the system in question (Brette, 2019). As an extreme example, stimulus category 412 
would presumably be perfectly decodable from photons impinging on the retina, but this would 413 
reveal nothing of interest about perception. By contrast, ND is an intrinsic measure in the sense 414 
that it is defined without reference to a stimulus (Boly et al., 2015; Mensen et al., 2017, 2018). In 415 
the brain, a complex evolved system in which activity is energetically costly, ND may be a 416 
signature of functionally relevant dynamics. The dissociation we find between ND and decoding 417 
performance indicates that differentiation analysis can point to populations of interest that are 418 
not revealed by detecting stimulus-relevant information. 419 

Finally, we also found that the predator stimulus and the “mousecam” stimulus elicited 420 
significantly higher ND than other unscrambled continuous stimuli. The predator stimulus finding 421 
is intriguing because that stimulus has lower luminance, contrast, and spectral energy than the 422 
clip of conspecifics in a home cage (Supplementary Figure 4). Given the importance of 423 
detecting natural predators, it is plausible that the high ND evoked by this stimulus reflects its 424 
particular salience to the visual system, driven by high-level features such as the presence of 425 
the predator rather than low-order stimulus statistics. In any case, this demonstrates that 426 
differentiation analysis can be used to probe differences in visual responses at the level of 427 
individual stimuli. 428 

It is important to keep in mind the limitations of the data we collected. Firstly, calcium imaging 429 
provides only an imperfect proxy of neuronal activity: simultaneous juxtacellular 430 
electrophysiology indicates that the fluorescence signal from Ca2+ indicators is more sensitive to 431 
bursts of action potentials than sparse, low-frequency spiking (Chen et al., 2013; Huang et al., 432 
2020; Ledochowitsch et al., 2019; Siegle et al., 2020; Wei et al., 2020). Such activity may 433 
contribute to ND but would not be present in this dataset. However, given the typically sparse 434 
response properties of L2/3 excitatory neurons compared to those in deeper layers (Barth & 435 
Poulet, 2012), it is possible that this limitation may only obscure even stronger L2/3 specificity. 436 
Secondly, for this exploratory study we opted to use a range of naturalistic stimuli and a limited 437 
number of phase-scrambled control stimuli in order to include diverse high-level features. Future 438 
studies measuring stimulus-evoked ND could test our findings using a larger set of artificial 439 
stimuli that control for other low-level stimulus characteristics, e.g. optical flow, in addition to the 440 
power spectrum. Thirdly, there was considerable variability in arousal state and locomotor 441 
activity in our passive viewing paradigm. Given these factors’ modulation of effect size, future 442 
work might uncover larger effects by employing an active paradigm in which the animal is 443 
motivated by reward to attend to the stimuli. 444 

In summary, we measured stimulus-evoked differentiation of neural activity with cellular 445 
resolution and found increased ND in response to unscrambled versus scrambled stimuli. This 446 
effect was driven by L2/3 excitatory cells in AL and AM and was enhanced at higher arousal 447 
levels. To our knowledge, the present study is the first to systematically measure stimulus-448 
evoked differentiation with cellular resolution across multiple cortical areas and layers. These 449 
results advance our understanding of the functional differences among higher visual areas, and 450 
future work should seek to integrate our findings into the emerging picture of a shallow hierarchy 451 
in the mouse visual system, for example by investigating potential differences in 452 
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neuromodulation among these areas or the contrast between AL/AM and PM. Differentiation 453 
analysis is motivated by IIT, and provides an “intrinsic” analytical approach that can complement 454 
“extrinsic” measures such as decoding performance, which in this dataset did not distinguish 455 
specific cell populations. This method can be used to compare individual stimuli and may 456 
provide a readout of the degree to which a given stimulus induces a rich and varied perceptual 457 
experience. Future studies should investigate stimulus-evoked differentiation with cellular 458 
resolution in humans (and perhaps non-human primates), where subjective reports are 459 
available, and thereby determine the relative contributions of distinct cell populations to ND 460 
while correlating ND with phenomenology. 461 

4 Methods 462 

The AIBS optical physiology pipeline is described in detail in de Vries et al. (2020) and 463 
Groblewski et al. (2020). Analysis was performed with custom Python and R code using numpy 464 
(C. R. Harris et al., 2020), scipy (Virtanen et al., 2020), pandas (Reback et al., 2020), scikit-465 
learn (Pedregosa et al., 2011), matplotlib (Hunter, 2007), seaborn (Waskom & the seaborn 466 
development team, 2020), lme4 (Bates et al., 2015, p. 4), multcomp (Hothorn et al., 2008), and 467 
emmeans (Lenth, 2020). 468 

4.1 Transgenic mice 469 

All animal procedures were approved by the Institutional Animal Care and Use Committee at the 470 
AIBS. We maintained all mice on reverse 12-hour light cycle following surgery and throughout 471 
the duration of the experiment and performed all experiments during the dark cycle. We used 472 
the transgenic mouse line Ai93, in which GCaMP6f expression is dependent on the activity of 473 
both Cre recombinase and the tetracycline controlled transactivator protein (tTA) (Madisen et 474 
al., 2010). Triple transgenic mice (Ai93, tTA, Cre) were generated by first crossing Ai93 mice 475 
with Camk2a-tTA mice, which preferentially express tTA in forebrain excitatory neurons. 476 

Cux2-CreERT2;Camk2a-tTA;Ai93(TITL-GCaMP6f) expression is regulated by the tamoxifen-477 
inducible Cux2 promoter, induction of which results in Cre-mediated expression of GCaMP6f 478 
predominantly in superficial cortical layers 2, 3 and 4. Rorb-IRES2-Cre;Cam2a-tTA;Ai93 exhibit 479 
GCaMP6f in excitatory neurons in cortical layer 4 (dense patches) and layers 5 & 6 (sparse). 480 
Rbp4-Cre;Camk2a-tTA;Ai93 exhibit GCaMP6f in excitatory neurons in cortical layer 5. 481 

4.2 Surgery 482 

Transgenic mice expressing GCaMP6f were weaned and genotyped at ~P21, and surgery was 483 
performed between P37 and P63. The craniotomy was centered at X = –2.8 mm and Y = 1.3 484 
mm with respect to lambda (centered over the left mouse visual cortex). A circular piece of skull 485 
5 mm in diameter was removed, and a durotomy was performed. A coverslip stack (two 5 mm 486 
and one 7 mm glass coverslip adhered together) was cemented in place with Vetbond. 487 
Metabond cement was applied around the cranial window inside the well to secure the glass 488 
window. 489 

4.3 Intrinsic imaging 490 

A retinotopic map was created using intrinsic signal imaging (ISI) in order to define visual area 491 
boundaries and target in vivo two-photon calcium imaging experiments to consistent retinotopic 492 
locations. These maps were generated while mice were lightly anesthetized with 1–1.4% 493 
isoflurane. See de Vries et al. (2020) for a complete description of this procedure and related 494 
processing steps. 495 
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4.4 Habituation 496 

Following successful ISI mapping, mice spent two weeks being habituated to head fixation and 497 
visual stimulation. During the second week, mice were head-fixed and presented with visual 498 
stimuli, starting for 10 minutes and progressing to 50 minutes of visual stimuli by the end of the 499 
week. During this week they were exposed to the “mouse montage 2” stimulus (see Stimuli). 500 

4.5 Imaging 501 

Calcium imaging was performed using a two-photon-imaging instrument (Nikon A1R MP+). 502 
Laser excitation was provided by a Ti:Sapphire laser (Chameleon Vision – Coherent) at 910 nm. 503 
Mice were head-fixed on top of a rotating disc and free to run at will. The screen center was 504 
positioned 118.6 mm lateral, 86.2 mm anterior and 31.6 mm dorsal to the right eye. The 505 
distance between the screen and the eye was 15 cm. Movies were recorded at 30 Hz using 506 
resonant scanners over a 400 μm field of view. 507 

Excitatory neurons from cortical L2/3, L4, and L5 were imaged (L2/3: 3 mice, 15 sessions; L4: 3 508 
mice, 15 sessions; L5: 3 mice, 14 sessions) in 5 visual areas: V1 (9 sessions), L (9 sessions), 509 
AL (8 sessions), AM (9 sessions), and PM (9 sessions). 510 

4.6 Behavioral data 511 

4.6.1 Locomotion 512 

Locomotion velocity data recorded from the running wheel were preprocessed as follows. First, 513 
artifacts were removed using custom code that iteratively identified large positive or negative 514 
peaks (indicative of artifactual discontinuities in the signal) in several passes of 515 
scipy.signal.find_peaks (specific parameters were manually chosen for each session). 516 
Remaining artifacts were then manually removed by inspecting the resulting timeseries and 517 
visually identifying clear discontinuities. The removed samples were filled using linear 518 
interpolation (pandas.Series.interpolate).  519 

The resulting signal was then low-pass filtered at 1 Hz using a zero-phase 4th-order Butterworth 520 
filter (scipy.signal.butter(2, 1/15, btype='lowpass', output='ba', analog=False) applied 521 
with scipy.signal.filtfilt). 522 

For the analysis in Figure 4, the fraction of time spent running was computed by binarizing the 523 
preprocessed velocity timeseries at a threshold of 2.5 cm/s. 524 

4.6.2 Pupillometry 525 

Pupil diameter was extracted from video of the mouse's ipsilateral eye (relative to the stimulus 526 
presentation monitor) using the AllenSDK (https://github.com/AllenInstitute/AllenSDK) as 527 
described in de Vries et al. (2020). 528 

Briefly, for each frame of the video an ellipse was fitted to the region corresponding to the pupil 529 
as follows: a seed point within the pupil was identified via convolution with a black square; 18 530 
rays were drawn starting at this seed point, spaced 20 degrees apart; the candidate boundary 531 
point between the pupil and iris along that ray was identified by a change in pixel intensity above 532 
a session-specific threshold; a RANSAC algorithm was used to fit the an ellipse to the candidate 533 
boundary points using linear regression with a conic section constraint; and fitted parameters of 534 
the regression were converted to ellipse parameters (coordinates of the center, lengths of the 535 
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semi-major and semi-minor axes, and angle of rotation with respect to the x-axis). Pupil 536 
diameter was taken to be twice the semi-major axis of the fitted ellipse. 537 

The resulting timeseries contained some artifacts, which we removed by the same combination 538 
of automated and manual methods used for the locomotion timeseries (see Locomotion). 539 

For the analysis shown in Figure 4, each pupil diameter timeseries was normalized by dividing 540 
by the maximum diameter that occurred during stimulus presentations. 541 

4.7 Stimuli  542 

We created twelve 30 s greyscale naturalistic and artificial movie stimuli. 543 

The eight naturalistic stimuli (Figure 9, top) consisted of three montages of six 5 s clips, spliced 544 
together with jump cuts, and four continuous stimuli. The “mouse montage 1” stimulus contained 545 
clips of conspecifics, a snake, movement at ground level through the underbrush of a wooded 546 
environment, and a cat approaching the camera. The “mouse montage 2” stimulus contained 547 
different footage of movement through the wooded environment; different footage of a cat 548 
approaching the camera; conspecifics in a home cage filmed from within the cage; crickets in a 549 
home cage filmed from within the cage; footage of the interior of the home cage with 550 
environmental enrichment (a shelter, running wheel, and nesting material); and a snake filmed 551 
at close range orienting towards the camera. The “human montage” contained clips of a man 552 
talking animatedly to an off-screen interviewer; a café table where food is being served; 553 
automobile traffic on a road viewed from above; a woman in the foreground taking a photo of a 554 
city skyline; footage of a road filmed from the passenger seat of a vehicle; and a close shot of a 555 
bowl of fruit being tossed. The four continuous stimuli were: footage of a snake at close range 556 
orienting towards the camera; crickets in a home cage filmed from within the cage; a man 557 
writing at a table; movement through a wooded environment at ground level; and conspecifics in 558 
a home cage. No two stimuli contained identical clips. 559 

The four artificial stimuli (Figure 9, bottom) consisted of two phase-scrambled versions of the 560 
“mouse montage 1” stimulus, a phase-scrambled version of the “mousecam” stimulus (see 561 
Phase scrambling), and a high-pass-filtered 1/f noise stimulus. 562 

The stimuli were presented in a randomized block design with 10 repetitions, with 4 s of static 563 
mean-luminance grey presented between stimuli (Figure 1F). 60 s of mean-luminance grey (to 564 
record spontaneous activity) and a 60 s high-contrast sparse noise stimulus were also 565 
presented in the beginning of each session (this stimulus was not analyzed in this work). 566 
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 567 

Figure 9. Stimuli. Twelve 30 s long greyscale naturalistic (top) and artificial (bottom) movie stimuli 568 
were presented. Left: montages of six 5 s clips; right: continuous 30 s clips. Stimuli used in the 569 
main analysis are outlined in blue. Arrows indicate the phase-scrambling procedures. Note: the 570 
“man writing” stimulus frame has been de-identified for presentation in this preprint in accordance 571 
with bioRxiv policy. 572 

4.7.1 Phase scrambling 573 

Two methods of phase scrambling were used: temporal and spatial, described in detail below. 574 
Briefly, for the temporal scrambling we independently randomized the phase of each pixel’s 575 
intensity timeseries in contiguous, nonoverlapping windows of 1 s. For the spatial scrambling, 576 
we randomized the phase of the spatial dimensions of the three-dimensional spectrum of each 577 
window. The “mouse montage 1” stimulus was phase-scrambled using both procedures to 578 
obtain the “mouse montage 1, temporal phase scramble” and “mouse montage 1, spatial phase 579 
scramble” stimuli. The “mousecam” stimulus was scrambled using the spatial procedure to 580 
obtain the “mousecam, spatial phase scramble” stimulus. 581 

Temporal phase scramble 582 

First, the stimuli were windowed into contiguous, nonoverlapping 1 s segments (30 frames 583 
each). For each 1 s window, we applied the following procedure: 584 

We estimated the one-dimensional spectrum of each pixel’s intensity timeseries with the 585 
discrete Fourier transform (DFT) using the NumPy function numpy.fft.fft. The phase and 586 
magnitude of each spectrum were computed with numpy.angle and numpy.abs respectively. For 587 
each pixel, we generated a 14-element random vector drawn uniformly from the interval [0, 2π]. 588 
A randomized phase was then obtained for that pixel by concatenating the first element of the 589 
original phase, the random vector, the 15th element of the original phase, and the negative 590 
reversed random vector. This yielded a 30-element phase vector with the required conjugate 591 
symmetry of the spectrum of a 1 s real-valued signal sampled at 30 frames per second. The 592 
randomized phase was then combined with the spectral magnitude and transformed back into 593 
the time domain with the inverse DFT using numpy.fft.ifft, yielding a temporally phase-594 
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scrambled version of that pixel’s intensity timeseries. Each pixel’s timeseries was independently 595 
phase-scrambled in this fashion. 596 

This resulted in 30 independently phase-scrambled 1 s windows. These windows were then 597 
concatenated to obtain the full 30 s temporally phase-scrambled stimulus.  598 

Spatial phase scramble 599 

First, the stimuli were windowed into contiguous, nonoverlapping 1 s segments (30 frames 600 
each). For each window, we applied the following procedure. The three-dimensional Fourier 601 
spectrum (frame, width, and height) was estimated with the DFT using numpy.fft.fftn. The 602 
phase and magnitude of the spectrum were computed with numpy.angle and numpy.abs 603 
respectively. To randomize the phase in the spatial dimensions, we generated a random signal 604 
in the time domain with the same dimensions as a stimulus frame (192 pixels wide by 120 pixels 605 
high) and computed its phase in the frequency domain as described above. This two-606 
dimensional random spatial phase was added to the spatial dimensions of the three-607 
dimensional stimulus phase. After being randomized in this way, the stimulus phase was 608 
recombined with the spectral magnitude and transformed back into a time-domain signal with 609 
the inverse DFT using numpy.fft.ifftn. The 30 resulting phase-scrambled 1 s windows were 610 
then concatenated to obtain the full 30 s spatially phase-scrambled stimulus. 611 

Effect of phase-scrambling 612 

The greyscale movie stimuli were represented in the stimulus presentation software as arrays of 613 
unsigned 8-bit integers. The limitations of this representation resulted in phase-scrambled 614 
stimuli with power spectra that were close but not identical to the power spectrum of their 615 
unscrambled counterparts. 616 

Specifically, although the phase scrambling procedures described above leave the power 617 
spectrum unchanged, they do not necessarily preserve the range of the resulting real-valued 618 
signal. In our case, applying these procedures to our stimuli resulted in phase-scrambled stimuli 619 
in which the pixel intensities occasionally lay outside the range [0, 255]. Thus, in order to 620 
represent the phase-scrambled stimuli with 8-bit integers, we truncated the result so that 621 
negative intensities were set to 0 and intensities greater than 255 were set to 255. This 622 
operation does affect the power spectra, and as a result the spectra of the unscrambled and 623 
scrambled stimuli are closely matched but not equal. 624 

4.8 Differentiation analysis 625 

4.8.1 Spectral differentiation 626 

Our analysis of the responses to the stimuli follows the techniques developed in previous work 627 
in humans (Boly et al., 2015; Mensen et al., 2017, 2018). The spectral differentiation measure of 628 
ND used by Mensen et al. (2018) was designed for analysis of timeseries responses to 629 
continuous movie stimuli, and was found to be positively correlated with subjective reports of 630 
stimulus “meaningfulness”. We employed this measure with our Ca2+ imaging data: (A) for each 631 
cell, the ∆F/F0 trace of each cell during stimulus presentation was divided into 1 s windows; (B) 632 
the power spectrum of each window was estimated using a Fourier transform; (C) the 633 
“neurophysiological state” during each 1 s window was defined as a vector in the high-634 
dimensional space of cells and frequencies (i.e., the concatenation of the power spectra in that 635 
window for each cell); (D) the ND in response to a given stimulus was calculated as the median 636 
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of the pairwise Euclidean distances between every state that occurred during the stimulus 637 
presentation. A schematic illustration is shown in Figure 2. 638 

We normalized spectral differentiation values by the square root of the number of cells in the 639 
recorded population, reasoning as follows. Consider a hypothetical population of cells that each 640 
exhibit the same temporal pattern of activity. The spectral differentiation of such a population will 641 
be proportional to the square root of its size, because the Euclidean distance is used to 642 
compare neurophysiological states. If we have two such populations differing only in the number 643 
of cells, their activity should be considered to be equally differentiated for our purposes, since 644 
their temporal patterns are identical; any differences in spectral differentiation would be due to 645 
the (arbitrary) number of cells captured in the imaging session. Thus, we divided by the square 646 
root of the population size to remove this dependency. 647 

4.8.2 Multivariate differentiation 648 

We also measured ND using a multivariate approach that considers spatiotemporal differences 649 
in activity patterns. For each experimental session, we extracted ∆F/F0 traces recorded during 650 
all stimulus presentations and concatenated them to obtain an m × n matrix of responses where 651 
m is the number of two-photon imaging samples and n is the number of traces. This matrix was 652 
then downsampled by summing the ∆F/F0 traces within 100 ms bins. We used a nonlinear 653 
dimensionality reduction procedure, Uniform Manifold Approximation and Projection for 654 
Dimension Reduction (Python package umap-learn, McInnes et al., 2018), to reduce this matrix 655 
to m × 10 with parameters UMAP(n_components=10, metric="euclidean", n_neighbors=100, 656 
min_dist=0.0). Each row of the resulting matrix was a 10-dimensional vector that represented 657 
the state of the cell population during the corresponding 100 ms interval. We then grouped the 658 
rows of the resulting matrix by stimulus. Each row vector can be thought of as a point in ℝ!", so 659 
that each stimulus was associated with a cloud of points corresponding to the population states 660 
that the stimulus evoked over the course of all 10 trials. 661 

The intuition motivating this approach is that we can operationalize the notion of 662 
neurophysiological differentiation by measuring the dispersion of this point cloud. The more 663 
distant two points are, the more different are the corresponding responses of the cell population; 664 
thus, if a stimulus evokes many different population states, the point cloud will be more spread 665 
out in response space. Therefore, we measured ND evoked by each stimulus by finding the 666 
centroid of its associated point cloud and taking the mean Euclidean distance of each point to 667 
the centroid. 668 

4.9 Statistics 669 

4.9.1 Linear mixed effects models 670 

For aggregate statistics across all experimental sessions, we employed linear mixed effects 671 
models using the lmer function from the lme4 package in R with REML = FALSE (Bates et al., 672 
2015, p. 4). The distributions of ND values for both spectral and multivariate differentiation 673 
measures were well-approximated by log-normal distributions, so we applied a logarithmic 674 
transformation to ND values prior to statistical modeling. 675 

First we fit an LME model with cortical layer, stimulus category (unscrambled or scrambled), and 676 
their interaction as fixed effects, with experimental session as a random effect (lme4 formula: 677 
“differentiation ~ 1 + layer * stimulus_category + (1 | session)”). To test-layer 678 
specificity, we then fit a reduced model with the interaction removed 679 
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(“differentiation ~ 1 + area + stimulus_category + (1 | session)”) and used a likelihood 680 
ratio test to compare the two models. 681 

Next we fit an LME model with cortical area, stimulus category, and their interaction as fixed 682 
effects, with experimental session as a random effect (lme4 formula: 683 
“differentiation ~ 1 + area * stimulus_category + (1 | session)”). To test-area 684 
specificity, we fit a reduced model with the interaction removed 685 
(“differentiation ~ 1 + area + stimulus_category + (1 | session)”) and used a likelihood 686 
ratio test to compare the two models. 687 

We tested for differences among the unscrambled continuous stimuli (“snake (predator)”, 688 
“crickets (prey)”, “man writing”, “mousecam”, and “conspecifics”) by fitting an LME model with 689 
stimulus as a fixed effect and experimental session as a random effect (lme4 formula: 690 
“differentiation ~ 1 + stimulus + (1 | session)”). 691 

4.9.2 Post hoc tests 692 

Post hoc one-sided z-tests of layer and area specificity were performed calling the glht function 693 
from the multcomp package in R on each LME model with contrasts between stimulus categories 694 
(unscrambled or scrambled) within each layer and area, respectively. P values were adjusted 695 
for multiple comparisons using the single-step method in multcomp (Hothorn et al., 2008). 696 

Post hoc two-sided t-tests for pairwise differences among the unscrambled continuous stimuli 697 
were performed with the emmeans function from the emmeans package in R (“emmeans(model, 698 
pairwise ~ stimulus”), with p values adjusted for multiple comparisons using Tukey’s method 699 
(Lenth, 2020). 700 

4.9.3 Permutation tests 701 

Permutation tests were performed for each experimental session to test whether spectral 702 
differentiation evoked by unscrambled stimuli was greater than that evoked by scrambled 703 
stimuli. We obtained a null distribution by randomly permuting the trial labels (unscrambled or 704 
scrambled) 20,000 times and computing the difference in mean spectral differentiation on 705 
unscrambled and scrambled trials for each permutation. P values were computed as the fraction 706 
of permutations for which the permuted difference was greater than the observed difference, 707 
and significance is reported at the level of α = 0.05. 708 

4.10 Decoding analysis 709 

For each experimental session, we decoded stimulus category (unscrambled or scrambled) 710 
using linear discriminant analysis with the Python package scikit-learn (Pedregosa et al., 711 
2011). First, the responses to each category were concatenated to form a s × (n · t) matrix, 712 
where s is the number of stimulus presentation trials, n is the number of cells recorded, and t is 713 
the number of two-photon imaging samples in a single trial. To obtain a tractable number of 714 
features for linear discriminant analysis, we used PCA to reduce the dimensionality of the matrix 715 
such that the number of components c was sufficient to retain 99% of the variance along the 716 
rows, yielding an s × c matrix (sklearn.decomposition.PCA(n_components=0.99)). This was then 717 
used to train a shrinkage-regularized LDA classifier with fivefold cross-validation 718 
(sklearn.discriminant_analysis.LinearDiscriminantAnalysis(solver='lsqr', 719 
shrinkage='auto')). We report the mean balanced accuracy score 720 
(sklearn.metrics.balanced_accuracy_score) on the heldout test data across cross-validation 721 
folds. Chance performance is 0.5. 722 
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For the analysis shown in Supplementary Figure 2, we used the same procedure as described 723 
above, but the classifier was trained to decode stimulus identity rather than category; chance 724 
performance is 1/12. For Supplementary Figure 3, we used the same procedure but trained the 725 
classifier using only responses to the 5 continuous naturalistic stimuli, and classifier 726 
performance was evaluated for each stimulus separately with the F1 score. 727 
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Supplementary figures 930 

 931 

 932 

Supplementary Figure 1. Naturalistic vs. artificial differences in ND across the entire stimulus 933 
set. The mean difference in ND of responses to all 8 naturalistic vs. all 4 artificial stimuli is plotted 934 
for each session by layer (A), area (B), and layer-area pair (C). Results are similar to the 935 
unscrambled vs. scrambled contrast shown in Figure 2. In this analysis, post hoc tests showed a 936 
significant effect also in L5; however, this contrast does not control for low-level stimulus 937 
characteristics and is thus harder to interpret. (A) We fit an LME model with stimulus category 938 
(naturalistic or artificial), layer, and their interaction as fixed effects and found a significant 939 
interaction (likelihood ratio test, χ2(2) = 16.343, p = 0.000283). Post hoc one-sided z-tests (adjusted 940 
for multiple comparisons): L2/3, z = 4.974, p = 9.82e–7; L4, z = –0.450, p = 0.965; L5, z = 3.745, p 941 
= 0.000271. (B) We fit an LME model with stimulus category (naturalistic or artificial), area, and 942 
their interaction as fixed effects and found a significant interaction (likelihood ratio test, χ2(2) = 943 
16.343, p = 0.000283). Post hoc one-sided z-tests (adjusted for multiple comparisons): V1, z = 944 
1.207, p = 0.725; L, z = 1.523, p = 0.495; AL, z = 4.715, p = 1.21e–5; PM, z = –0.907, p = 0.896; 945 
AM, z = 4.249, p = 0.000107). (A) and (B): asterisks indicate significant post hoc tests in the layer 946 
(A) and area (B) interaction LME models (***, p < 0.001). Boxes indicate quartiles; whiskers 947 
indicate the minimum and maximum of data lying within 1.5 times the inter-quartile range of the 948 
25% or 75% quartiles; diamonds indicate observations outside this range. (C) Mean values are 949 
indicated by bars. 950 
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 951 

Supplementary Figure 2. Stimulus identity can be accurately decoded from most layers and 952 
areas using responses to all 12 stimuli. Each point represents the mean fivefold cross-validated 953 
balanced accuracy score of linear discriminant analysis performed on a single session (see 954 
Decoding analysis). Chance performance is 1/12, indicated by the dotted line.955 
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 956 

Supplementary Figure 3. Within-category differences in ND vs. within-category differences in 957 
decoding performance, by layer and area. Top: Cohen's d for pairwise mean differences in ND 958 
among naturalistic stimuli without jump cuts. Bottom: Cohen's d for pairwise mean differences in 959 
stimulus identity decoding performance. For each session, we trained a linear discriminant analysis 960 
classifier using only responses to these 5 stimuli; classification performance was evaluated as the 961 
mean fivefold cross-validated F1 score for each stimulus (see Decoding analysis).962 
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 963 

Supplementary Figure 4. ND vs. low-level stimulus characteristics. ND is plotted against the 964 
mean luminance, contrast, and spectral energy of the stimuli. Mean luminance was computed as 965 
the average pixel intensity. Contrast was calculated as the standard deviation of pixel intensities. 966 
Spectral energy was computed as the sum of the energy spectral density of each pixel's intensity 967 
timeseries after removing the DC component. 968 
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