1	Differential Contribution of Dopaminergic Transmission at D ₁ - and D ₂ -like Receptors to
2	Cost/Benefit Evaluation for Motivation in Monkeys
3	
4	Yukiko Hori ¹ , Yuji Nagai ¹ , Koki Mimura ¹ , Tetsuya Suhara ¹ , Makoto Higuchi ¹ , Sebastien Bouret ² and
5	Takafumi Minamimoto ^{1,*}
6	
7	¹ Department of Functional Brain Imaging, National Institute of Radiological Sciences, National
8	Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan.
9	² Team Motivation Brain & Behavior, Institut du Cerveau et de la Moelle épinière (ICM), Centre
10	National de la Recherche Scientifique (CNRS), Hôpital Pitié Salpêtrière, 75013 Paris, France.
11	*Correspondence: minamimoto.takafumi@qst.go.jp (T.M.)
12	

Hori et al.

13 Abstract

29

14	It has been widely accepted that dopamine (DA) plays a major role in motivation, yet the specific
15	contribution of DA signaling at D_1 -like receptor (D_1R) and D_2 -like receptor (D_2R) to cost-benefit
16	trade-off remains unclear. Here, by combining pharmacological manipulation of DA receptors (DARs)
17	and positron emission tomography imaging, we assessed the relationship between the degree of
18	D_1R/D_2R blockade and changes in benefit- and cost-based motivation for goal-directed behavior of
19	macaque monkeys. We found that the degree of blockade of either D_1R or D_2R was associated with a
20	reduction of relative incentive effect of reward amount, where D_2R blockade had a stronger effect.
21	Workload-discounting was selectively increased by D2R antagonism, whereas delay-discounting was
22	similarly increased after D_1R and D_2R blockades. These results provide fundamental insight into the
23	specific actions of DARs in the regulation of the cost/benefit trade-off and important implications for
24	motivational alterations in both neurological and psychiatric disorders.
25	
26	Introduction
27	In our daily lives, we routinely determine whether to engage or disengage in an action according to its
28	benefits and costs i.e., motivational value. For motivational value computation, the expected value of

benefits (i.e., rewards) has a positive influence, while the cost necessary to earn the expected reward

30 has a negative impact and discounts the net value of reward [1-3]. Arguably, the dopamine (DA)

31	system plays a central role in the benefit- and cost-based computation of motivational value. Phasic
32	firing of midbrain DA neurons correlates with the magnitude of future rewards, while it decreases
33	according to the expected cost to be expended for the rewards, such as physical effort, time delay to
34	reward, and reward probability [4-9]. DA neurons are also implicated in conveying information about
35	vigor in a sustained manner ("tonic firing"; [10, 11]). Several studies demonstrated that DA
36	neurotransmission was causally involved in incentive motivation, i.e., in the enhancement of actions
37	by the amount of expected reward [12-16]. In humans, the alteration of DA transmission is frequently
38	associated with various pathological impairments of motivation such as anergia, fatigue, psychomotor
39	retardation, and apathy, which are frequently observed in people with depression, schizophrenia or
40	Parkinson's disease [14, 17-19]. But even if DA signaling is clearly involved in the regulation of
41	behavior based on the cost/benefits trade-off, the underlying mechanisms remain debated.
42	DA signaling is mediated at post-synaptic sites by two classes of DA receptors (DARs), the
43	D_1 -like receptor (D_1R) and the D_2 -like receptor (D_2R), and both classes are thought to be involved in
44	motivation and decision-making based on the cost/benefits trade-off. For instance, blocking either D_1R
45	or D ₂ R reduced the likelihood and speed of engagement of cued action to obtain a future reward [20,
46	21]. Blockade of either D_1R or D_2R biases animals' choices in tasks manipulating the cost/benefits
47	trade-off, where the cost involved physical effort (effort-discounting, [22-24]) or time (delay-
48	discounting, [23, 25]). But since in most of these studies cost and reward were not manipulated

49	independently, the relative impact of DA treatment on the cost vs. benefit components of evaluation
50	remains hard to identify (see [9], for further discussion). To clarify the relation between DA, reward,
51	and cost, it is thus critical to use behavioral task where reward and cost are manipulated independently.
52	Another challenge of pharmacological manipulations is how to compare the role of two
53	receptor subtypes quantitatively. Previous studies described the effect of DAR blockade according to
54	the antagonist dose-response relationship for each DAR subtype. However, because each antagonist
55	has different characteristics (e.g., target affinity, brain permeability, biostability), the relationships
56	cannot be directly compared together with the doses. On the other hand, receptor occupancy appears
57	to provide an objective reference for receptor blockade. For example, positron emission tomography
58	(PET) studies of patients have shown that in vivo D ₂ R occupancy is a reliable predictor of clinical and
59	side effects of antipsychotic drugs [26, 27]. Similarly, receptor occupancy has been measured in rats
60	and monkeys, and the relationship with the behavioral effects following D_2R antagonists [28-30]. Thus,
61	to better understand the role of DARs in motivation, it would be critical to monitor occupancy
62	following antagonists and compare the effects on distinct components of decision-making along with
63	occupancy.
64	In the present study, we aimed to quantify and directly compare the roles of DA signaling
65	via D_1R and D_2R in decision-making based on the trade-off between reward and two types of costs
66	(time vs workload) in macaque monkeys. For this purpose, we manipulated DA transmission by

67	systemic application of DAR-specific antagonists and examined the relationship between the
68	occupancy of D_1R vs D_2R and the changes in sensitivity to reward magnitude, workload and delay.
69	We established the dynamic action of DAR antagonists by measuring the degree of DA receptor
70	occupancy using in vivo PET imaging with selective radioligands. To quantify the effects of DAR
71	blockades on incentive motivation, we used a behavioral task in which we manipulated the predicted
72	reward size. To quantify the effects of DA manipulation on cost-based decision-making (i.e., effort or
73	delay discounting), we used a similar behavioral task in which workload or delay to obtain a reward
74	was manipulated. Based on our data, D_1R and D_2R have similar roles in incentive-based motivation,
75	whereas D_2R is exclusively related to effort-based motivation.
76	
76 77	Results
	Results PET measurement of D_1R/D_2R occupancy following systemic antagonist administration
77	
77 78	PET measurement of D_1R/D_2R occupancy following systemic antagonist administration
77 78 79	PET measurement of D_1R/D_2R occupancy following systemic antagonist administration To establish appropriate antagonist dose setting and experimental timing, we measured the degree of
77 78 79 80	PET measurement of D_1R/D_2R occupancy following systemic antagonist administration To establish appropriate antagonist dose setting and experimental timing, we measured the degree of receptor blockade (i.e., receptor occupancy) following systemic administration of DAR antagonists.
77 78 79 80 81	PET measurement of D_1R/D_2R occupancy following systemic antagonist administration To establish appropriate antagonist dose setting and experimental timing, we measured the degree of receptor blockade (i.e., receptor occupancy) following systemic administration of DAR antagonists. We performed PET imaging with selective radioligands for D_1R ([¹¹ C]SCH23390) and D_2R

Hori et al.

85	For D ₁ R measurement, high radiotracer binding was seen in the striatum at baseline
86	condition (Fig 1A, Baseline). We used non-radiolabeled SCH23390 for D_1R antagonist at different
87	doses (10, 30, 50, and 100 μ g/kg). The striatal binding was diminished by pre-treatment with systemic
88	administration of SCH23390 in a dose-dependent manner (Fig 1A). In 3 monkeys, we measured the
89	relationship between D_1R occupancy and the dose of SCH23390, which was approximated by a Hill
90	function (Fig 1C; Eq. 4). We found that treatment with SCH23390 at a dose of 100 and 30 $\mu g/kg$
91	corresponded to 81% and 57% of D_1R occupancy, respectively.
92	
93	Fig 1. D ₁ R and D ₂ R occupancy measured by PET. (A) Representative horizontal MR (left) and
94	parametric PET images showing specific binding (BP _{ND}) of $[^{11}C]$ SCH23390 at baseline and following
95	drug-treatment with SCH23390 (10, 30, 50, or 100 μ g/kg, i.m.). (B) Representative horizontal MR
96	(left) and parametric PET images showing specific binding (BP _{ND}) of $[^{11}C]$ raclopride at baseline and
97	on 0 to 7 days after injection with haloperidol (10 μ g/kg, i.m.). Color scale indicates BP _{ND} (regional
98	binding potential relative to non-displaceable radioligand). (C) Occupancy of D ₁ R measured at striatal
99	ROI is plotted against the dose of SCH23390. (D) Occupancy of D ₂ R measured at striatal ROI is
100	plotted against the day after haloperidol injection. Dotted curves in C and D are the best fit of Eqs. 4
101	and 5, respectively.

103	Haloperidol was used for D ₂ R antagonism. Unlike SCH23390, which was rapidly washed
104	from the brain within a few hours, a single dose of haloperidol treatment was expected to show
105	persistent D ₂ R occupancy for the following several days as described in humans and mice [32, 33],
106	providing the opportunity for testing different occupancy conditions. The baseline [¹¹ C]raclopride PET
107	image showed the highest radiotracer binding in the striatum (Fig 1B, Baseline). As expected, striatal
108	binding was diminished not only just after pre-treatment with haloperidol (10 µg/kg, i.m.), but also
109	until post-haloperidol day 2 (Fig 1B, Day 2). Binding had recovered to the baseline level by day 7 (Fig
110	1B, Day 7). We measured D ₂ R occupancy on days 0, 1, 2, 3, and 7 after a single haloperidol injection
111	in 3 monkeys. An exponential decay function approximated the relationship between D ₂ R occupancy
112	and post-haloperidol days (Eq. 5); a single injection of haloperidol yielded 78% and 48% of D_2R
113	occupancy on days 0 and 1, respectively (Fig 1D).
114	
115	Effects of D ₁ R- and D ₂ R-blockade on incentive motivation
116	To assess the effect of blockade of D_1R and D_2R on incentive motivation, we tested 2 monkeys with
117	a reward-size task (Fig 2A). In every trial of this task, the monkeys were required to release a bar when
118	a visual target changed from red to green to get a liquid reward. A visual cue indicated the amount of
119	reward (1, 2, 4, or 8 drops) at the beginning of each trial (Fig 2A). After a few months of training, the
120	monkeys were able to release the bar in response to the Go signal. However, they never performed

121	perfectly, and failures consisted of either releasing the bar too early or too late. These failures were
122	usually observed in small reward trials or close to the end of daily sessions. As in previous experiments
123	using a single option presentation which monkeys can perform correctly or not, failures were regarded
124	as trials in which the monkeys are not sufficiently motivated to correctly release the bar (i.e., refusal)
125	[2]. Hence, the frequency of refusal trials can be used as a behavioral measure of motivation [8, 34-
126	37]. Besides, we have shown that the refusal rate (E) is inversely related to reward size (R), which has
127	been formulated with a single free parameter a [2] (Fig 2B),
128	$E = 1/aR\# \tag{1}.$
129	In agreement with these previous studies, both monkeys exhibited the inverse relationship in non-
130	treatment condition (Fig 2D and 2E, Control).
131	
132	Fig 2. D ₁ R/D ₂ R blockade increased refusal rates in reward-size task. (A) Reward-size task. Left:
133	Sequence of events during a trial. Right: The association between visual cues and reward size. (B)
134	Schematic illustration of inverse function between refusal rate and reward size. (C) Schematic
135	illustration of two explanatory models of decrease in motivation. Left: Increase in refusal rate (i.e.,
136	decrease in motivation) in relation to reward size caused by decrease in incentive impact (a). Right:
137	An alternative model explaining increase in refusal rate irrespective of reward size. (D-E) Behavioral
138	data under D_1R and D_2R blockade, respectively. CON, control. Refusal rates (mean \pm SEM) as a

Hori et al.

139	function of reward size for monkeys KN (top) and ST (bottom). Dotted curves are the best-fit of
140	inverse function (S1 Table).

142	We found that DAR blockade decreases incentive motivation, leading to an increase in
143	refusal rate of the task. For example, D ₁ R blockade (systemic injection of SCH23390) increased the
144	refusal rates particularly in smaller reward size trials (Fig 2D; 2-way ANOVA, treatment, $F_{(4, 19)} = 1.2$,
145	$p < 0.05$; reward size, $F_{(3, 19)} = 105$, $p < 0.001$; interaction, $F_{(12, 19)} = 2.4$, $p < 0.05$). We considered
146	whether this increase was due to a reduction in the incentive impact of reward, or a decrease in
147	motivation irrespective of reward size. These factors can be captured by a decrease in parameter a of
148	the inverse function and implementing intercept <i>e</i> , respectively (Fig 2C). To quantify the increases in
149	refusal rate, we compared 4 models considering these two factors as random effects. For both monkeys,
150	the increases in refusal rate were explained by a decrease in the parameter <i>a</i> due to the treatment, while
151	the inverse relation with reward size was maintained (<i>model #3</i> for monkey KN and <i>model #1</i> for ST;
152	S1 Table). We then assessed changes in parameter <i>a</i> , which indicates the incentive impact of reward
153	size. As shown Figure 3A, normalized <i>a</i> became smaller as the dose of SCH23390 was increased to
154	30 or 50 μ g/kg, but then it increased at the highest dose (100 μ g/kg) (Fig 3A, left). Thus, incentive
155	impact did not decrease monotonically with the dose, but changed in a U-shaped manner in both
156	monkeys.

Hori et al.

158	Fig 3. Effect of D ₁ R/D ₂ R blockade on incentive impact of reward size. (A) Bars indicate normalized
159	incentive impact (a) for each treatment condition under D ₁ R blockade for monkeys KN and ST. The
160	value was normalized by the value of control condition. (B) Same as A, but for D_2R blockade. (C)
161	Relationship between an incentive impact and occupancy for D_1R (blue) and D_2R blockade (red).
162	Filled circles indicate the mean of two monkeys, while individual data was plotted as triangles
163	(monkey KN) and rectangles (monkey ST), respectively.
164	
165	For the D_2R blockade, the monkeys were tested with the task 15 min after a single injection
166	of haloperidol (10 μ g/kg, i.m., day 0) and were then successively tested on the following days 1, 2, 3,
167	4 and 7. We also found a significant increase in refusal rates for D_2R blockades in both monkeys (Fig
168	2E). The refusal rates were highest on the day of haloperidol injection, after which they decreased as
169	the days went by (2-way ANOVA, treatment, $F_{(6, 27)} = 9.6$, $p < 0.001$). The increases in refusal rate
170	were reward size-dependent (reward size, $F_{(3, 27)} = 186$, $p < 0.001$; treatment × reward size, $F_{(18, 27)} = 186$
171	3.7, $p < 0.01$). Similar to the D ₁ R blockade, the increases in refusal rate due to D ₂ R blockade were
172	explained solely by a decrease of parameter a according to the days following the treatment for both
173	monkeys (model #1 for both monkeys KN and ST; S1 Table). Our model-based analysis revealed that

Hori et al.

174	a decreased about 40% on the day of haloperidol injection and the following 3 days as compared to
175	control, and then recovered to almost the control level on day 7 (Fig 3B).
176	To compare the effects between D_1R and D_2R blockades directly, we plotted changes in
177	incentive impact along with the degree of blockage (Fig 3C). In both D_1R and D_2R blockades, a
178	declined according to the increase in occupancy; it gradually declined as D ₁ R occupancy increased,
179	but then increased at the highest occupancy, whereas it steeply declined until 20% D_2R occupancy,
180	and then continued to decrease slightly until 80% occupancy (Fig 3C). At $20 - 80$ % occupancy, the
181	incentive impacts for D ₂ R blockade stayed lower than those for D ₁ R, suggesting a stronger sensitivity
182	of incentive impact to D ₂ R blockade.
183	We sought to verify that the effect of D ₂ R antagonism was not specific for haloperidol and
184	to validate the comparison between D_1R and D_2R in terms of receptor occupancy. We examined the
185	behavioral effect of another D_2R antagonist, raclopride, at a dose yielding about 50% receptor
186	occupancy (10 µg/kg, i.m.; S2 Fig). Following this dose of raclopride administration, a monkey again
187	exhibited increased refusal rates, which was explained by inverse function with $a = 5.2$ (drop ⁻¹), a
188	comparative value of incentive impact observed at 50% D_2R occupancy with haloperidol [$a = 5.4$
189	(drop-1), day 1; S2B Fig]. Thus, our data suggest that D_2R antagonism-induced reduction of the
190	incentive effect seems to reflect the degree of receptor blockade regardless of the antagonist used.
191	

Hori et al.

192 Effects of D₁R- and D₂R-blockade on response speed

193 Previous studies have reported that systemic administration of D_1R or D_2R antagonists increases 194 reaction times (RTs) in monkeys (e.g., [38]). Consistent with those studies, DAR blockade in our study 195 prolonged RTs in a treatment-dependent manner. For D1R blockade, RTs were increased according to 196 the antagonist dose (S3A and S3B Fig; 2-way ANOVA, treatment, $F_{(4, 19)} = 13.2, p < 0.001$), while the 197 effect of reward size on RTs was consistent without significant interaction (reward size, $F_{(3,19)} = 18.5$, 198 p < 0.001; treatment × reward size, $F_{(12, 19)} = 0.4$, p = 0.96; e.g., S3C Fig). In parallel with prolonged 199 RTs, D₁R antagonism also increased the proportion of late release (2-way ANOVA, treatment, $F_{(4, 19)}$ = 4.6, p < 0.01; reward size, $F_{(3, 19)} = 3.0$, p = 0.056, treatment × reward size, $F_{(12, 19)} = 0.4$, p = 0.94; 200 201 e.g., S3D Fig). These results suggest that D1R blockade also influences response speed, probably due 202 to slowing cognitive processing as implicated in previous studies [39, 40]. Thus, the effect of D_1 203 manipulation on value-based decision was somehow related to its effects on the action itself. 204 D_2R blockade also prolonged RTs, typically at days 0 and 1 (treatment, $F_{(6, 27)} = 5.6$, $p < 10^{-10}$ 205 0.001), while the reward size effect remained without interaction (reward size, $F_{(3, 27)} = 42$, p < 0.001; treatment × reward size, $F_{(18,27)} = 0.4$, p = 0.99; e.g., S3E-G Fig). Prolonged RTs in 8 drop trials were 206 207 limited (S3F Fig). In contrast to D1R manipulation, D2R blockade did not change the refusal patterns 208 (i.e., too early or late release) (2-way ANOVA, treatment, $F_{(6,27)} = 1.2$, p = 0.31; reward size, $F_{(3,27)} =$ 209 7.6, p < 0.001, treatment × reward size, $F_{(18, 27)} = 0.8$, p = 0.68; e.g., S3H Fig). Thus, the effect of D₂

Hori et al.

210 manipulation on value-based decision was relatively independent from the effects on cognitive or 211 motor speed itself.

212

213 Little influence of D₁R- or D₂R-blockade on internal drive or relative reward value 214 The behavioral data shown above suggest that blockade of DAR attenuates the incentive effect of 215 reward on behavior. However, two important questions remain: (1) Whether the relative reward value 216 is unaffected in general? (2) Whether the internal drive is unaffected? Previous studies in rodents 217 showed that DA antagonism does not alter water consumption or preference for sucrose over water in 218 rats [15, 41]. We confirmed this in primates by examining the effect of DAR blockade on water intake 219 and sucrose preference in 2 monkeys. As expected, treatment with D1R or D2R antagonist did not affect overall intake (one-way ANOVA, treatment, $F_{(2, 25)} = 0.06$, p = 0.93) or sucrose preference 220 221 (treatment, $F_{(2,18)} = 0.70$, p = 0.51; S4A Fig). We also assessed blood osmolality, a physiological index 222 of dehydration and thirst drive [42], before and after the preference test. Again, DAR treatment had 223 no significant influence on overall osmolality or recovery of osmolality (rehydration) (2-way ANOVA, main effect of treatment, $F_{(2, 35)} = 0.08$, p = 0.92; treatment × pre-post, $F_{(2, 35)} = 0.15$, p = 0.87; S4B 224 225 Fig). These results suggest that DAR blockade has no influence on physiological needs or relative 226 reward value. These results also support the notion that the increased refusal rate was not directly due 227 to a reduction of thirst drive.

Hori et al.

228

229 Differential effects of D₁R and D₂R blockades on workload and delay discounting
230 Next, we assessed the effect of selective DAR blockade on cost-based motivation. For this purpose,
231 we used a work/delay task (Fig 4A), where the basic features were the same as those in reward-size
232 task. There were two trial types. In the work trials, the monkeys had to perform 0, 1, or 2 additional
233 instrumental trials to obtain a reward. In the delay trials, after the monkeys correctly performed one
234 instrumental trial, a reward was delivered 0–7 seconds later. The number of trials or length of delay
235 was indicated by a visual cue presented throughout the trial. In the first trial after the reward, the visual
236 cue informed how much would need to be paid in order to get the next reward. Therefore, we assessed
237 the performance of the monkeys on the first trials to evaluate the impact of expected cost on motivation
238 and decision-making. We showed that the monkeys exhibited linear relationships between refusal rate
239 (*E*) and remaining costs (*CU*) for both work and delay trials, as follows:
240
$$E = kCU + E_0 \#$$
 (2),
241 where *k* is a coefficient and E_0 is an intercept [43] (Fig 4B). By extending the inference and formulation
242 of reward-size task (Eq. 1), this linear effect proposes that the reward value is hyperbolically
243 discounted by cost, where the coefficient *k* corresponds to discounting factors. Consistently, refusal
244 rates of control condition increased as the remaining cost increased (e.g., Fig 4C, control; 2-way

ANOVA, cost type × remaining cost, main effect of remaining cost, $F_{(2, 46)} = 109, p < 10^{-15}$). Figure

Hori et al.

4B illustrates our hypothesis that DAR blockade increases cost sensitivity (i.e, discounting factor, *k*),
leading to an increase in refusal rate of the task.

249	Fig 4. Differential effects of D ₁ R and D ₂ R blockade on cost-based motivational valuation. (A)
250	The work/delay task. The sequence of events (left) and relationships between visual cues and trial
251	schedule in the work trials (right top 3 rows) or delay duration in the delay trials (left bottom 3 rows)
252	are shown. CU denotes the remaining (arbitrary) cost unit to get a reward, i.e., either remaining
253	workload to perform trial(s) or remaining delay periods. (B) Schematic illustration of an explanatory
254	model of increases in refusal rate by increasing cost sensitivity (k). (C) Effects of D_1R blockade.
255	Representative relationships between refusal rates (monkey KN; mean ± SEM) and remaining costs
256	for workload (green) and delay trials (black). Saline control (Control), moderate (30 µg/kg; MO) and
257	high D_1 occupancy treatment condition (100 µg/kg; HO) are shown. Green and black lines are the
258	best-fit lines for Eqs. 6 and 7, respectively. (D) Effects of D_2R blockade. Non-treatment control
259	(Control), moderate (1 day after haloperidol; MO) and high D ₂ occupancy treatment conditions (day
260	of haloperidol; HO) are shown. Others are the same for C. (E) Comparison of effects between D_1R
261	and D_2R blockade on workload-discounting parameter (k_w). Bars and symbols indicate mean and
262	individual data, respectively. (F) Comparison of effects between D_1R and D_2R blockade on delay-
263	discounting parameter (k_d) .

Hori et al.

265	To compare the behavioral effect of $D_1 R$ vs $D_2 R$ antagonisms at the same degree of receptor
266	blockade, we assessed the performance of the monkeys under two comparable levels of DAR
267	occupancy for D_1R and D_2R , moderate occupancy (MO, ~50%) and high occupancy (HO, ~80%), and
268	under baseline condition (non-treatment) as a control. D ₁ R blockades selectively increased the refusal
269	rates in delay trials in an occupancy-dependent manner (3-way ANOVA, occupancy × cost type, $F_{(2, 2)}$
270	$_{142)}$ = 5.2, $p < 0.01$; Fig 4C). By contrast, D ₂ R blockade preferentially increased the refusal rates in
271	work trials (occupancy × cost type, $F_{(2, 142)} = 25$, $p < 10^{-9}$; Fig 4D). Like our previous study [43], two
272	linear regression models (Eqs. 6 and 7, see methods) simultaneously fitted the data well in all cases
273	(average $R^2 > 0.9$), allowing us to measure the effects of DAR as the increased steepness of cost-
274	discounting of motivational value. We found that workload-discounting (k_w) was specifically
275	increased by D_2R blockade in an occupancy-dependent manner (2-way ANOVA, receptor subtype \times
276	occupancy, $F_{(2, 10)} = 14.1$, $p < 0.01$; Fig 4E). Delay-discounting, on the other hand, was inclined to
277	increase according to the degree of DAR blockade irrespective of receptor subtype (main effect of
278	occupancy, $F_{(2, 10)} = 4.0$, $p = 0.054$; receptor subtype × occupancy, $F_{(2, 10)} = 0.3$, $p = 0.74$; Fig 4F).
279	In line with what we found in the reward-size task, D ₁ R blockade significantly increased the
280	proportion of late release (3-way ANOVA, main effect of treatment, $F_{(2,34)} = 9.0$, p < 0.001), whereas
281	D ₂ R blockade did not (main effect of treatment, $F_{(2,33)} = 0.3$, $p = 0.73$). The frequency of touching and

Hori et al.

282 releasing the bar during delay periods — actions that have no instrumental role in delay trials — was 283 also unaffected (2-way ANOVA, treatment × delay duration; treatment; D_1R , $F_{(2, 10)} = 2.1$, p = 0.16; 284 D_2R , $F_{(2,10)} = 1.9$, p = 0.21). Thus, D_1R blockade also affects the response itself in the work/delay task 285 in addition to increases in cost-discounting. 286 Considering the direct and indirect striatal output pathways where neurons exclusively 287 express D_1R and D_2R , respectively, and the opposition believed to exist between the pathways in 288 general, it should be possible to counterbalance the effects of those antagonists with each other [44]. 289 To test this possibility, we examined the behavioral effects of both D_1R and D_2R blockades at the same 290 occupancy level. After treatment with both SCH23390 (100 µg/kg) and haloperidol (10 µg/kg), 291 seemingly achieving ~80% of occupancy for both subtypes (cf. Fig 1C and 1D), all monkeys stopped 292 performing the task with a small number of correct trials (1-13% of control). When we treated the 293 monkeys with SCH23390 (30 μ g/kg) on the day following that of haloperidol injection (i.e., both D₁R 294 and D_2R assumed to be occupied at ~50%), the monkeys had higher refusal rates in delay trials than 295 control (Fig 5A, D_1R+D_2R block) and displayed a higher discounting factor (Fig 5B, delay). By 296 contrast, this simultaneous D_1R and D_2R blockade appeared to attenuate the effect of D_2R antagonism 297 on workload in 2 of 3 monkeys; the refusal rates in work trials were not as high as in D₂R blockade 298 alone (Fig 5A), and the workload-discounting factor (k_w) became the value between that for D₁ and 299 D₂ antagonisms (Fig 5B, workload). A similar counterbalance was also seen in the relative strength of

Hori et al.

300	discounting (ratio of k_w/k_d) as well as the motivation for the minimum cost trials (E_0) (Fig 5B). These
301	results suggest that blocking both receptor subtypes tends to induce a synergistic effect on delay-
302	discounting, while it compensates the effects on workload-discounting.
303	
304	Fig 5. Effect of both D ₁ R and D ₂ R blockades on cost evaluation for motivation. (A) Representative
305	relationship between refusal rates (in monkey KN; mean ± SEM) and remaining costs for workload
306	(green) and delay trials (black). (B) Best-fit parameters, workload-discounting (k_w) , delay-discounting
307	(k_d) , workload/delay ratio (k_w/k_d) , and intercept (E_0) , are plotted for each treatment condition. Bars and
308	symbols indicate mean and individual data, respectively. D ₁ R+D ₂ R block indicates the data obtained
309	under both D_1R and D_2R blockades at moderate occupancy, while D_1R and D_2R blockades at high
310	occupancy resulted in almost no correct performance (see text). All parameters are derived from the
311	best fit for Eqs. 6 and 7, respectively.
312	
313	Discussion
314	Combining the PET occupancy study and pharmacological manipulation of D ₁ - and D ₂ -like receptors
315	with quantitative measurement of motivation in monkeys, the current study demonstrated dissociable
316	roles of the DA transmissions via D_1R and D_2R in the computation of the cost/benefits trade-off to

317 guide action. To the best of our knowledge, this is the first study to directly compare the contribution

318	of dopamine D_1R and D_2R along with the degree of receptor blockade. Using model-based analysis,
319	we showed that DAR blockade had a clear quantitative effect on the sensitivity of animals to
320	information about potential costs and benefits, without any qualitative effect on the way monkeys
321	integrated costs and benefits and adjusted their behavior. We showed that blockade of D_1R or D_2R
322	reduced the incentive impact of reward as the degree of DAR blockade increased, and the incentive
323	impact was more sensitive to the D_2R blockade than the D_1R blockade at lower occupancy. In cost-
324	discounting experiments, we could dissociate the relation between each DAR type and workload vs
325	delay-discounting: workload-discounting was increased exclusively by D_2R antagonism, whereas
326	delay-discounting was increased by DAR blockade irrespective of receptor subtype. When both D_1R
327	and D_2R were blocked simultaneously, the effects were synergistic and strengthened for delay-
328	discounting, while the effects were antagonistic and diminished for workload-discounting.
329	
330	DA controls the incentive effect of expected reward amount
331	Previous pharmacological studies have shown that DAR blockade decreased the speed of action and/or
332	probability of engagement behavior [20, 21]. However, the previous studies did not address the
333	quantitative effect of DAR blockade on incentive motivation; more specifically, there was a lack of
334	experimental data to model the causal relationship among DAR stimulation, reward, and motivation.
335	In the present study, we used a behavioral paradigm that enabled us to formulate and quantify the

336	relationship between reward and motivation [2] (Fig 2). Our finding, a reduction of incentive impact
337	due to DAR antagonism (cf., Fig 3) is in line with the incentive salience theory, that is, DA
338	transmission attributes salience to incentive cue to promote goal-directed action [12]. The lack of
339	effect of DA manipulation on satiety and spontaneous water consumption are compatible with the idea
340	that DA manipulation has a stronger effect on incentive processes (influence of reward on action) than
341	on hedonic processes (evaluation itself, pleasure associated with consuming reward), but further
342	experiments would be necessary to address that point directly [12].
343	Our model-based analysis indicates that DAR blockade only had a quantitative influence (a
344	reduction of incentive impact of reward) without changing the qualitative relationship between reward
345	size and behavior. This is in marked contrast with the reported effects of inactivation of brain areas
346	receiving massive DA inputs, including the orbitofrontal cortex, rostromedial caudate nucleus, and
347	ventral pallidum. Indeed, in experiments using nearly identical tasks and analysis, inactivation or
348	ablation of these regions produced a qualitative change in the relationship between reward size and
349	behavior (more specifically, a violation of the inverse relationship between reward size and refusal
350	rates) [36, 37, 45]. Thus, the influence of DAR cannot be understood as a simple permissive or
351	activating effect on target regions. The specificity of the DAR functional role is further supported by
352	the subtle, but significant difference between the behavioral consequences of blocking of $D_1 R$ vs $D_2 R$.
353	By combining a direct measure of DAR occupancy and quantitative behavioral assessment, the present

354	study demonstrates that the incentive impact of reward is more sensitive to D_2R blockade than D_1R
355	blockade, and especially at a lower degree of occupancy (cf. Fig 3C). Moreover, the dose-response
356	relation between occupancy and behavior was monotonous for D_2R , but U-shaped for D_1R . Although
357	this might be surprising, such non-monotonic effects have been repeatedly reported. For example,
358	working memory performance and related neural activity in the prefrontal cortex takes the form of an
359	"inverted-U" shaped curve, where too little or too much D1R activation impairs cognitive performance
360	[3, 46, 47]. As for the mechanisms underlying the distinct functional relation between the behavioral
361	effects of D_1R vs D_2R blockade, it is tempting to speculate that this is related to a difference in their
362	distribution, their affinity and the resulting relation with phasic vs tonic DA action. Indeed, DA affinity
363	for D_2R is ~100 times higher than that for D_1R [48]. This is directly in line with the higher behavioral
364	sensitivity of D_2R manipulation, compared to that of D_1R . Moreover, in the striatum, a basal DA
365	concentration of \sim 5–10 nM is sufficient to constantly stimulate D ₂ R. Using available biological data,
366	a recent simulation study showed that the striatal DA concentration produced by the tonic activity of
367	DA neurons (~40 nM) would occupy 75% of D_2R but only 3.5% of D_1R [49]. Thus, blockade of D_2R
368	at low occupancy may interfere with tonic DA signaling, whereas D_1R occupancy would only be
369	related to phasic DA action, i.e., when transient but massive DA release occurs (e.g., in response to
370	critical information about reward). We acknowledge that this remains very hypothetical, but

371	irrespective of	the underlying m	echanisms, ou	r data clearly s	support the idea	that DA action	n on D ₁ R vs
-----	-----------------	------------------	---------------	------------------	------------------	----------------	--------------------------

- D_2R exerts distinct actions on their multiple targets to enhance incentive motivation.
- 373
- 374 DA transmission via D_1R and D_2R distinctively controls cost-based motivational process
- 375 Although many rodent studies have demonstrated that attenuation of DA transmission alters not only
- benefit- but also cost-related decision-making, the exact contribution of D_1R and D_2R remains elusive.
- 377 For example, reduced willingness to exert physical effort to receive higher reward was similarly found
- following D_1 and D_2 antagonisms in some studies, while it was observed exclusively by D_2 antagonism
- in other studies [22, 50, 51]. This inconsistency may arise because previous studies usually
- 380 investigated the effect of antagonism on D_1R and D_2R along with a relative pharmacological
- 381 concentration (e.g., low and high doses). In the present study, PET-assessed DAR manipulation
- allowed us to directly compare the behavioral effect between D_1R and D_2R with an objective reference,
- namely occupancy (i.e., ~50% and ~80% occupancy). Besides, the exact nature of the cost (effort vs
- delay) has sometimes been difficult to identify, and effort manipulation is often strongly correlated
- 385 with reward manipulation (typically when the amount of reward earned is instrumentally related to the
- amount of effort exerted, see [9]). Here, using a task manipulating forthcoming workload
- 387 independently from reward value, we demonstrated that blockade of D₂R, but not D₁R, increased
- 388 workload-discounting in an occupancy-dependent manner while maintaining linearity (cf., Fig 4E). In

389	addition, D_1R and D_2R had synergistic effects in the delay-discounting tasks but antagonistic effects
390	in the workload-discounting task, which also indicates that the DAR contribution to delay- vs
391	workload-discounting is qualitatively different. Thus, even if workload trials also include a delay
392	component in our task, the distinct effects of DAR manipulations confirm that the nature of the cost
393	in the workload and delay trials differs, at least from a neurobiological point of view [43]. Thus, these
394	results extend previous studies demonstrating increased effort-discounting by D ₂ R blockade [23, 52]
395	and support the notion that DA activation allows overcoming effort costs through a mechanism that
396	can be distinguished from that of incentive motivation, which involves both D_1R and D_2R .
397	Delay-discounting and impulsivity — the tendency associated with excessive delay-
398	discounting — are also thought to be linked to the DA system [53, 54]. Systemic administration of
399	D_1R or D_2R antagonist increases preference for immediate small rewards, rather than larger and
400	delayed rewards [23, 25, 55, 56]. Concurrently, some of these studies also showed negative effects of
401	D_1R [25] or D_2R blockade [56] on impulsivity. These inconsistencies may be attributed to the
402	differences in behavioral paradigms or drugs (and doses) used. Our PET-assessed DAR manipulation
403	demonstrated that blockade of D_1R and D_2R at the same occupancy level (~50% and ~80%) similarly
404	increased delay-discounting (Fig 4F), suggesting that DA transmission continuously adjusts delay-
405	discounting at the post-synaptic site. This observation is in good accord with the previous finding that
406	increasing DA transmission decreases temporal discounting; e.g., amphetamine or methylphenidate

407	increased the tendency to choose long-delays options for larger rewards [25, 55-58]. In contrast with
408	workload-discounting, however, the relation with DAR in delay-discounting and incentive-motivation
409	could not be distinguished, in that both D_1R and D_2R might be involved. This is reminiscent of
410	neurophysiological data, revealing that DA neurons show a strong sensitivity to both reward and delay,
411	but a weaker sensitivity to effort [8, 59, 60]. Altogether, this is in line with the notion that the DA
412	system does not process upcoming benefits (information about potential benefits, including their
413	distribution in space and time) in the same way it processes upcoming costs (here defined as energy
414	expenditure) [9].
415	This differential relation between DA and delay vs workload might be related to the
416	differential expression of these receptors in the direct vs indirect striatopallidal pathway, where the
417	striatal neurons exclusively express D_1R and D_2R , respectively [61]. Opposing functions between
418	these pathways have been proposed: activity of the direct pathway (D_1R) neurons reflects positive
419	rewarding events promoting movement, whereas activity of the indirect pathway (D_2R) neurons is
420	related to negative values mediating aversion or inhibiting movements [44, 62] (but see [63]). DA
421	increases the excitability of direct-pathway neurons, and this effect was reduced by D_1R antagonism,
422	decreasing motor output. DA reduces the responsiveness of indirect pathway neurons via D_2R [61],
423	and blockade of D_2R would increase the activity, reducing motor output via decreased thalamocortical
424	drive [64]. This scenario may explain our finding of a synergistic effect of simultaneous D_1R and D_2R

Hori et al.

425	blockade on delay-discounting (cf. Fig 5). Further work would be necessary to clarify this hypothesis,
426	including the dynamic relation with tonic vs phasic DA release, but altogether, these data strongly
427	support the idea that the distinct contribution of the DA system to benefits (reward availability) and
428	costs (energy expenditure) involves a complementary action of the direct and indirect pathways.
429	
430	Limitations of the current study
431	Finally, the limitations of the current study and areas for further research can be discussed. First,
432	because of applying systemic antagonist administration, the current study could not determine which
433	brain area(s) is responsible for antagonist-induced alterations of benefit- and cost-based motivation.
434	While our data support the idea that differential neural networks involve workload- and delay-
435	discounting, further study (e.g., local infusion of DA antagonist) is needed to identify the locus of the
436	effects, generalizing our findings to unravel the circuit and molecular mechanism of motivation. We
437	should also note that the current study does not address dynamic learning paradigms and therefore
438	does not generalize our findings to the function of the DA system in learning directly. Despite these
439	limitations, the current study provides unique insights into the role of the DA system in the
440	motivational process.

441

442 Conclusion

Hori et al.

443	In summary, the present study demonstrates an apparent dissociation of the functional role of DA
444	transmission via D ₁ - and D ₂ -like receptors in benefit- and cost-based motivational processing. DA
445	transmissions via D_1R and D_2R modulate both the incentive impact of reward size and the negative
446	influence of delay. By contrast, workload-discounting is regulated exclusively via D ₂ R. In addition,
447	D_1R and D_2R had synergistic effects on delay-discounting but opposite effects on workload-
448	discounting. These dissociations can be attributed to differential involvement of the direct and indirect
449	striatofugal pathways in workload- and delay-discounting. Together, our findings add an important
450	aspect to our current knowledge concerning the role of DA signaling motivation based on the trade-
451	off between costs and benefits, thus providing an advanced framework for understanding the
452	pathophysiology of psychiatric disorders.
453	
454	Materials and Methods
455	Ethics statement
456	All surgical and experimental procedures were approved by the Animal Care and Use Committee of
457	the National Institutes for Quantum and Radiological Science and Technology (#09-1035), and were
458	in accordance with the Institute of Laboratory Animal Research Guide for the Care and Use of
459	Laboratory Animals.

Hori et al.

461 Subjects

462	A total of nine male adult macaque monkeys (8 Rhesus and 1 Japanese; 4.6-7.7 kg) were used in this
463	study. Food was available ad libitum, and motivation was controlled by restricting access to fluid to
464	experimental sessions, when water was delivered as a reward for performing the task. Animals
465	received water supplementation whenever necessary (e.g., if they could not obtain enough water
466	through experiments), and they had free access to water whenever testing was interrupted for more
467	than a week.
468	
469	Drug treatment
470	All experiments in this study were carried out with injected intramuscular (i.m.) SCH23390 (Sigma-
471	Aldrich), haloperidol (Dainippon Sumitomo Pharma, Japan), and raclopride (Sigma-Aldrich)
472	dissolved or diluted in 0.9% saline solution. Animals were pretreated with an injection of SCH23390
473	(10, 30, 50, or 100 μ g/kg), haloperidol (10 μ g/kg), or raclopride (10 or 30 μ g/kg) 15 min before the
474	beginning of the behavioral testing or PET scan. In behavioral testing, saline was injected as a vehicle
475	control by the same procedure as drug treatment. The administered volume was 1 mL across all
476	experiments with each monkey.
477	

478 **PET procedure and occupancy measurement**

479	Four monkeys were used in the measurement. PET measurements were performed with two PET
480	ligands: [¹¹ C]SCH23390 (for studying D ₁ R binding) and [¹¹ C]raclopride (for studying D ₂ R binding).
481	The injected radioactivities of [11 C]SCH23390 and [11 C]raclopride were 91.7 ± 6.0 MBq (mean ± SD)
482	and 87.0 \pm 4.9 MBq, respectively. Specific radioactivities of [¹¹ C]SCH23390 and [¹¹ C]raclopride at
483	the time of injection were $86.2 \pm 40.6 \text{ GBq}/\mu\text{mol}$ and $138.2 \pm 70.1 \text{ GBq}/\mu\text{mol}$, respectively. All PET
484	scans were performed using an SHR-7700 PET scanner (Hamamatsu Photonics Inc., Japan) under
485	conscious conditions and seated in a chair. Prior to the PET study, the monkeys underwent surgery to
486	implant a head-hold device using aseptic techniques [65]. After transmission scans for attenuation
487	correction using a ⁶⁸ Ge– ⁶⁸ Ga source, a dynamic scan in three-dimensional (3D) acquisition mode was
488	performed for 60 min ([¹¹ C]SCH23390) or 90 min ([¹¹ C]raclopride). The ligands were injected via
489	crural vein as a single bolus at the start of the scan. All emission data were reconstructed with a 4.0-
490	mm Colsher filter. Tissue radioactive concentrations were obtained from volumes of interest (VOIs)
491	placed on several brain regions where DARs are relatively abundant: caudate nucleus, putamen,
492	nucleus accumbens (NAcc), thalamus, hippocampus, amygdala, parietal cortex, principal sulcus (PS),
493	dorsolateral prefrontal cortex (dlPFC), and ventrolateral prefrontal cortex (vlPFC), as well as the
494	cerebellum (as reference region). Each VOI was defined on individual T1-weighted axial magnetic
495	resonance (MR) images (EXCELART/VG Pianissimo at 1.0 tesla, Toshiba, Japan) that were co-
496	registered with PET images using PMOD® image analysis software (PMOD Technologies Ltd,

Switzerland). Regional radioactivity of each VOI was calculated for each frame and plotted against

497

498	time. Regional binding potentials relative to non-displaceable radioligands (BP _{ND}) of D_1R and D_2R						
499	were estimated with a simplified reference tissue model on VOI and voxel-by-voxel bases [66-68].						
500	The monkeys were scanned with and without drug-treatment condition on different days.						
501	Occupancy levels were determined from the degree of reduction (%) of BP_{ND} by antagonists [
502	DA receptor occupancy was estimated as follows:						
503	$Occupancy(\%) = (1 - BP_{NDTreatment}/BP_{NDBaseline}) \times 100 $ (3),						
504	where $BP_{ND Baseline}$ and $BP_{ND Treatment}$ are BP_{ND} measured without (baseline) and with an antagonist,						
505	respectively. Relationship between D_1R occupancy (D_1 Occ) and dose of SCH23390 (Dose) w						
506	estimated with 50% effective dose (ED ₅₀) as follows:						
507	$D_1 Occ(\%) = 100 \times Dose/(ED50 + Dose)#$ (4).						
508	Relationship between D ₂ R occupancy (D ₂ Occ) and days after haloperidol injection was estimated						
509	using the level at day 0 with a decay constant (λ) as follows:						
510	$D_2 Occ(\%) = Occ_{Day0} e^{-\lambda Day} $ (5).						
511							
512	Behavioral tasks and testing procedures						
513	Three monkeys (ST, 6.4 kg; KN, 6.3 kg; M7, 7.3 kg) were used for the behavioral study. For all						
514	behavioral training and testing, each monkey sat in a primate chair inside a sound-attenuated dark						

515	room. Visual stimuli were presented on a computer video monitor in front of the monkey. Behavioral
516	control and data acquisition were performed using the REX program. Neurobehavioral Systems
517	Presentation software was used to display visual stimuli (Neurobehavioral Systems). We used two
518	types of behavioral tasks, reward-size task and work/delay task, as described previously [2, 43]. Both
519	tasks consisted of color discrimination trials (see Figs 2A and 4A). Each trial began when the monkey
520	touched a bar mounted at the front of the chair. The monkey was required to release the bar between
521	200 and 1,000 ms after a red spot (wait signal) turned green (go signal). On correctly performed trials,
522	the spot then turned blue (correct signal). A visual cue was presented at the beginning of each color
523	discrimination trial (500 ms before the red spot appearing).
524	In the reward-size task, a reward of 1, 2, 4, or 8 drops of water (1 drop = ~ 0.1 mL) was delivered
525	immediately after the blue signal. Each reward size was selected randomly with equal probability. The
526	visual cue presented at the beginning of the trial indicated the number of drops for the reward (Fig
527	2A).
528	In the work/delay task, a water reward (~0.25 mL) was delivered after each correct signal
529	immediately or after an additional 1 or 2 instrumental trials (work trial), or after a delay period (delay
530	trials). The visual cue indicated the combination of the trial type and requirement to obtain a reward
531	(Fig 4A). Pattern cues indicated the delay trials with the timing of reward delivery after a correct
532	performance: either immediately (0.3 s, $0.2 - 0.4$ s; mean, range), a short delay (3.6 s, $3.0 - 4.2$ s), or

Hori et al.

533	a long delay (7.2 s, $6.0 - 8.4$ s). Grayscale cues indicated work trials with the number of trials the
534	monkey would have to perform to obtain a reward. We set the delay durations to be equivalent to the
535	duration for 1 or 2 trials of color discrimination trials, so that we could directly compare the cost of 1
536	or 2 arbitrary units (cost unit; CU).
537	If the monkey released the bar before the green target appeared or within 200 ms after the green
538	target appeared or failed to respond within 1 s after the green target appeared, we regarded the trial as
539	a "refusal trial"; all visual stimuli disappeared, the trial was terminated immediately, and after the 1-s
540	inter-trial interval, the trial was repeated. Our behavioral measurement for the motivational value of
541	outcome was the proportion of refusal trials. Before each testing session, the monkeys were subject to
542	\sim 22 hours of water restriction in their home cage. Each session continued until the monkey would no
543	longer initiate a new trial (usually less than 100 min).
544	Before this experiment, all monkeys had been trained to perform color discrimination trials in the
545	cued multi-trial reward schedule task for more than 3 months. The monkeys were tested with the
546	work/delay task for 1-2 daily sessions as training to become familiar with the cueing condition.
547	Each monkey was tested from Monday to Friday. Treatment with SCH23390 was performed
548	every four or five days. On other days without SCH23390, sessions with saline (1 mL) treatment were
549	analyzed as control sessions. Haloperidol was given every two or three weeks on Monday or Tuesday,
550	because D ₂ R occupancy persisted for several days after a single dose of haloperidol treatment (Fig

Hori et al.

551 1D). The days before haloperidol treatment were analyzed as control sessions. Each dose of
552 SCH23390 or a single dose of haloperidol was tested 4 or 5 times per each animal.

553

554 Sucrose preference test

555 Two monkeys (RO, 5.8kg; KY, 5.6kg) were used for the sucrose preference test. The test was 556 performed in their home cages once a week. In advance of the test, water access was prevented for 22 557 h. The monkeys were injected with SCH23390 (30 µg/kg), haloperidol (10 µg/kg), or saline 15 min 558 before the sucrose preference test. Two bottles containing either 1.5% sucrose solution or tap water 559 were set into bottle holders in the home cage and the monkeys were allowed to freely consume fluids 560 for 2h. The total amount of sucrose (SW) and tap water (TW) intake was measured and calculated as sucrose preference index (SP) as follows: SP = (SW - TW) / (SW + TW). The position of sucrose and 561 562 tap water bottles (right or left toward the front panel of the home cage) was counterbalanced across 563 sessions and monkeys. Drugs or saline was injected alternatively once a week. We also measured the 564 osmolality level in blood samples (1 mL) obtained immediately before and after each testing session. 565

566 Behavioral data analysis

All data and statistical analyses were performed using the R statistical computing environment (R
 Development Core Team, 2004). The average error rate for each trial type was calculated for each

Hori et al.

569	daily session, with the error rates in each trial type being defined as the number of error trials divided					
570	by the total number of trials of that given type. The monkeys sometimes made many errors at the					
571	beginning of the daily session, probably due to high motivation/impatience; we excluded the data until					
572	the 1st successful trial in these cases. A trial was considered an error trial if the monkey released the					
573	bar either before or within 200 ms after the appearance of the green target (early release) or failed to					
574	respond within 1 s after the green target (late release). We did not distinguish between the two types					
575	of errors and used their sum except for the error pattern analysis. We performed repeated-measures					
576	ANOVAs to test the effect of treatment \times reward size (for the data in reward-size task) or treatment \times					
577	cost type × remaining cost (for the data in work/delay task) on error rate, on late release rate (i.e., error					
578	pattern), on reaction time, and on movements during the delay.					
579	We used the refusal rates to estimate the level of motivation because the refusal rates of these					
580	tasks (E) are inversely related to the value for action [2]. In the reward-size task, we used the inverse					
581	function (Eq. 1). We fitted the data to linear mixed models [70], in which the random effects across					
582	DAR blockade conditions on parameter a and/or intercept e (Fig 2C) were nested. Model selection					
583						
	was based on Akaike's information criterion (AIC), an estimator of in-sample prediction error for the					
584	was based on Akaike's information criterion (AIC), an estimator of in-sample prediction error for the nested models (S1 Table). Using the selected model, the parameter <i>a</i> was estimated individually, and					

In the work/delay task, we used linear models to estimate the effect of remaining cost, i.e.,

Hori et al.

587workloads and delay, as described previously [43],588
$$E_w = k_w CU + E_0$$
 (6),589 $E_d = k_d CU + E_0$ (7),590where E_w and E_d are the error rates, and k_w and k_d are cost factors for work and delay trials, respectively.591 CU is the number of remaining cost units, and E_0 is the intercept. We simultaneously fitted a pair of592these linear models to the data by sum-of-squares minimization without weighting. The coefficient of593determination (R^2) was reported as a measure of goodness of fit.594

595 Acknowledgements

- 596 We thank R. Suma, T. Okauchi, Y. Sugii, R. Yamaguchi, Y. Matsuda, and J. Kamei for their technical
- 597 assistance, and K. Oyama for discussion. We also thank to Dr. M-R. Zhang and his colleagues at

598 Department of Radiopharmaceuticals Development, NIRS/QST for producing the radioligands. A

- 599 Japanese monkey used in this study was provided by National Bio-Resource Project "Japanese
- 600 Monkeys" of the MEXT, Japan.

601

586

602 References

Hori et al.

1. Berridge KC. Motivation concepts in behavioral neuroscience. Physiol Behav. 2004;81(2):179-

- 604 209. doi: 10.1016/j.physbeh.2004.02.004.
- 605 2. Minamimoto T, La Camera G, Richmond BJ. Measuring and modeling the interaction among
- 606 reward size, delay to reward, and satiation level on motivation in monkeys. J Neurophysiol.
- 607 2009;101(1):437-47. doi: 10.1152/jn.90959.2008.
- 3. Zahrt J, Taylor JR, Mathew RG, Arnsten AF. Supranormal stimulation of D1 dopamine receptors
- in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci.
- 610 1997;17(21):8528-35. doi: 10.1523/jneurosci.17-21-08528.
- 4. Fiorillo CD, Tobler PN, Schultz W. Discrete coding of reward probability and uncertainty by
- dopamine neurons. Science. 2003;299(5614):1898-902. doi: 10.1126/science.1077349.
- 5. Kobayashi S, Schultz W. Influence of reward delays on responses of dopamine neurons. J Neurosci.
- 614 2008;28(31):7837-46. doi: 10.1523/jneurosci.1600-08.2008.
- 615 6. Ravel S, Richmond BJ. Dopamine neuronal responses in monkeys performing visually cued
- 616 reward schedules. Eur J Neurosci. 2006;24(1):277-90. doi: 10.1111/j.1460-9568.2006.04905.x.
- 617 7. Tobler PN, Fiorillo CD, Schultz W. Adaptive coding of reward value by dopamine neurons.
- 618 Science. 2005;307(5715):1642-5. doi: 10.1126/science.

619	8.	Varazzani C.	, San-Galli A	, Gilardeau S	, Bouret S.	Noradrenaline	and Do	pamine 1	Neurons i	n the

- 620 Reward/Effort Trade-Off: A Direct Electrophysiological Comparison in Behaving Monkeys. J
- 621 Neurosci. 2015;35(20):7866-77. doi: 10.1523/ jneurosci.0454-15.2015.
- 622 9. Walton ME, Bouret S. What Is the Relationship between Dopamine and Effort? Trends Neurosci.
- 623 2019;42(2):79-91. doi: 10.1016/j.tins.2018.10.001.
- 624 10. Cools R, Nakamura K, Daw ND. Serotonin and dopamine: unifying affective, activational, and
- decision functions. Neuropsychopharmacology. 2011;36(1):98-113. doi: 10.1038/npp.2010.121.
- 626 11. Niv Y, Joel D, Dayan P. A normative perspective on motivation. Trends Cogn Sci.
- 627 2006;10(8):375-81. doi: 10.1016/j.tics.2006.06.010.
- 628 12. Berridge KC. The debate over dopamine's role in reward: the case for incentive salience.
- 629 Psychopharmacology (Berl). 2007;191(3):391-431. doi: 10.1007/s00213-006-0578-x.
- 630 13. Le Bouc R, Rigoux L, Schmidt L, Degos B, Welter ML, Vidailhet M, et al. Computational
- 631 Dissection of Dopamine Motor and Motivational Functions in Humans. J Neurosci.
- 632 2016;36(25):6623-33. doi: 10.1523/jneurosci.3078-15.2016.
- 633 14. Muhammed K, Manohar S, Ben Yehuda M, Chong TT, Tofaris G, Lennox G, et al. Reward
- 634 sensitivity deficits modulated by dopamine are associated with apathy in Parkinson's disease. Brain.
- 635 2016;139(Pt 10):2706-21. doi: 10.1093/brain/aww188.

Hori et al.

636	15. Salamone JD, Correa M. Motivational views of reinforcement: implications for understanding the
637	behavioral functions of nucleus accumbens dopamine. Behav Brain Res. 2002;137(1-2):3-25. doi:
638	10.1016/s0166-4328(02)00282-6.
639	16. Walton ME, Kennerley SW, Bannerman DM, Phillips PE, Rushworth MF. Weighing up the
640	benefits of work: behavioral and neural analyses of effort-related decision making. Neural Netw.
641	2006;19(8):1302-14. doi: 10.1016/j.neunet.2006.03.005.
642	17. Buyukdura JS, McClintock SM, Croarkin PE. Psychomotor retardation in depression: Biological
643	underpinnings, measurement, and treatment. Prog Neuro-Psychoph. 2011;35(2):395-409. doi:
644	10.1016/j.pnpbp.2010.10.019.
645	18. Demyttenaere K, De Fruyt J, Stahl SM. The many faces of fatigue in major depressive disorder.
646	Int J Neuropsychoph. 2005;8(1):93-105. doi: 10.1017/S1461145704004729.
647	19. Salamone JD, Yohn SE, Lopez-Cruz L, San Miguel N, Correa M. Activational and effort-related
648	aspects of motivation: neural mechanisms and implications for psychopathology. Brain.
649	2016;139(Pt 5):1325-47. doi: 10.1093/brain/aww050.
650	20. Choi WY, Morvan C, Balsam PD, Horvitz JC. Dopamine D1 and D2 Antagonist Effects on
651	Response Likelihood and Duration. Behav Neurosci. 2009;123(6):1279-87.
652	doi:10.1037/a0017702

Hori et al.

653	21. Pattij T, Janssen MC, Vanderschuren LJ, Schoffelmeer AN, van Gaalen MM. Involvement of
654	dopamine D1 and D2 receptors in the nucleus accumbens core and shell in inhibitory response
655	control. Psychopharmacology (Berl). 2007;191(3):587-98. doi: 10.1007/s00213-006-0533-x.
656	22. Bardgett ME, Depenbrock M, Downs N, Points M, Green L. Dopamine Modulates Effort-Based
657	Decision Making in Rats. Behav Neurosci. 2009;123(2):242-51. doi: 10.1037/a0014625.
658	23. Denk F, Walton ME, Jennings KA, Sharp T, Rushworth MF, Bannerman DM. Differential
659	involvement of serotonin and dopamine systems in cost-benefit decisions about delay or effort.
660	Psychopharmacology (Berl). 2005;179(3):587-96. doi: 10.1007/s00213-004-2059-4.
661	24. Salamone JD. Dopamine, effort, and decision making: theoretical comment on Bardgett et al.
662	(2009). Behav Neurosci. 2009;123(2):463-7. doi: 10.1037/a0015381.
663	25. Wade TR, de Wit H, Richards JB. Effects of dopaminergic drugs on delayed reward as a measure
664	of impulsive behavior in rats. Psychopharmacology. 2000;150(1):90-101.
665	doi:10.1007/s002130000402.
666	26. Farde L, Nordström A, Wiesel F, Pauli S, Halldin C, Sedvall G. Positron emission tomographic
667	analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical
668	neuroleptics and clozapine. Relation to extrapyramidal side effects. Archives of general psychiatry.
669	1992;49(7):538. doi:10.1001/archpsyc.1992.01820070032005.

Hori et al.

670	27. Kapur S, Zipursky R, Jones C, Remington G, Houle S. Relationship between dopamine D(2)
671	occupancy, clinical response, and side effects: a double-blind PET study of first-episode
672	schizophrenia. Am J Psychiatry. 2000;157(4):514-20. doi: 10.1176/appi.ajp.157.4.514.
673	28. Takano A, Suhara T, Maeda J, Ando K, Okauchi T, Obayashi S, et al. Relation between cortical
674	dopamine D(2) receptor occupancy and suppression of conditioned avoidance response in non-
675	human primate. Psychiatry Clin Neurosci. 2004;58(3):330-2. doi: 10.1111/j.1440-
676	1819.2004.01240.x.
677	29. Wadenberg ML, Kapur S, Soliman A, Jones C, Vaccarino F. Dopamine D2 receptor occupancy
678	predicts catalepsy and the suppression of conditioned avoidance response behavior in rats.
679	Psychopharmacology (Berl). 2000;150(4):422-9. doi: 10.1007/s002130000466.
680	30. Wadenberg ML, Soliman A, VanderSpek SC, Kapur S. Dopamine D(2) receptor occupancy is a
681	common mechanism underlying animal models of antipsychotics and their clinical effects.
682	Neuropsychopharmacology. 2001;25(5):633-41. doi: 10.1016/S0893-133X(01)00261-5.
683	31. Halldin C, Gulyas B, Farde L. PET studies with carbon-11 radioligands in
684	neuropsychopharmacological drug development. Curr Pharm Des. 2001;7(18):1907-29. doi:
685	10.2174/1381612013396871.

Hori et al.

686 32. Ishiwata K, Kawamura K, Kobayashi T, Matsuno K. Sigma1 and dopamine D2 receptor occupanc	686	32. Ishiwata K, Kawamura K	, Kobayashi T, Matsuno K. Sig	gma1 and dopamine D2	receptor occupancy
--	-----	----------------------------	-------------------------------	----------------------	--------------------

- 687 in the mouse brain after a single administration of haloperidol and two dopamine D2-like receptor
- 688 ligands. Nucl Med Biol. 2003;30(4):429-34. doi: 10.1016/s0969-8051(03)00003-9.
- 689 33. Nordstrom AL, Farde L, Halldin C. Time course of D2-dopamine receptor occupancy examined
- by PET after single oral doses of haloperidol. Psychopharmacology (Berl). 1992;106(4):433-8.
- 691 doi: 10.1007/bf02244811.
- 692 34. Bouret S, Richmond BJ. Sensitivity of locus ceruleus neurons to reward value for goal-directed
- 693 actions. J Neurosci. 2015;35(9):4005-14. doi: 10.1523/jneurosci.4553-14.2015.
- 694 35. Eldridge MA, Lerchner W, Saunders RC, Kaneko H, Krausz KW, Gonzalez FJ, et al.
- 695 Chemogenetic disconnection of monkey orbitofrontal and rhinal cortex reversibly disrupts reward
- 696 value. Nat Neurosci. 2016;19(1):37-9. doi: 10.1038/nn.4192.
- 697 36. Fujimoto A, Hori Y, Nagai Y, Kikuchi E, Oyama K, Suhara T, et al. Signaling Incentive and Drive
- in the Primate Ventral Pallidum for Motivational Control of Goal-Directed Action. J Neurosci.
- 699 2019;39(10):1793-804. doi: 10.1523/jneurosci.2399-18.2018.
- 700 37. Nagai YJ, Kikuchi E, Lerchner W, Inoue K, Ji B, Eldridge MAG, et al. PET imaging-guided
- 701 chemogenetic silencing reveals a critical role of primate rostromedial caudate in reward evaluation.
- 702 Nat Commun. 2016;7:13605. doi:10.1038/ncomms13605.

Hori et al.

703	38. Weed MR, Gold LH. The effects of dopaminergic agents on reaction time in rhesus monkeys.
704	Psychopharmacology (Berl). 1998;137(1):33-42. doi: 10.1007/s002130050590.
705	39. Muller U, von Cramon DY, Pollmann S. D1- versus D2-receptor modulation of visuospatial
706	working memory in humans. J Neurosci. 1998;18(7):2720-8. doi:10.1523/jneurosci.18-07-02720.
707	40. Sawaguchi T, Goldman-Rakic PS. D1 dopamine receptors in prefrontal cortex: involvement in
708	working memory. Science. 1991;251(4996):947-50. doi: 10.1126/science.1825731.
709	41. Salamone JD, Steinpreis RE, McCullough LD, Smith P, Grebel D, Mahan K. Haloperidol and
710	nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food
711	consumption in a novel food choice procedure. Psychopharmacology. 1991;104(4):515-21.
712	doi:10.1007/BF02245659.
713	42. Minamimoto T, Yamada H, Hori Y, Suhara T. Hydration level is an internal variable for computing
714	motivation to obtain water rewards in monkeys. Exp Brain Res. 2012;218(4):609-18. doi:
715	10.1007/s00221-012-3054-3.
716	43. Minamimoto T, Hori Y, Richmond BJ. Is working more costly than waiting in monkeys? PLoS
717	One. 2012;7(11):e48434. doi: 10.1371/journal.pone.0048434.
718	44. Kravitz AV, Freeze BS, Parker PRL, Kay K, Thwin MT, Deisseroth K, et al. Regulation of
719	parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature.
720	2010;466(7306):622-U7. doi: 10.1038/nature09159.

Hori et al.

721	45. Simmons JM, Minamimoto T, Murray EA, Richmond BJ. Selective ablations reveal that orbital
722	and lateral prefrontal cortex play different roles in estimating predicted reward value. J Neurosci.
723	2010;30(47):15878-87. doi:10.1523/jneurosci.1802-10.2010.
724	46. Callicott JH, Mattay VS, Bertolino A, Finn K, Coppola R, Frank JA, et al. Physiological
725	characteristics of capacity constraints in working memory as revealed by functional MRI. Cereb
726	Cortex. 1999;9(1):20-6. doi:10.1093/cercor/9.1.20.
727	47. Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AFT. Inverted-U dopamine D1
728	receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci.
729	2007;10(3):376-84. doi:10.1038/nn1846.
730	48. Richfield EK, Penney JB, Young AB. Anatomical and affinity state comparisons between
731	dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience. 1989;30(3):767-
732	77. doi: 10.1016/0306-4522(89)90168-1.
733	49. Dreyer JK, Herrik KF, Berg RW, Hounsgaard JD. Influence of Phasic and Tonic Dopamine
734	Release on Receptor Activation. J Neurosci. 2010;30(42):14273-83. doi: 10.1523/jneurosci.1894-
735	10.2010.
736	50. Pardo M, Lopez-Cruz L, San Miguel N, Salamone JD, Correa M. Selection of sucrose
737	concentration depends on the effort required to obtain it: studies using tetrabenazine, D1, D2, and

Hori et al.

738	D3	receptor	antagonists.	Psychopharmacology	(Berl).	2015;232(13):2377-91.	doi:
739	10.1	007/s00213	-015-3872-7.				

- 51. Von Huben SN, Davis SA, Lay CC, Katner SN, Crean RD, Taffe MA. Differential contributions
- of dopaminergic D1- and D2-like receptors to cognitive function in rhesus monkeys.
- 742 Psychopharmacology (Berl). 2006;188(4):586-96. doi: 10.1007/s00213-006-0347-x.
- 52. Wang S, Hu SH, Shi Y, Li BM. The roles of the anterior cingulate cortex and its dopamine
- receptors in self-paced cost-benefit decision making in rats. Learn Behav. 2017;45(1):89-99. doi:
- 745 10.3758/s13420-016-0243-0.
- 53. Joutsa J, Voon V, Johansson J, Niemela S, Bergman J, Kaasinen V. Dopaminergic function and
- intertemporal choice. Transl Psychiatry. 2015;5:e491. doi: 10.1038/tp.2014.133.
- 54. Pine A, Shiner T, Seymour B, Dolan RJ. Dopamine, time, and impulsivity in humans. J Neurosci.
- 749 2010;30(26):8888-96. doi: 10.1523/jneurosci.6028-09.2010.
- 55. Cardinal RN, Robbins TW, Everitt BJ. The effects of d-amphetamine, chlordiazepoxide, alpha-
- flupenthixol and behavioural manipulations on choice of signalled and unsignalled delayed
- reinforcement in rats. Psychopharmacology. 2000;152(4):362-75. doi:10.1007/s002130000536.
- 56. van Gaalen MM, van Koten R, Schoffelmeer ANM, Vanderschuren LJMJ. Critical involvement
- of dopaminergic neurotransmission in impulsive decision making. Biol Psychiat. 2006;60(1):66-
- 755 73. doi: 10.1016/j.biopsych.2005.06.005.

Hori et al.

756	57. Evenden JL, Ryan CN. The pharmacology of impulsive behaviour in rats: the effects of drugs on
757	response choice with varying delays of reinforcement. Psychopharmacology (Berl).
758	1996;128(2):161-70. doi: 10.1007/s002130050121.
759	58. Rajala AZ, Jenison RL, Populin LC. Decision making: effects of methylphenidate on temporal
760	discounting in nonhuman primates. J Neurophysiol. 2015;114(1):70-9. doi:
761	10.1152/jn.00278.2015.
762	59. Lak A, Stauffer WR, Schultz W. Dopamine prediction error responses integrate subjective value
763	from different reward dimensions. Proc Natl Acad Sci U S A. 2014;111(6):2343-8. doi:
764	10.1073/pnas.1321596111.
765	60. Pasquereau B, Turner RS. Limited encoding of effort by dopamine neurons in a cost-benefit trade-
766	off task. J Neurosci. 2013;33(19):8288-300. doi: 10.1523/jneurosci.4619-12.2013.
767	61. Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. Annu Rev
768	Neurosci. 2011;34:441-66. doi: 10.1146/annurev-neuro-061010-113641.

769 62. Hikida T, Kimura K, Wada N, Funabiki K, Nakanishi S. Distinct roles of synaptic transmission in

- direct and indirect striatal pathways to reward and aversive behavior. Neuron. 2010;66(6):896-
- 771 907. doi: 10.1016/j.neuron.2010.05.011.

Hori et al.

772	63. Kupchik YM, Brown RM, Heinsbroek JA, Lobo MK, Schwartz DJ, Kalivas PW. Coding the
773	direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat
774	Neurosci. 2015;18(9):1230-2. doi: 10.1038/nn.4068.
775	64. Lee B, Groman S, London ED, Jentsch JD. Dopamine D2/D3 receptors play a specific role in the
776	reversal of a learned visual discrimination in monkeys. Neuropsychopharmacology.
777	2007;32(10):2125-34. doi: 10.1038/sj.npp.1301337.
778	65. Nagai Y, Minamimoto T, Ando K, Obayashi S, Ito H, Ito N, et al. Correlation between decreased
779	motor activity and dopaminergic degeneration in the ventrolateral putamen in monkeys receiving
780	repeated MPTP administrations: a positron emission tomography study. Neurosci Res.
781	2012;73(1):61-7. doi: 10.1016/j.neures.2012.02.007.
782	66. Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor
783	binding in PET using a simplified reference region model. Neuroimage. 1997;6(4):279-87. doi:
784	10.1006/nimg.1997.0303.
785	67. Jucaite A, Odano I, Olsson H, Pauli S, Halldin C, Farde L. Quantitative analyses of regional
786	[11C]PE2I binding to the dopamine transporter in the human brain: a PET study. Eur J Nucl Med
787	Mol Imaging. 2006;33(6):657-68. doi: 10.1007/s00259-005-0027-9.
788	68. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies.
789	Neuroimage. 1996;4(3 Pt 1):153-8. doi: 10.1006/nimg.1996.0066.

Hori et al.

- 69. Cunningham VJ, Rabiner EA, Slifstein M, Laruelle M, Gunn RN. Measuring drug occupancy in
- the absence of a reference region: the Lassen plot re-visited. J Cereb Blood Flow Metab.
- 792 2010;30(1):46-50. doi: 10.1038/jcbfm.2009.190.
- 70. Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using Ime4.
- 794 Journal of Statistical Software. 2015;67(1):1-48. doi: 10.18637/jss.v067.i01.

Hori et al.

795 Supporting information

796	S1 Table. Model comparison. <i>a(cond)</i> and <i>e(cond)</i> indicate the random effects of DAR blocking
797	treatment conditions on parameters a and e , respectively. AIC (Akaike's information criterion) is a
798	relative measure of quality for the models (#1-4). Δ AIC denotes difference from minimum AIC.
799	
800	S1 Fig. Occupancy estimation. Example of occupancy estimation based on modified Lassen plot of
801	[¹¹ C]SCH23390 PET data obtained from monkey DO. Colored dots represent the relationship between
802	decreased specific binding [i.e., BP_{ND} (baseline) – BP_{ND} (blocking)] and baseline [BP_{ND} (baseline)]
803	for each brain region under each blocking condition (indexed by color). Occupancy was determined
804	as a proportion of reduced specific binding to baseline, which corresponds to the slope of linear
805	regression. In this case, D_1 occupancy was 80%, 78%, 67%, and 26% for 100, 50, 30 and 10 μ g/kg
806	doses, respectively.
807	
808	S2 Fig. Comparable effects of D ₂ R antagonism between raclopride and haloperidol at similar
809	occupancy. (A) Occupancy of D_2R measured at striatal ROI is plotted against dose of raclopride. (B)
810	Error rates as a function of reward size for control (black) and after injection of raclopride (10 μ g/kg,

812 best-fit inverse function (*model* #1 in S1 Table).

811

47

i.m, left side) and haloperidol (10 µg/kg, i.m, right side) in monkey KN are plotted. Dotted curves are

Hori et al.

813

814	S3 Fig. Effect of D1R/D2R blockade on reaction time and error pattern. (A-B) Mean reaction time
815	as function of reward size for control and D_1R blockade conditions. (C-D) Late release rate (mean \pm
816	SEM) as function of reward size for control and D ₁ R blockade conditions. (E-H) Same as (A-D), but
817	for D ₂ R blockade. Data were obtained from monkey ST.
818	
819	S4 Fig. Little influence of DAR blockades on sucrose preference and blood osmolality. (A)
820	Sucrose preference index after administration of saline (Control), SCH23390 ($30\mu g/kg$, D_1), and
821	haloperidol ($10\mu g/kg$; D ₂ , day 0), respectively. (B) Blood osmolality measured in serum samples
822	obtained before (Pre) and after (Post) sucrose test. Filled circles and shades indicate median and raw

823 data points, while horizontal bars indicate SD.

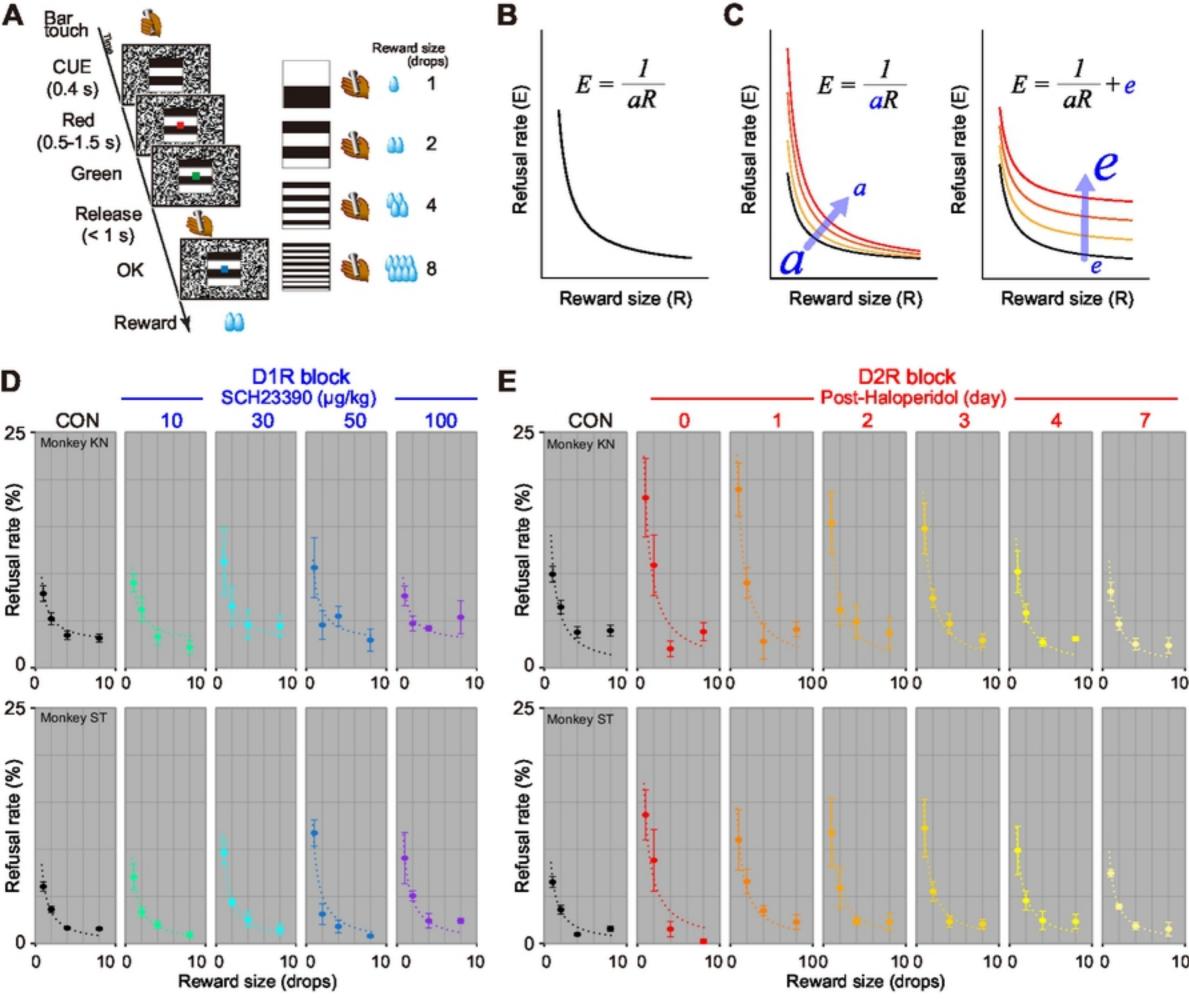
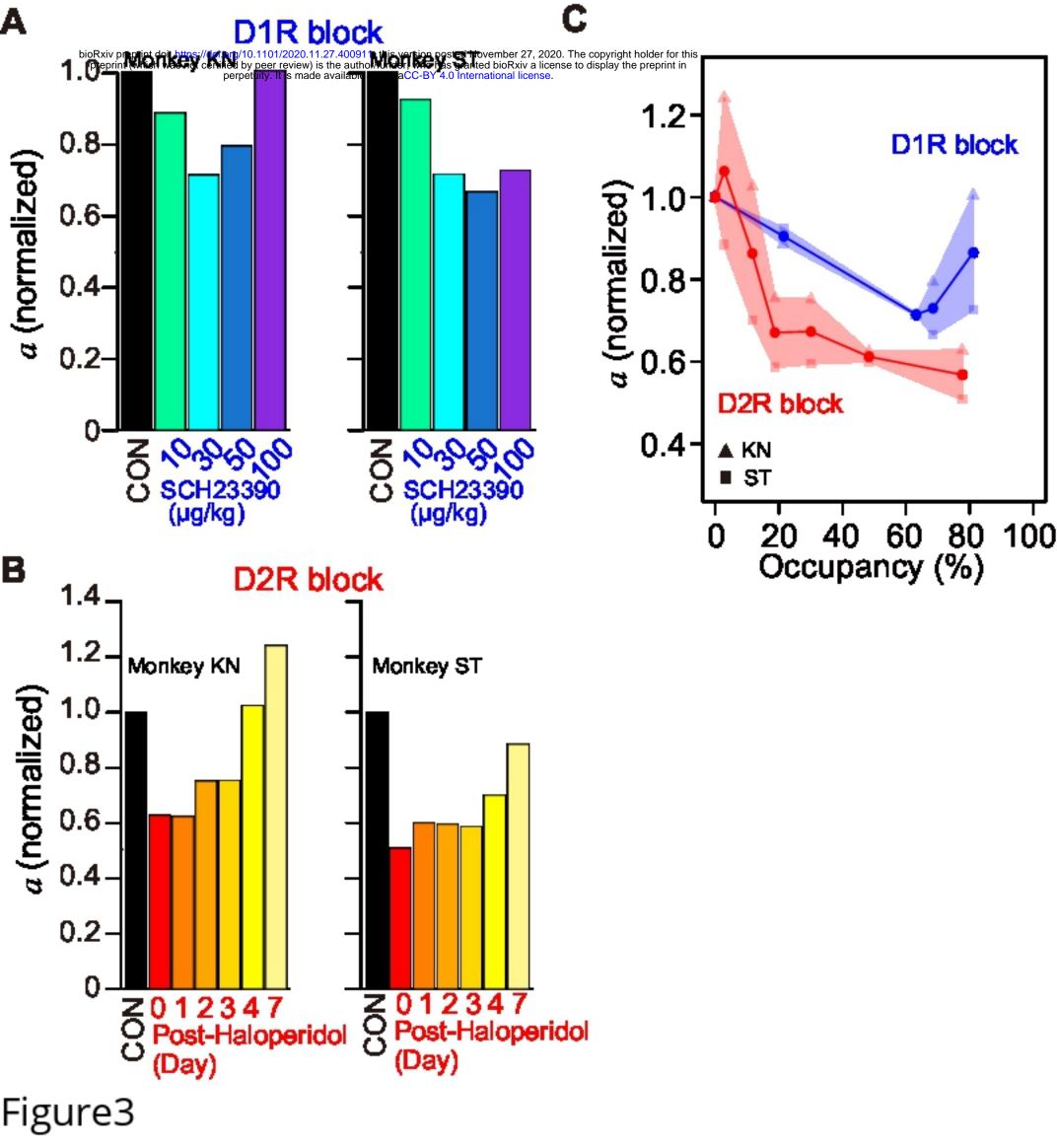
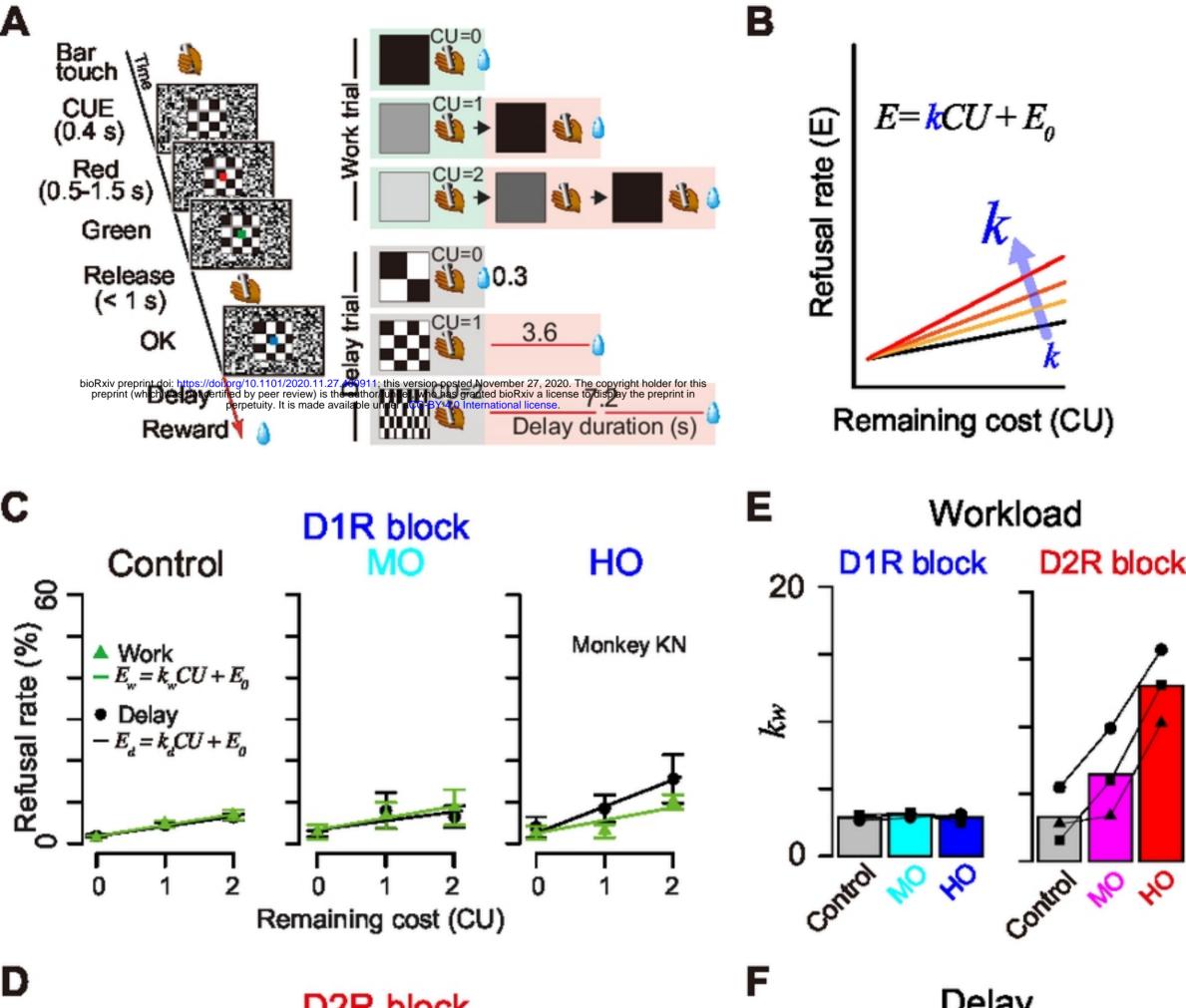
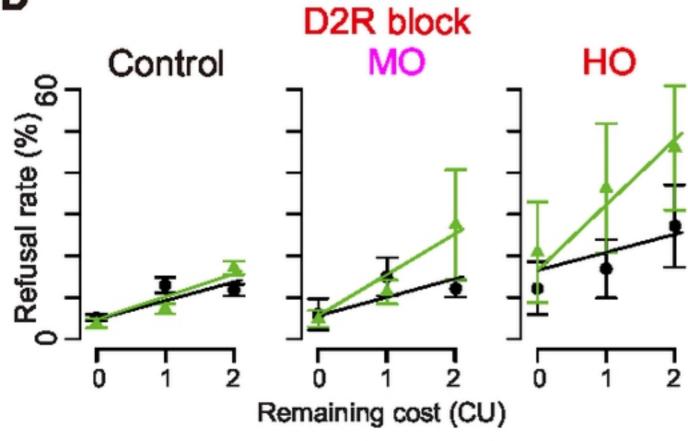





Figure2

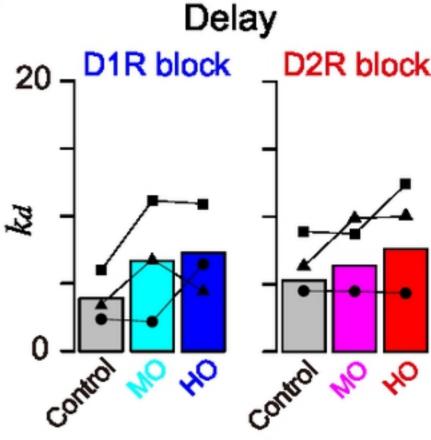
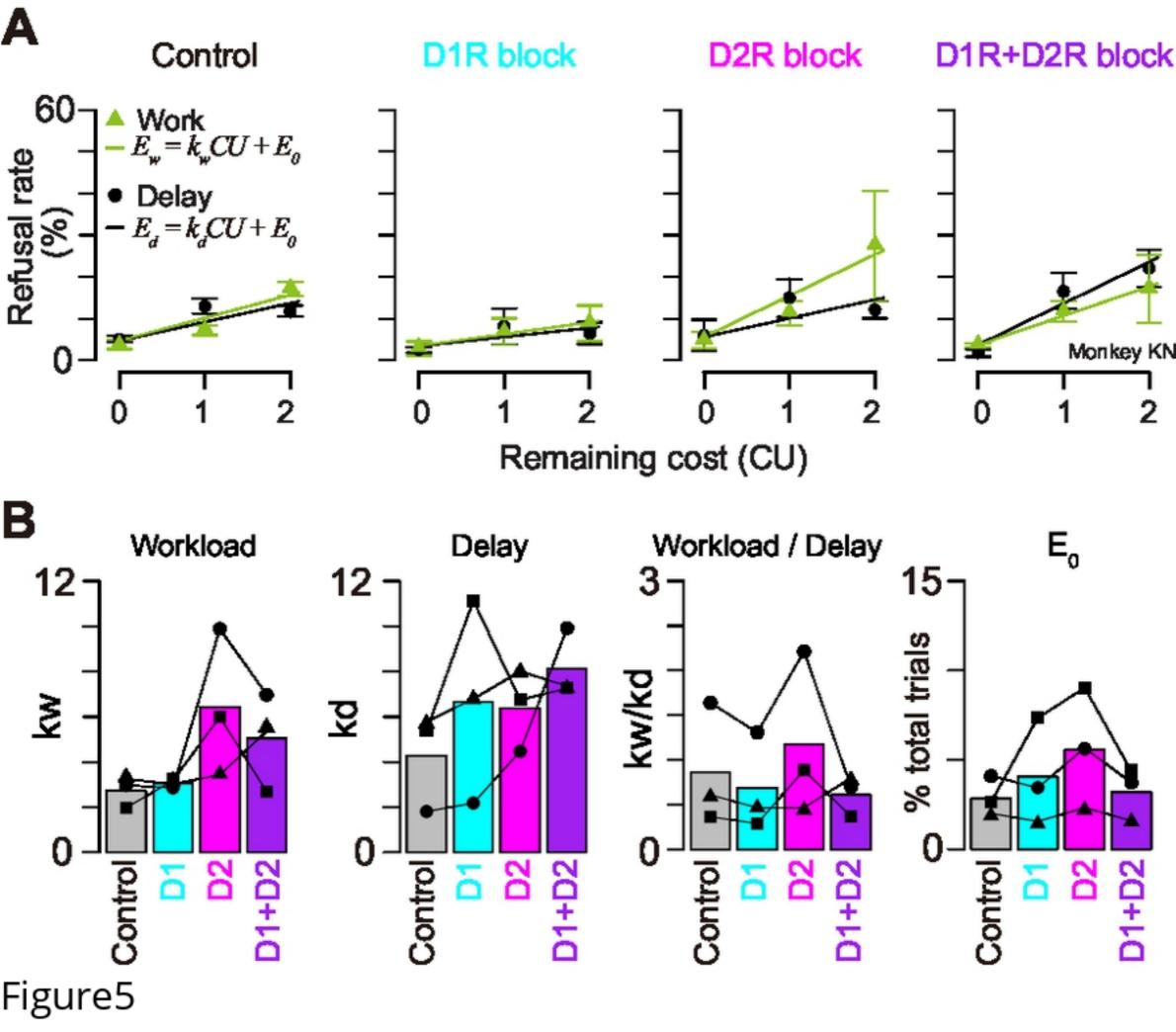



Figure4

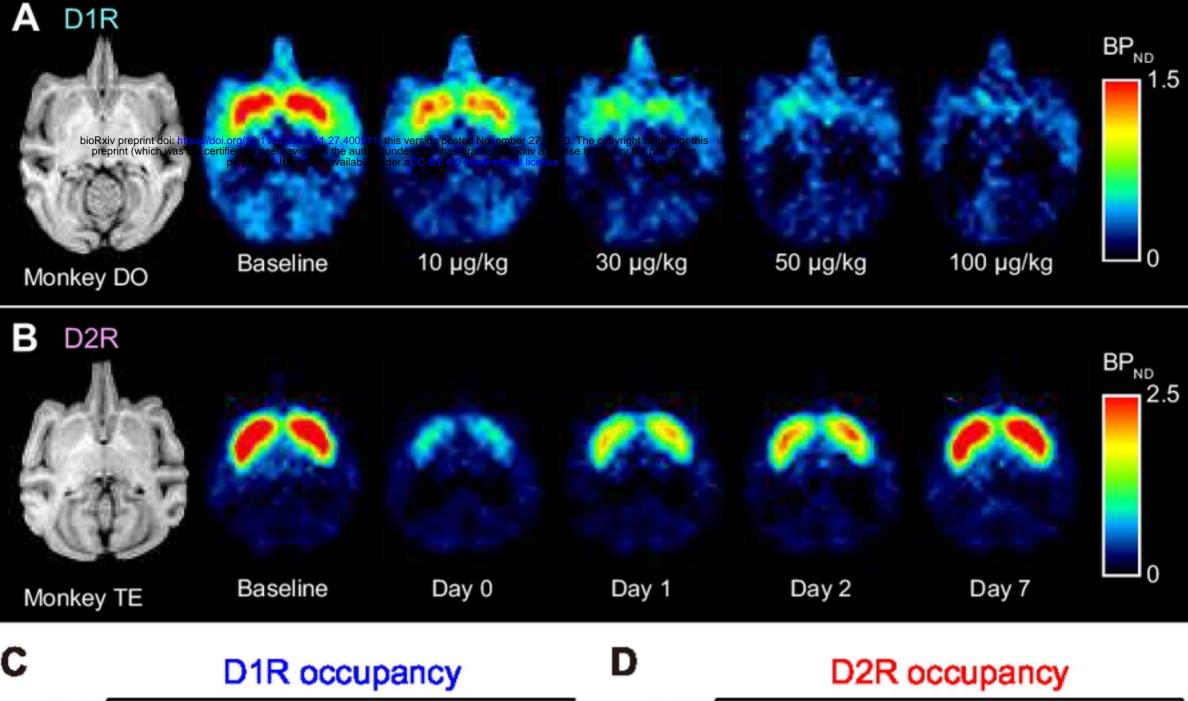


Figure1