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Intratumour heterogeneity is increasingly recognized as a frequent problem for cancer treatment as it allows for the

evolution of resistance against treatment. While cancer genotyping becomes more and more established and allows

to determine the genetic heterogeneity, less is known about the phenotypic heterogeneity among cancer cells. We

investigate how phenotypic differences can impact the efficiency of therapy options that select on this diversity,

compared to therapy options that are independent of the phenotype. We employ the ecological concept of trait

distributions and characterize the cancer cell population as a collection of subpopulations that differ in their growth

rate. We show in a deterministic model that growth rate-dependent treatment types alter the trait distribution of

the cell population, resulting in a delayed relapse compared to a growth rate-independent treatment. Whether the

cancer cell population goes extinct or relapse occurs is determined by stochastic dynamics, which we investigate using

a stochastic model. Again, we find that relapse is delayed for the growth rate-dependent treatment type, albeit an

increased relapse probability, suggesting that slowly growing subpopulations are shielded from extinction. Sequential

application of growth rate-dependent and growth rate-independent treatment types can largely increase treatment

efficiency and delay relapse. Interestingly, even longer intervals between decisions to change the treatment type may

achieve close-to-optimal efficiencies and relapse times. Monitoring patients at regular check-ups may thus provide the

temporally resolved guidance to tailor treatments to the changing cancer cell trait distribution and allow clinicians to

cope with this dynamic heterogeneity.

Introduction

Cancers are composed of genetically and phenotyp-
ically diverse cell populations [1–6], reflecting evo-
lutionary and ecological processes that occur during
cancer progression. So far, this heterogeneity has
mostly been attributed to the genomic level, where
mutations and chromosomal changes are by now rou-
tinely detected by diverse molecular techniques. In
addition, there are also non-genetic drivers of hetero-
geneity, such as epigenetic changes, cell differentia-
tion, stochastic gene expression or effects of the mi-
croenvironment [4]. The resulting intratumour het-
erogeneity has to be taken into account, as it can
lead to the treatment of only some subclones [7] or
the selection of resistant phenotypes [8], which may
explain the frequent relapses in many cancer types.
Additionally, incomplete sampling of a heterogeneous
tumour may hinder the prediction of disease dynam-
ics [5, 9, 10]. However, if intratumour heterogeneity
is exhaustively determined, it may be used as a prog-
nostic factor and guide treatment decisions [5,11,12].
Currently, a strong focus lies on the genetic com-
ponents of intratumour heterogeneity, and only re-
cently the phenotypic heterogeneity re-gained clini-
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cal interest, mainly after the rise of targeted thera-
pies, a suitable treatment approach only for defined
phenotypes [3]. However, genetic heterogeneity does
not necessarily map one-to-one to phenotypic hetero-
geneity [2], and phenotypic heterogeneity may trans-
late into an incomplete and inhomogeneous response
to phenotype-dependent therapies [5]. It is there-
fore imperative to characterize the phenotypic het-
erogeneity within tumours as well [13, 14]. Under-
standing and utilizing the phenotypic heterogeneity
of a tumour can be aided by ecology and the con-
cept of traits and trait distributions [15, 16]. In this
sense, cancer, an evolutionary disease, can indeed be
better understood using ecological concepts [17,18].
We follow this approach and develop an ecological
trait-based model to understand the effects of phe-
notypic trait heterogeneity on treatment outcomes.

The presence of phenotypic intratumour heterogene-
ity may require novel treatment strategies. Deter-
mining the existence of phenotypic subpopulations
that likely will provide resistance against phenotype
selective therapies is thus a first useful step to de-
cide against exclusive treatment options that would
select for these potentially dangerous subpopulations
[5]. Secondly, if such resistant cell types are present
in low fractions, there may be mechanisms keeping
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Author summary

The individual cells within a cancer cell population are not all equal. The heterogeneity among them can
strongly affect disease progression and treatment success. Recent diagnostic advances allow measuring how
the characteristics of this heterogeneity change over time. To match these advances, we developed determin-
istic and stochastic trait-based models that capture important characteristics of the intratumour heterogeneity
and allow to evaluate different treatment types that either do or do not interact with this heterogeneity. We
focus on growth rate as the decisive characteristic of the intratumour heterogeneity. We find that by shifting
the trait distribution of the cancer cell population, the growth rate-dependent treatment delays an eventual
relapse compared to the growth rate-independent treatment. As a downside, however, we observe a refuge
effect where slower-growing subpopulations are less affected by the growth rate-dependent treatment, which
may decrease the likelihood of successful therapy. We find that navigating along this trade-off may be achieved
by sequentially combining both treatment types, which agrees qualitatively with current clinical practice. In-
terestingly, even rather large intervals between treatment changes allow for close-to-optimal treatment results,
which again hints towards a practical applicability.

them low, such as trade-offs between treatment re-
sistance and other traits [19]. These can be used
to reduce the amount of unfavourable cancer cell
types again after intermittently selecting for them by
treatment [14, 17, 20–24]. If there are no mecha-
nisms that can suppress resistance once it evolved,
a containment strategy may be applied to prolong
the time until treatment failure [25]. Another op-
tion is to combine different treatment types to cre-
ate an evolutionary double bind, wherein one treat-
ment renders the other more effective [17, 26]. All
these adapted treatment schemes require a regular
assessment of tumour cell numbers. Given the re-
cent advances in next-generation sequencing, single-
cell RNA sequencing, flow cytometry and imaging,
however, also obtaining time series for both genetic
and phenotypic heterogeneity may become possible
in the near future. Here, we assume that such tem-
porally resolved trait information is available and ask
how it could best be exploited to improve treatment
outcome.

Particularly in light of different treatment options
that exert different selection pressures on different
traits, such as chemotherapy or immunotherapy, con-
sidering the temporal change of trait distributions
may be decisive for treatment evaluation. Even
though differences in other functional traits are pos-
sible and likely, differences in the growth rates of in-
dividual cancer cells may be the most obvious aspect
of intratumour heterogeneity and also the most deci-
sive for cancer progression. Diverse growth rate trait
distributions have been known for a long time [27],
and also recently received theoretical interest [28].
To study how treatment interacts with the growth
rate trait distribution, we will investigate how two

different treatment types, one that depends on the
focal trait and one that is independent of it, result
in different treatment outcomes. This allows us to
predict how their combination may direct the tem-
poral change of the trait distribution to optimize the
treatment effect.

Our approach is motivated by the current treat-
ment of acute lymphoblastic leukaemia, for which
chemotherapy is the first-line treatment and usu-
ally quickly reduces the density of malignant lym-
phoblasts below the detection threshold. Frequently,
however, a fraction of these malignant cells is not
eradicated by the treatment but remains in the
body as minimal residual disease that causes re-
lapse during or after therapy [29]. We hypothesize
that chemotherapy targets fast dividing cells pref-
erentially, as most chemotherapeutic drugs target
cell division and thus lead to higher drug-induced
death rates in fast-dividing malignant cells. Thus,
chemotherapy may exert a selection pressure on can-
cer cell’s growth rate, eventually favouring slower
cells. Due to their slower growth, these cells will
only be present in low abundance in the cancer cell
population at the initiation of treatment. Still, they
may dominate the population in later stages of treat-
ment due to their lower sensitivity to treatment. If
the cancer population is driven to low numbers, it
becomes vulnerable to stochastic extinction. These
stochastic extinction events will be primarily driven
by the traits of the slow-growing subset of cancer
cells, which might create a reservoir of cells that
are less vulnerable to treatment, and eventually grow
again once treatment is terminated and cause a re-
lapse. Accordingly, a current approach for post-
chemotherapy relapses is to conduct immunotherapy
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using the bi-specific monoclonal antibody Blinatu-
momab [30]. Interestingly, this second treatment
type’s action is likely independent of growth rate and
therefore presents a treatment that is independent of
our focal trait. How these two different treatment
types operate and interact is to date empirically un-
known and justifies theoretical investigation.
Using growth rates as a focal trait, we will investi-
gate how trait (in-)dependent treatment affects the
trait distribution of cancer cells, and further how this
trait distribution determines treatment trajectories,
relapse dynamics and optimal treatment schemes.

Methods

Deterministic model

We model the cancer cell population as a collection
of Ω subpopulations of size xi that differ in their
growth rates ri, (Fig. 1). We assume exponential
growth for every subpopulation with growth rates ri
(i = 1, ...,Ω). Further, we assume that the growth
rates of individual subpopulations increase linearly
from rmin = r1 to rmax = rΩ (Tab. 1). Genetic
and non-genetic drivers may generate heterogeneity
within the cancer cell population that manifests as a
broadened trait distribution of growth rates [4, 27].
This allows cells to switch to adjacent subpopula-
tions with different growth rates and maintains the
width of the trait distribution. We assume that a
cell’s switching rate is proportional to its growth rate.
Switching to the next slower subpopulation thus oc-
curs at rate pS ri and switching to the next faster
subpopulation happens at rate pF ri. We include two
different treatment types, one that is growth rate-
dependent and one that is growth rate-independent.
The growth rate-dependent treatment is motivated
by the idea that under chemotherapy, the uptake
and action of the therapeutic agent is proportional
to the growth rate of the cancer cell. Therefore,
the rate at which the chemotherapeutic toxins enter
the cell, stop cell proliferation and induce cell death
is assumed to be proportional to the cell’s growth
rate. The growth rate-dependent treatment thus in-
duces a cancer cell mortality δ ri where δ captures
the trait-dependent treatment strength. The growth
rate-independent treatment instead causes a cancer
cell mortality rate m that is equal for all cells. It
could resemble a type of immunotherapy that tar-
gets a surface protein that is present on all cancer
cells. These assumptions result in the following sys-

tem of differential equations describing the change
in the sizes of the subpopulations,

dx1

dt
= (1− pF) r1 x1 + pS r2 x2 − (δr1 +m)x1

...

dxi
dt

= (1− pS − pF) ri xi︸ ︷︷ ︸
proliferation

+ pS ri+1 xi+1︸ ︷︷ ︸
switch from faster

+ pF ri−1 xi−1︸ ︷︷ ︸
switch from slower

− (δri +m)xi︸ ︷︷ ︸
cell death

...

dxΩ

dt
= (1− pS) rΩ xΩ + pF rΩ−1 xΩ−1 − (δrN +m)xΩ.

(1)

x1

r1

xi

p
F ri

p
S ri

δ ri

ri

m

rΩ

xΩ

Figure 1 Model sketch. Arrows indicate growth,
switching and death processes of the different subpop-
ulations. Cells grow at rates ri, switch to slower growth
rates at rate pS ri or to faster growth rates at rate pF ri.
Cancer cell mortality from growth rate-dependent treat-
ment (for example by the uptake of chemotherapeutics)
is assumed to be proportional to growth rate and induces
a mortality δ ri. Cancer cell mortality from the growth
rate-independent treatment, for example immunotherapy,
is captured by the death rate m.

In our model, contributions of individual subpopula-
tions to the whole population, and therefore also the
resulting trait distribution, will converge to a stable
distribution in time (S1). In principle, this distri-
bution can be calculated analytically. Already for
Ω > 2, however, the resulting expressions become
unhandy and provide little further insight. For our
purposes, it is sufficient to know that this stable dis-
tribution exists and is reached numerically.
We assume that the growing tumour will have ap-
proached this stable trait distribution before cancer
diagnosis. After diagnosis, a period of treatment is
applied. After treatment is halted, the cancer is mon-
itored for an additional period to track the potential
relapse dynamics. Before detection and after treat-
ment termination, both the trait-independent and
the trait-dependent treatment parameters (m and δ)
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are set to zero. Only during the treatment phase, one
of them is set to the reference value from Tab. 1,
depending on whether the trait-independent or the
trait-dependent treatment is applied. We assume
that both treatment types reduce the tumour load.
To allow comparison of the two treatment types,
we chose the cancer cell mortality rate from trait-
independent treatment m such that the total can-
cer cell population after applying either of the two
treatments is approximately equal at the end of the
treatment phase. This ensures that both treatment
types result in the same tumour load reduction, al-
lowing a better comparison for our purposes. The
slowest and fastest growth rates rmin and rmax, as
well as the switching parameters pS and pF, are cho-
sen such that within the simulated treatment phase
the slowest subpopulation can exceed the fastest sub-
population under trait-dependent treatment.
The system of differential equations (Eqs. 1) is nu-
merically integrated for Ω = 25 subpopulations using
the LSODA implementation of the solve ivp function
from the Scipy library [31] in Python (version 3.7).
To equilibrate the ratios of adjacent subpopulations
and arrive at the initial stable trait distribution, we
first integrated for 200 time units from an exponen-
tial trait distribution 10−60e80 vi , where v is an array
of Ω linearly increasing values between 0 and 1. The
result is taken as the initial condition for the pre-
detection period.

Treatment schemes

We investigate different predefined treatment
schemes, where either only one treatment type is
applied for the whole duration of treatment or the
two treatment types are alternating. Additionally, we
study an adaptive treatment scheme where at regu-
lar re-evaluation intervals ∆t the treatment type that
induces the higher mortality on the total cancer cell
population X =

∑Ω
i=1 xi is chosen and continued

until the next treatment re-evaluation. To make this
decision we consider the rate of change of X

dX

dt
=

Ω∑
i=1

dxi
dt

=
Ω∑
i=1

(ri − δ ri −m)xi (2)

where the two last terms represent the mortality ex-
erted by trait-dependent and trait-independent treat-
ment, respectively. Which of these terms is larger
depends on the trait distribution, which may change
over time. For the adaptive treatment scheme, we

evaluate those two terms and set the treatment type
that exerts the lower mortality to zero. Maximum
mortality is achieved by continuously re-evaluating
the treatment type (∆t → 0), which leads to the
optimal adaptive treatment scheme.

Stochastic model

During the treatment phase, the number of cancer
cells typically drops drastically. As the cancer cell
population is driven to low numbers, the popula-
tion dynamics are affected by stochasticity and the
mean-field approximation for large cell numbers be-
comes invalid. A deterministic model cannot cap-
ture true extinctions of the cancer population un-
less an extinction threshold is defined, which still
fails to capture stochastic effects. To mechanisti-
cally capture this stochastic regime of low cancer
cell numbers, we therefore develop a stochastic for-
mulation in parallel to the deterministic model de-
scribed above. Importantly, the deterministic and
the stochastic model are based on the same mi-
croscopic processes and therefore directly compara-
ble. However, for the stochastic model we constrain
ourselves to only the two extreme subpopulations
that grow at rates rmin and rmax, as their dynam-
ics will show the most pronounced differences. To
obtain the stochastic trajectories, we simulate the
microscopic processes stochastically using the Gille-
spie algorithm implementation in StochKit [32] for
104 replicate populations. Additionally, we solve the
stochastic differential equivalent to Eq. 1 numeri-
cally using the sdeint package (Matthew J. Aburn,
version 0.2.1). For the derivation of the stochas-
tic model, we refer to the Supplementary Material.
All computational implementations can be found at
[DOI: 10.5281/zenodo.4293352]. The data is avail-
able at [DOI: 10.5281/zenodo.4293320].

Results

We represent a tumour as a population with a range
of different growth rates. This allows us to infer how
growth rate-dependent treatment affects population
decline and relapse dynamics differently from growth
rate-independent treatment. We find that the dif-
ferential effect of the growth rate-dependent treat-
ment changes the relative abundances of the sub-
populations (Fig. 2a) and changes the trait diver-
sity within the population resulting in two diversity
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Table 1 Reference parameter set. Deviations from these values are reported where applicable.

Parameter Biological meaning Value

r1 = rmin Growth rate of the slowest subpopulation 0.25 time unit−1

rΩ = rmax Growth rate of the fastest subpopulation 0.5 time unit−1

pS Factor scaling the switching to slower subpopulations 0.2
pF Factor scaling the switching to faster subpopulations 0.2
δ Cancer cell mortality factor of the trait-dependent treatment 2
m Cancer cell mortality rate of the trait-independent treatment 0.86 time unit−1

peaks: one during treatment and one during early
relapse (Fig. 2b). This is different from the trait-
independent treatment, where diversity is constant.
Before detection, fast growth rates are selected for
and dominate the population at detection (Fig. 2,
S1). Growth rate-dependent treatment, while induc-
ing a decline in total cancer cell numbers, selects
for slower growth rates which eventually allows the
slowest growing subpopulation to take over the pop-
ulation. The timing of this take-over depends on
the stable trait-distribution, which is determined by
the rates of switching along the trait axis due to
phenotypic plasticity or genotypic variability (Supple-
mentary Material). After treatment termination, all
subpopulations resume to grow at their respective
growth rates. Thus, faster subpopulations quickly
take over the population again (Fig. 2). Cell switch-
ing creates a net influx from faster to slower sub-
populations. Thus, also the slow-growing subpopu-
lations eventually increase at almost the maximum
growth rate (Fig. 2, S2). However, the subpopu-
lations with the fastest growth rates outnumber the
slower cells by orders of magnitude (S1). For growth
rate-independent treatment, the high relative abun-
dance of fast-growing cells is not affected by treat-
ment.

The growth rate of the most abundant subpopu-
lation sets the speed of relapse. Accordingly, we
observe a biphasic relapse pattern after the termi-
nation of the trait-dependent treatment (Fig. 2a).
As long as the slowest subpopulation remains most
abundant, the total cancer population grows at a
slow rate, but as soon as the fast subpopulation
takes over, also the whole population increases at
the maximum growth rate (S2). This particular re-
lapse behaviour contrasts with the relapse pattern
for a trait-independent treatment. Assuming a com-
parable treatment effect, i.e. treatment reduces the
total tumour load by the same amount, we see that

here, the fastest subpopulation, although declining,
remains dominant throughout treatment and during
relapse. Thus, also the relapse occurs at the fastest
growth rate immediately after treatment termination
for trait-independent treatment types. For compa-
rable tumour load reductions, our model therefore
predicts that a potential relapse after growth rate-
dependent treatment occurs substantially later than
after growth rate-independent treatment.

Such relapse, however, is subject to stochasticity.
Towards the end of our simulated treatments, cancer
cell numbers become low and stochastic extinction
of subpopulations, as well as the eradication of the
whole cancer population, can occur. To illustrate
this behaviour, we conducted stochastic simulations
for a simplified model with only two subpopulations,
comparing growth rate-dependent and growth rate-
independent treatment in a large number of repli-
cates. Again, we ensured that the total reduction of
tumour cells in both treatments is the same. We find
that for the trait-independent treatment type, the tu-
mour goes extinct in more replicates (Fig. 3), while
for the trait-dependent treatment type the slow sub-
populations quickly take over and prevent extinctions
in many cases. After the treatment is terminated, the
extinct fast subpopulations of the surviving replicates
first need to be repopulated from the slow subpop-
ulation, leading to a further delay of relapses. Only
then the tumour regrows at the speed found in the
deterministic model. Accordingly, relapse on average
occurs later for the trait-dependent treatment type
in the stochastic simulations, in agreement with the
findings from the deterministic model (Fig. 4). For
the extreme case of no switching between subpop-
ulations, relapse would proceed only at the growth
rate of the slow subpopulation. If the switching rate
is very low, it can take a considerable amount of time
until relapse proceeds at the rate of the fast subpop-
ulation again. In the deterministic description, how-
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Figure 2 Population dynamics for a typical treatment scenario. Starting from a cancer population that reached
the stable distribution before detection at t = 0 treatment is applied between t = 0 and t = 150. After t = 150
relapse is monitored until t = 300. (a) Splitting the total cancer population (thick lines) into different subpopulations
(thin lines) with different growth rates (colour gradient) allows for tracking the differential selection pressure that
trait-dependent and trait-independent treatment types impose on different growth rates and how this selection affects
the subsequent relapse dynamics. Insets show the growth rate trait distribution at various time points. The cancer
cell mortality rate in the trait-independent treatment was set such that the tumour load at the end of treatment is
similar to the tumour load at the end of the trait-dependent treatment. (b) Trait diversity (measured as Shannon
evenness) is affected only by the growth rate-dependent treatment.

ever, the increase of the fast subpopulation is only
speeded up by, but not contingent on, the switching
of cells from the slow into the fast subpopulation.
Thus, relapse inevitably proceeds at the growth rate
of the fast subpopulation eventually. Relapse will
thus always show a biphasic pattern in a deterministic
description, but it might not in a stochastic descrip-
tion or when the mean-field approximation is invalid.

To investigate how the stochastic contributions from
the slow and fast subpopulations differ, we integrated
only the stochastic term in the stochastic differen-
tial equation (Eq. S1.6) while setting the deter-
ministic term to zero. We find that the slow sub-
population explores a smaller state space range by
taking smaller steps (S3). The slow subpopulation
may therefore act as a refuge against extinction as
it would require more time to eventually cross the

extinction boundary where the cancer cell number
drops to zero. As growth rate-dependent treatment
increases the diagonal entries of the diffusion matrix
in Equation S1.6 proportionally to the growth rates,
it also increases stochastic step sizes proportionally
to the respective growth rates. Therefore, under
growth rate-dependent treatment, the steps that the
fast subpopulation is taking will be even larger than
the steps of the slow subpopulation, making the ex-
tinction of the fast subpopulation even more likely
than the extinction of the slow subpopulation. Grow-
ing slowly thus reduces a cell’s chance to be killed
by growth rate-dependent treatment. For the trait-
independent treatment, however, we find that the
differences between the stochastic step sizes of the
slow and fast subpopulations become smaller com-
pared to no treatment (S3). Here, the treatment-
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Figure 3 Stochastic simulations. Shown are 100 replicate populations for a binary trait where the two subpopula-
tions grow with growth rates rmin and rmax, respectively, for (a) trait-independent and (b) trait-dependent treatments.
The black lines represent the deterministic solution of the ordinary differential equation for the two subpopulations
(Eq. 1). Note that initial conditions and treatment duration are different compared to Fig. 2 to allow for relapse given
the discrete number of cells in the stochastic simulations. The cancer cell mortality by trait-independent treatment
was set to m = 0.722 d−1 to ensure equal tumour load at the end of treatment in the deterministic model for the
shorter treatment duration.

induced mortality is equal for both subpopulations
and dominates the diagonal entries of the diffusion
matrix in Equation S1.6. This decreases the relative
differences between the stochastic step sizes of both
subpopulations, which undermines the refuge effect
of the slow subpopulation.

So far, we have assumed that only a single treat-
ment type may be chosen for the whole treatment
duration. Even if toxicity or inhibiting interactive ef-
fects may prevent simultaneous application of a trait-
dependent and a trait-independent treatment, their
sequential application is often feasible. We find that
by appropriately choosing the treatment sequences,
increased chances of cure and delay of relapse may
be achieved (Fig. 5). To increase the chance of
cure, a treatment sequence should be chosen that
maximizes cancer cell mortality. To delay relapse,
the trait distribution should be maximally shifted to-
wards slow growth rates. This results in two different

treatment goals, which can only partly be met by the
same treatment scheme.

We studied both predefined sequential treat-
ment schemes where trait-independent and trait-
dependent treatment alternate (S4, S5) as well as
adaptive schemes where the trait distribution within
the tumour is re-assessed at regular intervals ∆t (re-
alistic adaptive schemes, S6). Following the assess-
ment, the treatment is continued with the treatment
type that maximizes the mortality of the cancer cell
population given the current trait distribution (S7).
Additionally, we include an optimal adaptive scheme
that employs trait distribution assessments at a very
high frequency ∆t→ 0 as an extreme case.

We find that the optimal adaptive scheme indeed
minimizes the tumour load at the end of the treat-
ment phase. However, the predefined and realistic
adaptive schemes can achieve a slightly longer time
to relapse (Fig. 5). Interestingly, we find that al-
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Figure 4 Relapse time distributions extracted from
the stochastic simulations in Fig. 3. Orange repre-
sents the trait-independent and blue the trait-dependent
treatment type. The vertical lines indicate the relapse
times from the deterministic simulations. Relapse is de-
fined to occur when the total tumour load of a replicate
exceeds 103 cells.

ready intermediate reevaluation periods in the real-
istic adaptive scheme and even some predefined se-
quences result in treatment results close to the the-
oretical optimum. For the predefined scheme, lat-
est relapse is achieved by including a short period of
trait-independent treatment in the middle of an oth-
erwise trait-dependent treatment (S4). Lower mini-
mum tumour loads are achieved by a combination of
frequent treatment switching and a higher proportion
of trait-dependent treatment. The adaptive scheme
with realistic reevaluation periods ∆t generally ap-
proaches the optimal adaptive scheme for ∆t −→ 0
and converges to the pure trait-dependent scheme as
the reevaluation period becomes large (S6). At in-
termediate ∆t we observe multiple peaks in both the
minimum tumour load and relapse time wherever the
total treatment duration is an integer multiple of ∆t
and the number of possible switches changes. For
example if the treatment reevaluation period is be-
tween half of the total treatment duration and the
total treatment duration, then only a single switch
of treatment type is possible. In contrast, for only
slightly smaller reevaluation periods two switches are
possible. If there are only few switches, they can
have strong effects on the trait distribution and thus
give rise to discontinuities in the minimum tumour
load and relapse time. At the onset of treatment,
the trait distribution is heavily skewed towards large
growth rates (S7). The optimal and all adaptive se-
quential schemes initially apply the trait-dependent
treatment, thus driving the mean of the trait distri-
bution to intermediate values, as already observed

Figure 5 Comparison of minimum tumour load dur-
ing treatment and the relapse time when tumour
load surpasses the pre-treatment maximum for dif-
ferent sequential treatment schemes. Alterations
between the trait-independent and the trait-dependent
treatment type are fixed in the predefined sequence
scheme (red to blue colour gradient corresponds to higher
proportion of trait-dependent treatment type). In the re-
alistic adaptive scheme, the currently best treatment type
is determined at regular intervals during the treatment
phase (grey colour gradient). In the optimal adaptive
scheme (black dot), the treatment type that, given the
current trait distribution, would exert the highest popula-
tion mortality is chosen nearly instantaneously (at every
step of the numerical solver). Note that these schemes
have a much stronger impact on the minimal tumour load
(up to a factor of 1000) than on the relapse time (up to
a factor of 1.3).

in Fig. 2. This eventually decreases the population
mortality rate from trait-dependent treatment. Ac-
cordingly, the optimal treatment sequence switches
to the trait-independent treatment when the popula-
tion mortality rates for both treatment types become
equal (Eq. 2), which implies

Ω∑
i=1

δ ri xi =
Ω∑
i=1

mxi (3)

As now the trait distribution is freed from trait-
dependent selection, the mean of the trait distribu-
tion increases as the faster-growing subpopulations
increase in frequency, which eventually favours the
trait-dependent treatment again. By continued rapid
switching of treatment types, the optimal adaptive
scheme modulates the trait distribution and main-
tains the mean trait value of maximum cancer cell
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population mortality ropt, which follows from Eq. 3
as

ropt =

∑Ω
i=1 ri xi∑Ω
i=1 xi

=
m

δ
. (4)

The mean trait value for the realistic adaptive treat-
ment scheme fluctuates around ropt and approaches
it for small ∆t (S7).

Discussion

Understanding cancer as a population of phenotyp-
ically diverse cells suggests representing this pop-
ulation by a trait distribution of considerable vari-
ance, on which treatment types can select. In this
study, we have entirely focussed on growth rate
as the focal trait. We compared a growth rate-
dependent and a growth rate-independent treatment.
The growth rate-dependent treatment is motivated
by chemotherapy: Many chemotherapeutic drugs are
cell-cycle specific and only damage dividing cells. Ac-
cordingly, we hypothesized that chemotherapy tar-
gets fast proliferating cells preferentially and ex-
erts higher mortality on them. Our growth rate-
independent treatment is motivated by immunother-
apy: This therapy targets cancer cells irrespective
of their proliferation rate, for example by using bi-
specific antibodies that specifically label cancer cells,
which are then recognized and killed by the immune
system. Slow and fast cells are therefore equally tar-
geted by the immune system. Even though these hy-
potheses are likely to hold in many cases, they might
not generally apply, but depend on specifics of the
particular cancer, treatment types and patient.
In the case of acute lymphoblastic leukaemia, where
tracking the proportion of malignant cells over time
is possible, it was found that chemotherapy of-
ten leaves behind a small number of malignant
cells, a situation termed minimal residual disease.
The presence of this minimal residual disease is of
high prognostic value and indicates a high likeli-
hood of future relapse [29, 33, 34]. In such cases, it
was found that Blinatumomab, a bi-specific mono-
clonal antibody, can often suppress this residual dis-
ease below detection levels [35]. For patients with
relapsed or refractory B-cell precursor acute lym-
phoblastic leukaemia that already underwent mul-
tiple chemotherapy treatments, switching to im-
munotherapy with Blinatumomab showed signifi-
cantly better treatment outcomes than conducting

additional chemotherapy [36]. This seems reason-
able under our assumption that chemotherapy would
shift the growth rate trait distribution to smaller val-
ues, where additional chemotherapy only has limited
effect. Choosing a different treatment type that does
not select for the same trait would allow for a fur-
ther and stronger reduction of tumour load. The
relapsed/refractory setting thus resembles one of the
close-to-optimal treatment schemes where towards
the end of the treatment phase a period of growth
rate-independent treatment is introduced, after prior
growth rate-dependent treatment has shifted the
trait distribution to values of decreased sensitivity
against the trait-dependent treatment. Front-line
approaches of using combinations of chemotherapy
and immunotherapy are also promising and show im-
proved treatment effects compared to chemotherapy
alone [37–40]. Complementing reports of overall sur-
vival data with time series of malignant cell counts,
as for example in [41], could provide mechanistic in-
sights into why and how these combination therapies
work. Phenotypic trait distributions could be differ-
ent after chemotherapy and immunotherapy, despite
resulting in the same minimal residual disease. This
may contribute to an explanation of why the prog-
nostic value of minimal residual disease levels could
be different for these two treatment alternatives.
We have found that slower proliferating subpopu-
lations may present a refuge during chemotherapy,
from which relapse may arise. While accounting
for the full trait distribution is essential to under-
stand this pattern, detecting it requires only knowl-
edge about the time course of the total tumour load.
The fingerprint for this scenario of slow populations
being sheltered from treatment are the biphasic dy-
namics (or multiphasic) of tumour load both during
trait-dependent therapy and relapse [42, 43]. During
treatment, the initial tumour load decrease is driven
by the effective growth rate of the fastest-growing
subpopulation. In contrast, the effective growth rate
of the slowest-growing subpopulation determines the
rate of tumour load decrease towards the end of
treatment. The situation inverts during relapse with
the slowest growing subpopulation setting the rate
of increase initially before finally the effective growth
rate of the fastest growing subpopulation determines
the speed of relapse. Advances in sampling precision
and frequency will eventually provide a temporal res-
olution of the total tumour load also in clinical set-
tings. This may also allow the detection of biphasic
(or multiphasic) dynamics, which could act as the fin-
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gerprint for phenotypic heterogeneity among cancer
cells and guide appropriate treatment decisions, no-
tably only requiring total tumour load, not the trait
distribution itself.

If such a pattern of changing dominance would be
detected, our results predict that switching to a dif-
ferent treatment type that does not select on the
same trait as the previous treatment will improve
treatment effect by allowing stronger tumour load
reduction and delayed relapse. Interestingly, we have
seen that also larger and more realistic check-up in-
tervals would suffice for close-to-optimal treatment
effects, a finding that was also observed for other
adaptive treatment schemes, such as tumour con-
tainment [25]. Since longer check-up intervals would
lead to a substantial growth above the clinical detec-
tion limit the precise value of this detection limit is
not a crucial determinant for the success of the adap-
tive scheme.

On a more abstract level, however, we have com-
bined two treatment types, one independent of, the
other dependent on a certain characteristic (the fo-
cal trait) of the cancer cells, with the trait-dependent
type offering a route for resistance. This creates an
evolutionary double bind by the two treatment types
as the resistance mechanism of decreasing growth
rate is countered by relaxing the trait-selective treat-
ment [17]. Then, due to their higher growth rate,
faster-growing subpopulations will increase again,
which automatically restores sensitivity. This alone
would correspond to the adaptive treatment ap-
proach [20]. Filling the treatment break with a
second, trait-independent treatment does not hin-
der the favourable overtake by the more susceptible
faster growing subpopulation and further decreases
the tumour cell numbers. Building on the estab-
lished idea of targeting specific phenotypes in cancer
treatment [8,44] and the notion of the prevalence of
intratumour heterogeneity, our approach shows how
to tailor personalized treatments to the phenotypic
trait distribution of cancer cells.
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S1 Appendix - Derivation of the stochastic model

Here we consider a stochastic model of tumour growth with two phenotypes, namely, slow and fast proliferating
tumour cells. These subpopulations grow and switch their phenotypes at different rates. When the trait-dependent
treatment is applied, they die at rates proportional to their growth rate. The trait-independent treatment induces
the same mortality rate on both phenotypes. We start the derivation of the stochastic model by presenting these
processes as a set of reactions that individual cells perform. The reactions are accompanied by corresponding reaction
rates ρk and the change vector µk, that describes the effect of a single reaction. The reactions can be implemented
in a stochastic simulation algorithm [1].

Reaction Rate Change vector

S −→ S + S ρ1 = rS nS µ1 = (1, 0)T

F −→ F + F ρ2 = rF nF µ2 = (0, 1)T

S −→ F ρ3 = rS pF nS µ3 = (−1, 1)T

F −→ S ρ4 = rF pS nF µ4 = (1,−1)T

S −→ φ ρ5 = δ rS nS µ5 = (−1, 0)T

F −→ φ ρ6 = δ rF nF µ6 = (0,−1)T

S −→ φ ρ7 = m nS µ7 = (−1, 0)T

F −→ φ ρ8 = m nF µ8 = (0,−1)T

Table 2 The eight possible reactions in the stochastic model. Reactions going to φ represent cell death events. S
and F represent individual cells, nS and nF are their total numbers in the cancer cell population. Reaction k occurs
with rate ρk and changes the cell number vector n = (nS, nF) by the change vector µk.

As this infinitesimal time element tends to zero the discrete model leads to a stochastic differential equation model [2,
Section 5.1]. To get there, we compute the vector of expected change µ to the population vector n per time unit as
the sum over all possible change vectors weighted by their respective rates,

E [µ] =
8∑

k=1

ρk µk ∆t (S1.1)

=

[
rS (1− pF − δ) nS + rF pS nF −m nS

rF (1− pS − δ) nF + rS pF nS −m nF

]
∆t

Similarly, we can obtain the covariance matrix of change rate to the population vector

E
[
µ (µ)T

]
=

8∑
k=1

ρk µk(µk)T ∆t (S1.2)

=

[
rS (1 + pF + δ) nS + rF pS nF +m nS −rS pF nS − rF pS nF

−rS pF nS − rF pS nF rF (1 + pS + δ) nF + rS pF nS +m nF

]
∆t
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If we now introduce a system size parameter V and convert the numbers of cells n to densities x = n
V , we can write

the expectation vector a(x), and the covariance matrix B(x) for the cell densities [2, Section 5.1],

a(x) =
1

∆t
E
[µ

V

]
=

[
rS (1− pF − δ) xS + rF pS xF −m xS
rF (1− pS − δ) xF + rS pF xS −m xF

]
, (S1.3)

B(x) =
1

∆t
E
[

1

V2
µ (µ)T

]
(S1.4)

=
1

V

[
rS (1 + pF + δ) xS + rF pS xF +m xS −rS pF xS − rF pS xF

−rS pF xS − rF pS xF rF (1 + pS + δ) xF + rS pF xS +m xF

]
We arrive at an approximate Fokker-Planck equation that can be written as

∂tP (x, t) = −
2∑

i=1

∂xi
[ai(x) P (x, t)] +

1

2

2∑
i=1

2∑
j=1

∂xi
∂xj

[bij(x) P (x, t)] (S1.5)

with ai(x) and bij(x) being the entries of a(x) and B(x). We see that the system size parameter V determines the
relative contributions of the drift and diffusion terms in the Fokker-Planck equation, thus setting the relative effect
of stochastic fluctuations on the system dynamics. Using the Feynmann-Kac Formula, we finally obtain a system of
Itô stochastic differential equations from the Fokker-Planck equation,

dx = a(x) dt+
√
B(x)dW (S1.6)

where W = (W1,W2)T consists of two independent Wiener processes Wi, or equivalently

dx = a(x) dt+C(x)dW (S1.7)

with C(x)TC(x) = B(x) [2, pp. 144]. This stochastic differential equation is numerically solved using the sdeint
package (Matthew J. Aburn, version 0.2.1).
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S2 Appendix - Effect of the switching parameters

The switching parameters pS and pF determine the flux between adjacent subpopulations. Smaller values broaden
the stable trait distribution and prolong the time until both treatment types have achieved the same tumour load
reduction, as it takes longer for the slowest subpopulation to overtake the fastest subpopulation (Fig. S2.1).

Figure S2.1 Same as Fig. 2 but for slower switching between adjacent subpopulations, pS = pF = 0.05.

If the switching parameters are larger, the stable trait distribution is narrower, and both treatment types achieve
equal tumour load reductions earlier (Fig. S2.2). Throughout the paper, we have assumed that switching to adjacent
subpopulations is equally likely. Asymmetric switching alters the stable trait distribution. If switching to faster-
growing subpopulations is more likely than switching to slower-growing subpopulations, pF > pS, the trait distribution
increases steeper towards faster growth rates (Fig. S2.3). As subpopulations with larger growth rates are now more
populated, also the growth rate-dependent treatment has a higher effect than for symmetric switching. Also, the
realized growth rate of the fastest subpopulation is higher, which increases the tumour load and decreases the effect
of the trait-independent treatment type.
If switching to slower-growing subpopulations is more likely, the maximum of the trait distribution moves to slightly
slower growing subpopulations, which decreases the realized growth rates and leads to lower tumour loads and therefore
more effective treatment (Fig. S2.4).

S3

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 28, 2020. ; https://doi.org/10.1101/2020.11.27.400838doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.400838
http://creativecommons.org/licenses/by/4.0/


Figure S2.2 Same as Fig. 2 but for faster switching between adjacent subpopulations, pS = pF = 0.5.

Figure S2.3 Same as Fig. 2 but now for asymmetric switching between adjacent subpopulations, assuming an
increased flux to faster-growing subpopulations, pS = 0.1 and pF = 0.2.
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Figure S2.4 Same as Fig. 2 but now for asymmetric switching between adjacent subpopulations, assuming a
decreased flux to faster-growing subpopulations, pS = 0.2 and pF = 0.1.
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Figure S1 Relative contribution of every subpopulation for the trait-dependent treatment. Our model gives rise to a
stable trait distribution (see constant ratios prior to the treatment phase). The trait-dependent treatment type creates
another stable trait distribution towards the end of the treatment phase, where the slowest-growing subpopulations
dominate. Note that treatment phase and relapse phase are prolonged here compared to Fig. 2 for better visualization.

Figure S2 Realized subpopulation growth rates for the trait-dependent treatment. Switching to the adjacent slower
subpopulation limits the realized growth rate of the fastest subpopulation to slightly below rmax. Note that treatment
phase and relapse phase are prolonged here compared to Fig. 2 for better visualization.
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Figure S3 Visualization of contributions from only the diffusion term in Eq. S1.6 (assuming a(x) = 0 and V = 25)
for (a) and (b) no treatment, (c) and (d) trait-independent treatment with m = 1 d−1, (e) and (f) trait-dependent
treatment with δ = 2. The left column shows the time series for 20 replicates. The right column visualizes the
population step sizes taken in the simulation (numerical solver evaluation intervals dt = 0.01, plotting time interval
100dt). We use the normalized difference of the standard deviation of the slow and fast subpopulations ∆σ/σ to
characterize the different widths of the step size distributions. Large values indicate that the changes of the slow
subpopulation are on average smaller than the changes of the fast subpopulation.
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Figure S4 The best-ranked predefined treatment patterns that either (a) result in the lowest minimum tumour load
during treatment or (b) reach the tumour load at treatment initiation the latest. Best sequences are at the top,
trait-dependent treatment type intervals are blue, trait-independent treatment type intervals are orange. We allowed
for 8 different treatment intervals and investigated all 256 combinations.

Figure S5 Performance of the predefined treatment scheme for the two treatment goals of (a) minimum tumour
load during treatment and (b) relapse time, defined here as the time when the tumour load during the relapse phase
exceeds the tumour load at treatment initiation. A maximum of 7 treatment alterations are possible. The blue-to-red
colour gradient indicates the proportion of trait-dependent treatment type in every treatment pattern. Note that Fig.
5 shows the correlation of minimum tumour load and relapse time.
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Figure S6 Performance of the realistic adaptive scheme for different reevaluation periods ∆t ranges between the
optimal adaptive and the purely trait-dependent treatment scheme. ∆t/T → 0 corresponds to the optimal adaptive
treatment, whereas ∆t/T ≥ 1 results in only trait-dependent treatment. The discontinuities arise at reevaluation
periods where the number of possible treatment alterations changes. Note that Fig. 5 shows the correlation of
minimum tumour load and relapse time.

Figure S7 Time series of the mean cancer cell population growth rate for the different treatment schemes. The
grey lines correspond to the realistic adaptive scheme with lighter lines showing larger ∆t, the difference between
them is 10 time units. The optimal adaptive scheme tracks the mean grown rate ropt (Eq. 4) where the cancer cell
mortality exerted by trait-dependent and trait-independent treatment is equal. The realistic adaptive scheme aims to
track ropt and thus oscillates around it.
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