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ABSTRACT 

Emerging evidence links genes within human-specific segmental duplications (HSDs) to traits and 

diseases unique to our species. Strikingly, despite being nearly identical by sequence (>98.5%), 

paralogous HSD genes are differentially expressed across human cell and tissue types, though the 

underlying mechanisms have not been examined. We compared cross-tissue mRNA levels of 75 HSD 

genes from 30 families between humans and chimpanzees and found expression patterns consistent with 

pseudo- or neofunctionalization. In general, ancestral paralogs exhibited greatest expression conservation 

with chimpanzee orthologs, though exceptions suggest certain derived paralogs may retain or supplant 

ancestral functions. Concordantly, analysis of long-read isoform sequencing datasets from diverse human 

tissues and cell lines found that about half of derived paralogs exhibited globally lower expression. To 

understand mechanisms underlying these differences, we leveraged data from human lymphoblastoid cell 

lines (LCLs) and found no relationship between paralogous expression divergence and post-

transcriptional regulation, sequence divergence, or copy number variation. Considering cis-regulation, we 

reanalyzed ENCODE data and recovered hundreds of previously unidentified candidate CREs in HSDs. 

We also generated large-insert ChIP-sequencing data for active chromatin features in an LCL to better 

distinguish paralogous regions. Some duplicated CREs were sufficient to drive differential reporter 

activity, suggesting they may contribute to divergent cis-regulation of paralogous genes. This work 

provides evidence that cis-regulatory divergence contributes to novel expression patterns of recent gene 

duplicates in humans. 
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INTRODUCTION 

Gene duplication occurs universally and is considered a major source of evolutionary novelty; across 

eukaryotes, over 30% of genes are thought to have arisen from duplications (Zhang 2003). Although most 

duplicated genes rapidly become pseudogenes, some may share and maintain important ancestral 

functions via subfunctionalization, or gain novel functions entirely (neofunctionalization) (Lynch 2000). 

Expression divergence is likely integral to the survival of paralogous genes, as spatiotemporal partitioning 

of function places both daughter paralogs under purifying selection helping them escape pseudogenization 

(Rodin and Riggs 2003; Rodin et al. 2005). This may be the primary driver of duplicate gene retention, as 

gene regulation can be altered relatively easily while coding sequences remain intact (Ohno 1970). For 

example, mouse Hoxa1 and Hoxb1 genes are functionally redundant but partitioned by expression, with 

normal development possible from a single gene under the control of regulatory elements from both 

paralogs (Tvrdik and Capecchi 2006). On a genome-wide scale, substantial expression divergence has 

been observed in vertebrates following whole-genome duplications specific to teleost and salmonid fishes 

(Kassahn et al. 2009; Braasch et al. 2016; Lien et al. 2016; Varadharajan et al. 2018). Meta-analysis 

suggests that across all these species, selection on gene-expression levels appears relaxed in one of the 

paralogs (Sandve et al. 2018). However, segmental duplications (SDs, regions defined as having >90% 

sequence similarity and being at least 1 kb in size (Bailey 2002)) occur more commonly in vertebrates 

than whole-genome duplications and concomitantly generate structural rearrangements, potentially 

facilitating regulatory divergence and duplicate retention (Rodin et al. 2005). Although comparative 

studies characterizing expression divergence of duplicated genes in humans, mice, and yeast have 

identified broad patterns of dosage sharing among daughter paralogs (Qian et al. 2010; Lan and Pritchard 

2016), younger, human-specific duplications have yet to be analyzed in this light. Further, no molecular 

explanations have been provided for the observed expression changes between paralogs. 

  

Great apes have experienced a surge of SDs in the last ~10 million years, primarily interspersed 

throughout the genome and potentially contributing to phenotypic differences observed between these 

closely related species (Prado-Martinez et al. 2013). Human-specific SDs (HSDs), which arose in the last 

~6 million years following the split of the human and chimpanzee lineages, contain genes that have 

compelling associations with neurodevelopmental features (Charrier et al. 2012; Dennis et al. 2012; 

Florio et al. 2015; Fiddes et al. 2018; Suzuki et al. 2018; Heide et al. 2020) and disorders (Dennis and 

Eichler 2016; Dennis et al. 2017; Ishiura et al. 2019). Historically, such young duplications have been 

poorly resolved in genome assemblies due to their high sequence similarity. Recent sequencing efforts 

targeted to HSDs have generated high-quality assemblies for many of these loci (Steinberg et al. 2012; 

Antonacci et al. 2014; O’Bleness et al. 2014; Dennis et al. 2017) resulting in the discovery of at least 30 
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gene families containing >80 paralogs uniquely duplicated in humans. Most derived HSD genes encode 

putatively functional proteins and exhibit divergent expression patterns relative to ancestral paralogs 

across numerous primary tissues, despite HSDs being nearly identical by sequence (on average ~99.5%) 

(Dennis et al. 2017). Although there are examples of HSD genes exapting novel promoters and exons at 

the site of insertion (Dougherty et al. 2017), this cannot explain expression divergence that exists among 

whole-gene duplications. Differential regulation may be intertwined with associations of species-specific 

active chromatin modifications at SD loci (Giannuzzi et al. 2014) but historical reference errors and 

computational challenges in short-read mapping to highly-similar sequences has resulted in poorly 

annotated epigenetic information at duplicated loci (Chung et al. 2011; Ebbert et al. 2019). 

 

In this study, we characterized patterns of regulatory divergence observed for HSD genes between 

humans and chimpanzees by quantifying cross-tissue conservation of orthologous gene expression. We 

found that even the youngest of duplicate genes have diverged in expression and, by comparing 

expression divergence between ancestral and derived paralogs, have begun to infer functional HSD genes. 

We leveraged genomic and epigenomic data from hundreds of human lymphoblastoid cell lines (LCLs) to 

identify differentially expressed (DE) ancestral-derived gene pairs and examined potential molecular 

contributors to paralogous expression divergence, including copy-number (CN) variation, post-

transcriptional regulation, and cis-regulatory changes. Finally, we surveyed the active chromatin 

“landscape” for HSDs by reanalyzing ENCODE histone-modification chromatin immunoprecipitation 

sequence (ChIP-seq) data, produced a novel “longer-read” ChIP-seq dataset to improve the unique 

alignment rate in SDs, and functionally validated candidate cis-regulatory elements (cCREs) via a 

reporter assay. Overall, our work demonstrates that cis-regulatory divergence, among other mechanisms, 

drives differential expression following gene duplication and that useful regulatory information can be 

rescued from existing datasets for duplicated loci. 

 

RESULTS 

Conservation of HSD gene expression following duplication 

To assess the evolutionary trajectory of recent human duplicated genes, we quantified expression of 75 

HSD genes from 30 gene families for which high-  confidence sequences were available (Dennis et al. 

2017) (Table S1). Unlike previous work examining tandem gene duplicates in humans (Lan and Pritchard 

2016), the SDs comprising these genes duplicated in an interspersed manner on the same chromosomes, 

often hundreds of kilobases away, with only two of the 30 gene families residing on separate 

chromosomes. Each HSD gene family corresponded to a single-copy chimpanzee ortholog and multiple 

(2–4) human paralogs. If known, we classified the human paralog syntenic with the chimpanzee gene as 
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ancestral and the human-specific paralog(s) as derived (Figure 1A, Table S1). To interpret the 

evolutionary fate of these genes, we compared expression of HSD paralogs (individual or summed) to 

chimpanzee orthologs using mRNA-sequencing (RNA-seq) data from three cell lines and four primary 

tissues (Khan et al. 2013; Pavlovic et al. 2018; Marchetto et al. 2019; Blake et al. 2020) using a 

lightweight mapping approach that shows high accuracy for paralogous genes (Soneson et al. 2015; Patro 

et al. 2017). Derived HSD paralogs tended to exhibit lower expression than the chimpanzee ortholog, 

summed family expression was mostly higher, and ancestral paralogs were less likely to be DE (9/21 

expressed ancestral genes showed no differential expression across all cell/tissue types versus 6/37 of 

expressed derived genes; p=0.028, Fisher’s Exact Test) (Figure 1B, Table S2). This suggests that 

ancestral genes most likely retain their functions, while derived paralogs diverge or pseudogenize.  

 

We next considered expression correlation across the four tissue types and three cell lines as a proxy for 

expression conservation between human genes and their chimpanzee orthologs. Our expectation was that 

in the case of subfunctionalization, the summed expression of all HSD paralogs would correlate best with 

chimpanzee expression, while all individual paralogs would be less correlated; and in the cases of 

pseudogenization or neofunctionalization, a single paralog   would exhibit high correlation with 

chimpanzee expression (Braasch et al. 2018; Sandve et al. 2018). We found that derived HSD paralogs 

exhibited significantly lower expression conservation than ancestral paralogs or summed expression, 

which were statistically equivalent (Kruskal-Wallis test followed by Dunn’s test, Benjamini-Hochberg 

adjusted p<0.05; Figure 1C). This pattern is broadly consistent with maintenance of the ancestral paralog 

and divergence of expression patterns of the others via pseudogenization or neofunctionalization. Further, 

the most conserved gene in each family was usually the ancestral paralog (14/22 of known status, 

p<0.001, hypergeometric test). Nevertheless, eight derived paralogs did show strongest conservation of 

expression with chimpanzee orthologs, including HIST2H2BA, OR2A42, and SERF1B, and represent 

candidates of new duplicates usurping functions of their ancestral gene, or the ancestral gene gaining 

novel expression patterns. We also considered relative expression levels between species and found that 

across tissues, ancestral paralogs trended toward higher expression than derived paralogs (Kruskal-Wallis 

test followed by Dunn’s test, Benjamini-Hochberg adjusted p=0.058; Figure 1D). As expected, summed 

HSD expression was significantly higher than ancestral or derived paralogs alone. Taken together, these 

results indicate uneven maintenance of expression by ancestral HSD paralogs, which is not consistent 

with subfunctionalization via dosage sharing among daughter paralogs for most gene families. 

 

These results are concordant with our previous finding that derived paralogs globally show a reduction of 

expression relative to ancestral paralogs, with some exceptions, across diverse human tissues and cell 
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lines from the Genotype-Tissue Expression project (Dennis et al. 2017). To validate this with a strict 

alignment-based approach, we used long-read PacBio isoform sequencing (Iso-Seq) data, which maps to 

paralogous loci with higher confidence, from a panel of 24 human biosamples and cell lines 

(Encyclopedia of DNA Elements (ENCODE) project). From this, we again found globally reduced 

expression of derived paralogs: 21/41 derived genes were expressed at a level below their ancestral 

paralog, while two derived genes were higher (p<0.05, Wilcoxon Signed-Rank test with Benjamini-

Hochberg correction; Figure S1). Though results should be interpreted cautiously given the low read 

depth and small number replicates for each biosample, we also observed certain derived paralogs exhibit 

Figure 1. Expression patterns of HSD genes between species. (A) Illustration of genes residing within HSDs; 
the ancestral paralog (blue) corresponds to the chimpanzee ortholog, while derived paralogs (yellow) are human-
specific. The ancestral and derived genes comprise a gene family. (B) HSD gene expression differences between 
humans and chimpanzees in three cell lines and four primary tissues. Cells are colored by the log2-fold change of 
human versus chimpanzee expression. Gray cells indicate non-expressed genes. Differential expression results 
are provided in Table S4. (C, D) Comparison of human gene expression with chimpanzee orthologs. Violin and 
box plots represent cross-tissue expression correlations (C) and relative expression levels (log2 ratio of human 
versus chimpanzee expression) (D). HSD genes of known evolutionary status were classified as ancestral (blue) 
or derived (yellow) and compared with the aggregated gene family expression (green). P-values were calculated 
from Dunn’s post-hoc test of a Kruskal-Wallis test. Expression correlations of one-to-one orthologs are visualized 
for reference. 
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greater expression than the ancestral paralog in individual tissues or cell types; one compelling example 

was diverged expression of ARHGAP11B in excitatory neurons, which matches published findings related 

to the novel function of this gene in the human cortex (Florio et al. 2015; Kalebic et al. 2018; Heide et al. 

2020).  

 

Expression of HSD paralogs in lymphoblastoid cell lines (LCLs) 

We next focused on LCLs to gain a more detailed understanding of HSD expression patterns across 

hundreds of individuals with matched genomic data. We estimated transcript abundance using RNA-seq 

data from 462 human LCLs (Lappalainen et al. 2013) (Table S3) and found high concordance with 

expression estimates from Iso-Seq data from the LCL GM12878 (Pearson’s r=0.94 for 72 genes common 

to both analyses). We determined that over half (43/75) of HSD paralogs were expressed above one 

transcript per million (TPM), with the most highly expressed genes including ARHGAP11A; ROCK1; the 

adjacent GTF2I and NCF1 families; and the DUSP22 family, whose derived paralog DUSP22B is missing 

from the human reference (GRCh38) (Dennis et al. 2017). Comparing expression profiles within gene 

families, derived and ancestral paralogs globally showed divergent expression levels. In families with at 

least one expressed gene, all 31 derived genes showed significant differences from their ancestral 

counterpart, with a median TPM difference greater than two-fold observed in 20 of these. As was found 

across other cells/tissues, in most cases (25/31) the derived gene had lower expression, which we 

confirmed for three highly expressed gene families with RT-qPCR and Iso-Seq data (Figures 2A, S2, and 

Table S4). We noted that some paralogs exhibited clusters of outlier values for derived/ancestral 

expression ratios that could not be reconciled as copy number (CN) or population of origin differences 

(Figure S3). Altogether, these results indicate that paralogous HSD genes show divergent expression 

patterns in LCLs. 

 

CN variation and HSD expression 

While the genes in this study were chosen for being nearly fixed in modern human populations (Dennis et 

al. 2017), SD loci are known to be subject to recurrent rearrangement and consequently exhibit varying 

degrees of CN polymorphism. Understanding that CN variation can alter gene expression levels (Stranger 

et al. 2007), we sought to characterize its impact on differential expression of HSD genes. After 

performing paralog-specific CN genotyping (Shen and Kidd 2020) of a subset of individuals for which 

1000 Genomes Illumina sequences were available (N=445), we found gene expression was positively 

associated with CN in about half (28/55) of genes in expressed families (Table S5), indicating that higher 

CN often but not always translates to increased expression. Notably, derived genes tended to have higher 

CN (1.3-fold on average, across all assayed genes and individuals) but lower expression overall. We next  
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Figure 2. Differential expression of HSD genes in human LCLs. (A) Expression divergence of derived genes 
is plotted as the log2 ratio of median derived and ancestral expression for families with at least one LCL-
expressed paralog. Each point represents an LCL from the Geuvadis consortium (total N=445) (Lappalainen et al. 
2013). The gray bar indicates a two-fold expression difference. (B) Expression values of ancestral DUSP22 
(white) and derived DUSP22B (gray), stratified by CN. The number of individuals represented in each CN 
category is denoted over each boxplot. (C) Derived/ancestral fold-differences in expression determined from 
paralog-specific qPCR in control (white) and NMD-inhibited (gray) LCLs (N=4). Statistical significance in panels 
C–E was assessed with a Wilcoxon signed-rank test. (D) Absolute value of expression divergence of ancestral-
derived gene pairs, stratified by identical or non-identical 3′ UTRs. (E) Comparison of expression divergence 
across truncation status for all expressed ancestral-derived gene pairs. (F, G) Scatterplot of the absolute value of 
expression divergence versus pairwise nucleotide identity for all expressed ancestral-derived gene pairs for whole 
duplicons (F) and promoters (G). Regression lines (black) and 95% confidence intervals are shown, along with 
the Pearson correlation coefficient (r) and significance of the regression slope (p). 
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used linear regression to remove the effect of CN from these comparisons and found 23/25 derived 

paralogs were still DE with respect to the ancestral (six were not tested due to paralog-specific effects of 

CN; Table S4). For example, while expression of DUSP22B was significantly associated with CN, these 

effects were insufficient to explain DE relative to DUSP22 (Figure 2B). Thus, while CN differences alter 

the mRNA abundance of HSD paralogs, they do not provide an explanation for overall DE of these genes. 

 

Post-transcriptional regulation of HSD genes 

In order to determine if paralogous expression differences are driven by post-transcriptional regulation, 

we next considered whether HSD transcripts were being processed as nonfunctional pseudogenes. In this 

scenario, paralogs might be equally transcribed but differentially subject to degradation via nonsense-

mediated decay (NMD). To test this, we compared gene expression using available RNA-seq data from 

human NMD-deficient LCLs (N=4) against controls (N=2) (Nguyen et al. 2012) and found no HSD genes 

among identified DE genes. We also assessed directly if the ratio of derived to ancestral expression 

changed for each HSD gene family between NMD-deficient LCLs and controls and found no significant 

differences, though sample sizes were likely limiting (Figure S4). This result was largely recapitulated by 

paralog-specific RT-qPCR for three DE HSD genes families (ARHGAP11, DUSP22, and ROCK1) in four 

LCLs treated with the NMD-inhibiting drug emetine. Ratios of ROCK1P1/ROCK1 and 

DUSP22B/DUSP22 expression were unaltered by emetine treatment, while ARHGAP11B/ARHGAP11A 

expression ratio increased closer to one, consistent with NMD affecting ARHGAP11B, though not 

completely ‘rescuing’ derived expression levels to equal that of the ancestral (Figure 2C). ARHGAP11B is 

a 3′ truncation of ARHGAP11A, potentially explaining differences in transcript stability. Altogether, these 

results suggest that while NMD may alter steady-state expression levels of some HSD genes, it is not a 

primary driver of their differential expression. 

 

We also examined HSD 3′ untranslated regions (UTRs) for recognition sites of miRNAs expressed in 

LCLs (Lappalainen et al. 2013) (N=13 3′ UTRs of expressed gene families; mean 94 binding sites per 

UTR) using TargetScan (Agarwal et al. 2015). Although miRNA binding sites were nearly identical 

between paralogs, we unexpectedly observed significantly greater expression divergence between 

paralogs with identical 3′ UTRs (N=5) from those that differed (N=7) (Wilcoxon signed-rank test p<0.01, 

Figure 2D). While these data cannot rule out a role for miRNAs in HSD transcriptional regulation, this 

mechanism does not explain observed differential expression of expressed gene families with identical 3′ 

UTRs, such as DUSP22 and NCF1. 

 

Role of cis--regulation in HSD differential expression 
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We next aimed to determine if cis-regulatory changes contribute to expression divergence of HSDs. 

Because SDs often generate gene truncations and fusions with adjacent transcribed sequences (Dougherty 

et al. 2017), we reasoned that gains or losses of promoters or UTRs would likely cause large changes in 

gene expression. We compared relative expression by truncation status (5′-, 3′-, or non-truncated) of all 

derived genes in expressed families to their ancestral paralogs. Ancestral and derived genes had more 

similar expression levels in non-truncating duplications, while truncated genes tended to be less expressed 

than their ancestral paralogs, particularly 5′ truncations compared to all other HSD genes (p=0.057, t-test; 

Figure 2E), in concordance with previous findings (Dougherty et al. 2018). While we may have limited 

power to detect differences with our small number of genes, these results hint that promoter activity is an 

important determinant of differential expression patterns. Considering sequence-level changes more 

broadly, however, we observed no relationship between expression divergence and pairwise nucleotide 

divergence across entire duplicons or within promoters (Figure 2F–G). 

 

Given that the vast majority of paralog-specific variants (PSVs) distinguishing HSDs are unlikely to be 

functional, we used publicly available chromatin immunoprecipitation sequencing (ChIP-seq) datasets 

from the ENCODE project (Consortium and The ENCODE Project Consortium 2012; Davis et al. 2018) 

to identify likely CREs (H3K4me3, H3K4me1, H3K27ac, and RNA PolII) in a single LCL for which a 

wealth of functional genomic data exists (GM12878). In each data set, we observed a lower density of 

bases covered by peaks in SDs (>90% similarity) and HSDs (>98% similarity) compared to randomly 

sampled regions of equivalent size (empirical p=0.001, N=1000 replicates; Figure 3, in yellow). We posit, 

as others have previously (Chung et al. 2011; McVicker et al. 2013; Giannuzzi et al. 2014), that this 

discrepancy is an artifact of the high sequence similarity of SDs, with reads originating from these regions 

often discarded when mapping to multiple locations of the genome. 

 

To recover this missing information, we implemented a pipeline that allowed reads to align to multiple 

locations in the genome and then, using CSEM (Chung et al. 2011), iteratively weighted alignments based 

on the nearby unique mapping rate. Selecting the most likely alignment to allocate a read (i.e., mapping 

position with the highest posterior probability), we improved peak discovery in SDs and HSDs for the 

aforementioned chromatin features, erasing the depletion for all but H3K27ac, which was still 

substantially improved (Figure 3, in blue). The peaks we discovered largely overlapped with the 

ENCODE peaks, though RNA PolII had a large proportion of peaks unique to our multi-mapping analysis 

(Figure S5). Using this new dataset, we observed greater enrichment of H3K27ac at the ancestral 

DUSP22 versus DUSP22B, which we verified at three PSVs using ChIP-qPCR (1.1–2.9-fold difference 

of ChIP signal; 1.1–2.9-fold difference of dCt values) (Figure S6A). We also noted a correlation of  
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Figure 3. Depletion and recovery of ChIP peaks in SDs. (A) The fraction of bases covered by peaks (solid 
vertical line) was computed in SDs (top) and HSDs (SDs >98% sequence identity, bottom) for three ChIP-seq 
peak discovery approaches: publicly-available ENCODE peaks (yellow), peaks from multi-mapping and CSEM 
allocation of ENCODE raw data (blue), and peaks from multi-mapping and CSEM allocation of large-insert 
ChIP-sequencing (“long ChIP”)  data from this publication (magenta). SD coordinates were permuted 1000 
times within the human reference (GRCh38), and an expected distribution of the fraction of bases covered was 
generated. Empirical one-sided p-values for depletion are indicated in each graph. (B) Chromatin landscape at 
the chromosome 7q11.23 HSD locus. The ancestral locus (top) and one of its derived loci (bottom) are shown 
with paralog-specific variants (PSVs) (black), genes (gray), and luciferase-tested regions (green). Candidate 
cis-regulatory elements (cCREs) were identified with an 8-state ChromHMM model of GM12878 H3K4me3, 
H3K4me1, and H3K27ac data from multi-mapping reanalysis of ENCODE and long ChIP data after CSEM 
allocation (enhancer states in light and dark purple and promoter states in blue). H3K27ac ChIP-seq data 
(signal and peak calls) are also shown in yellow, blue, and magenta for published ENCODE, reanalyzed 
ENCODE + CSEM, and long ChIP, respectively. 
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DUSP22/DUSP22B expression divergence (Pickrell et al. 2010) (Table S3) and differential H2K27ac 

enrichment at these PSVs (Figure S6B). These findings suggest that reanalysis of ChIP-seq data can 

accurately identify enriched regions at HSD loci, uncovering potentially divergent regulatory 

environments. 

 

Improved peak discovery using longer-read ChIP-seq 

To improve our ability to align reads accurately to specific paralogs, we generated longer-read (~500 bp 

insert size, 2x250 bp PE Illumina) ChIP-seq (“long ChIP”) libraries (H3K4me3, H3K27ac, H3K4me1, 

and RNA PolII) from the LCL GM12878. Longer reads mapped to SDs with greater accuracy (Figure 

S7A), allowing for higher-confidence discovery of novel peaks in duplicated regions using standard 

single-site mapping approaches. However, all marks except H3K4me1 were still depleted for peaks in 

SDs relative to the rest of the genome. Subsequently, we analyzed the long ChIP data allowing for 

multiple alignments and probabilistically assigned reads to one position (Bowtie and CSEM, Figures 3 

and S7B). Long ChIP showed increased posterior assignment probabilities with respect to the short-read 

ENCODE data (Figure S7B), and the depletion of peaks in SDs was erased for H3K4me3, H3K4me1, and 

PolII (Figure 3, in pink). Notably, for most libraries, fewer overall peaks were identified with long ChIP 

versus ENCODE data, though the peaks that did exist were largely replicated (on average, 73% of long 

ChIP peaks corresponded to an ENCODE peak (Chikina and Troyanskaya 2012); Figure S8). Long ChIP 

peaks tended to be larger with 2.4–3.7 times as many bases per peak except H3K4me1, which had slightly 

smaller peaks. 

 

To identify putatively functional cis-regulatory regions within HSDs, we integrated our reanalyzed 

ENCODE and long ChIP data into two 8-state chromHMM models (Ernst and Kellis 2012), from which 

we identified active promoter- and enhancer-like states that we considered to be cCREs (Figure S9). This 

generated a novel set of cCREs in SDs, as virtually no information is available in the current ENCODE 

release for these loci (Figure 3B). Because derived gene expression is broadly lower than ancestral, we 

quantified the proportion of cCREs covering HSDs in 100-kb windows and observed no significant 

differences between ancestral and derived loci (defined in Dennis, 2017) (Wilcoxon rank-sum test; Figure 

S10A‒B). We also observed no differences in the fraction of bases covered between ancestral and derived 

regions in individual ChIP-seq datasets: H3K27ac, H3K4me3, H3K27ac (data not shown), and 

heterochromatic H3K27me3 domains (Figure S10C). Thus, explanations beyond the overall abundance of 

chromatin features are needed, as important functional changes in CRE activity may not be reflected in 

global differences. We did identify differences in presence or absence of individual cCREs, suggesting a 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2021. ; https://doi.org/10.1101/2020.11.27.401752doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.401752
http://creativecommons.org/licenses/by-nc-nd/4.0/


    12 

more nuanced approach is necessary in pinpointing mechanisms contributing to paralogous expression 

differences (Figure 3B). 

 

Impact of non-duplicated regions on HSD gene regulation  

HSDs are often transposed many thousands of kilobases from their ancestral loci, and in some cases to 

different chromosomes. As such, we sought to understand if cCREs outside of our duplicated regions 

might contribute to paralog-specific regulatory patterns. To do this, we considered physical contacts 

generated by chromatin looping of HSD promoters with cCREs outside of HSD regions. Using loops 

identified in GM12878 from promoter capture Hi-C (Mifsud et al. 2015) and H3K27ac HiChIP 

(Mumbach et al. 2017; Juric et al. 2019), we identified 352 and 26 promoter-interacting regions, 

respectively (mean size ~5 kb). We found 59 ENCODE multi-mapping and 106 long ChIP cCREs 

interacting with an HSD gene promoter. For instance, a chromatin loop connects the ARHGAP11A 

promoter with a cCRE overlapping its non-duplicated 3′-UTR (Figure 4A). The majority (>90%) of 

promoter-interacting regions reside outside of HSDs, in part due to limitations of Hi-C analysis across 

duplicated loci (Zheng et al. 2019). These findings indicate that proximal non-duplicated loci may play a 

regulatory role in regulating duplicated genes. 

 

We next performed expression quantitative trait locus (eQTL) mapping of HSD genes using our 

reanalyzed RNA-seq data and existing variant calls from the 1000 Genomes Project (N=460) (Genomes 

Project, Consortium et al. 2015). From this, we identified 40 HSD genes with significant eQTLs, an 

increase of 1.5- to 4-fold from published work (Lappalainen et al. 2013; Wen et al. 2015). These eQTLs 

consisted of 3,279 variants in 8,774 gene-variant pairs. A majority (68%) of eQTLs were located within 

annotated SDs, but variants identified within SDs are often unreliable (Hartasánchez et al. 2018; Ebbert et 

al. 2019). Accordingly, we focused on the 1,049 eQTLs in SD-proximal non-duplicated regions and 

found 439 of them had single-gene associations. For example, four variants were associated with 

ARHGAP11A expression (Figure 4A), while none were identified for ARHGAP11B located ~2 Mb 

proximal to its ancestral locus. Similarly, four eQTLs were identified for DUSP22 on chromosome 6 

(Figure 4B), though all were located in an SD, while 26 variants were linked with the derived paralog 

DUSP22B on chromosome 16. We intersected SD-proximal eQTLs with our cCREs, reasoning that 

functional elements would be sensitive to genetic variation and, thus, contain eQTLs. We found that five 

ENCODE multi-mapping and 15 long ChIP cCREs contained an HSD eQTL. Finally, 169 eQTLs fell 

within loci showing significant Hi-C interactions with HSD promoters (31 of these regions, total size 

~160 kb). For instance, the TCAF1 promoter interacts with a region ~170 kb downstream that is near two 
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SNPs associated with TCAF1 and TCAF2 expression (Figure 4C). Altogether, these findings highlight the 

potential for adjacent, unique sequences to drive divergent regulation of HSDs genes. 

 

 

 
  

Figure 4. HSD gene regulation in adjacent, non-duplicated sequence. Additional regulatory features were 
examined in the vicinity of the HSD loci, including (A) ARHGAP11A at chromosome 15q13.1, (B) DUSP22 at 
chr6p25.3, and (C) TCAF1 at chr7q35. In each panel, SDs are depicted as gray (>90% identical), orange (>98% 
identical), and black (unannotated) bars. cCREs as defined in this publication are shown in light and dark purple 
(active enhancer states 1 and 2) and blue (active transcription start site), with luciferase-tested regions in green. 
eQTLs defined in this publication and regions previously found to interact with HSD promoters are shown for focal 
genes. Data were visualized in the UCSC Genome Browser (GRCh38). 
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Differential activity of cis-acting elements between paralogs 

Using our combined datasets, we examined three HSD loci containing gene families expressed most 

highly in LCLs (ARHGAP11, NCF1, and DUSP22) to identify functional changes in CREs that may 

contribute to paralogous expression divergence (Figures 5, S11–S13). In all three cases, the ancestral 

paralog exhibited significantly greater expression compared to derived paralog(s) (Figure 5A). To 

determine if sequence differences within CREs identified from our chromHMM annotations were 

sufficient to drive differences in gene expression, we performed luciferase reporter assays on paralogous 

promoters and enhancer candidates in HeLa cells and LCLs. 

 

ARHGAP11A/ARHGAP11B 

The promoter of ARHGAP11B exhibited greater activity compared to the chimpanzee ortholog and 

ancestral paralog in both HeLa and LCLs (~4-fold difference in activity between HSD paralogs, p<5×10-

10 in both cell lines; Figures 5B, S14A, S15A). This was in contrast to mRNA levels in LCLs, where the 

ancestral ARHGAP11A was more highly expressed. With no CREs identified within the shared 

ARHGAP11 HSD,  we posited that distal elements may drive differential expression between these 

paralogs. We identified putative enhancers unique to each paralog outside of the shared HSD, which 

comprised one downstream of the ARHGAP11A duplicon (that was also found to interact with the 

promoter from our Hi-C analysis) and two downstream of ARHGAP11B. In HeLa cells, the ARHGAP11A 

element showed weak repressive activity (0.3-fold difference, p<2×10-16), while the ARHGAP11B 

elements showed modest activity over baseline (~2-fold difference, p<2×10-14 each), leaving the primary 

driver of differential expression for these genes as yet determined (Figures 5C, S14B). 

 

NCF1/NCF1B/NCF1C 

Promoters of the ancestral NCF1 and its derived paralogs NCF1B and NCF1C genes did not exhibit 

significant differential activities in LCLs and modest differences in HeLa (0.8-fold difference, p<0.001; 

Figures 4A, S14A, S15A). However, an enhancer element common to all three paralogs showed the 

greatest activity for the ancestral NCF1 paralog in both cell types. This was concordant with differential 

mRNA levels (~3-fold difference over either derived in LCL; p<0.002 for all comparisons) (Figures 5, 

S15B). Thus, this enhancer, if targeted to NCF1 and its paralogs, may contribute to differences in their 

mRNA levels. 

 

DUSP22/DUSP22B 

DUSP22 (ancestral) and DUSP22B (derived) promoters showed differential activity concordant with their 

gene expression in both HeLa and LCLs (i.e., the human ancestral paralog exhibited significantly greater  
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Figure 5. Functional characterization of cCREs in HSDs. cCREs (putative promoters and enhancers) from 
three HSD duplicate gene families (ARHGAP11, NCF1, and DUSP22) were tested in luciferase reporter assays 
for activity. (A) Cartoons indicating the relative locations of each candidate sequence within or adjacent to HSDs 
(thick, colored arrows). All experiments (Figures S14‒S15) are summarized as follows: inactive sequences are 
shown with a small dot, enhancer sequences are shown with a diamond, and silencer sequences are shown with 
a square; differentially active derived sequences (relative to ancestral) are marked with a plus or minus sign; 
elements tested (and validated) in LCLs are indicated with a check mark. (B) mRNA levels (TPM) for the three 
tested HSD gene families in human LCLs (N=445). (C) Representative luciferase reporter experiments for 
promoters of the paralogous HSD genes and orthologous chimpanzee sequences in HeLa cells. Significantly 
different activity (p<0.05, Tukey’s post-hoc test of ANOVA) from the negative control is indicated along the top bar 
over each panel, and significant differences among homologous sequences are indicated between boxplots. The 
p-values for each comparison for all experiments are available in Table S6. (D) Representative luciferase reporter 
experiments for candidate enhancers from the same gene families in HeLa cells, with significant activity 
over/under baseline indicated along the top bar, and significant differences between paralogous sequences 
between boxplots (p<0.05, Tukey’s post-hoc test of ANOVA). 
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activity than both the human derived and chimpanzee ortholog; ~1.5-fold difference; p<5×10-13) (Figures 

5B, S14A, S15A). We also tested six putative enhancers shared between the two paralogs in HeLa cells 

and found four active elements, of which two showed differential activity opposite to that of gene 

expression and one tracked with differential paralog expression (Figure 5C). We subsequently validated 

the latter enhancer element in LCLs (~1.4-fold difference; p<2×10-16) (Figure S15C). From this, we 

concluded that the difference in promoter activity is the primary driver of DUSP22 and DUSP22B 

differential expression, though distal CREs also likely play a role in modulating transcription. Altogether, 

results from our reporter assays demonstrated that small sequence differences in HSDs can alter cis-

regulatory activity. 

 

DISCUSSION 

In this work, we provide evidence that recently duplicated, human-specific genes exhibit differential 

expression at least in part due to divergent cis-acting regulation. Historically, these regions have been 

poorly characterized genetically and epigenetically. Here, we performed an in-depth analysis of gene 

expression using tissues and cell lines from humans and chimpanzees and delved into putative regulatory 

mechanisms contributing to paralogous expression divergence, including contributions of CN variation, 

post-transcriptional modifications, and alterations of CREs via re-analysis of histone ChIP-seq data.  

 

Although previous work (Dennis et al. 2017; Dougherty et al. 2017) quantified HSD gene expression 

across human cells/tissues, we expanded our analysis to consider all annotated isoforms for each HSD 

gene, improved or created annotations for derived HSD genes, and orthogonally validated results using 

Iso-Seq data. By comparing expression of human and chimpanzee homologs, we assayed general 

mechanisms of duplicate gene fates at relatively short evolutionary time scales (<6 million years). In 

agreement with previous analysis of whole-genome duplications in teleost fishes (Sandve et al. 2018), we 

found that the dominant scenario for HSD genes involved a single paralog maintaining ancestral gene 

expression, perhaps due to purifying selection. This is largely consistent with nonfunctionalization or 

neofunctionalization of the other paralog(s). Some gene families (such as CD8B, GTF2IRD2, and NAIP) 

displayed patterns consistent with subfunctionalization, as their summed expression correlated better with 

that of chimpanzee than any individual paralog; however, in these cases the difference was small 

(difference in Pearson’s r <0.05 between sum and most correlated paralog). Unlike previous work that 

characterized duplication events hundreds of millions of years old (Braasch et al. 2016; Lien et al. 2016), 

HSDs arose very recently, suggesting that changes in expression were rapidly acquired. Our lack of 

evidence for dosage sharing stands in contrast to that of Qian et al. (2010), who reported an inverse 

relationship between gene expression and number of paralogs in duplicates arising since the split of the 
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human and mouse lineages, as well as the ancient split of the fission and budding yeasts (>300 million 

years). Additionally, a study by Lan and Pritchard (2016) found that mammalian tandem duplicated genes 

tend to be co-regulated and subfunctionalized by dosage, although they excluded many of the genes in our 

study due to high sequence identity; further, most HSD genes are interspersed at least many hundreds of 

kilobases from each other throughout the human genome. They and others (Rodin and Riggs 2003) 

suggest that divergence of gene regulation is more likely in the case of large genomic rearrangements, 

which can immediately place daughter paralogs in novel regulatory environments, such as topological 

domains, heterochromatin, or transcriptional hubs. We note that even very recent (<1 million years) 

duplications (Dennis et al. 2017), such as the gene families DUSP22, SERF1, SMN, TCAF1, and TCAF2, 

exhibited differential expression between paralogs, suggesting regulatory differences arose rapidly or 

existed at the time of duplication. 

 

We functionally investigated three of the highest LCL-expressed HSD gene families to better understand 

how altered CREs may contribute to paralogous expression divergence. Although LCLs may not 

represent the most biologically relevant system to characterize species-specific features commonly 

associated with humans, such as anatomical distinctions in brain and musculoskeletal features, there is 

evidence of immune-related differences across great apes (Barreiro et al. 2010). Further, it has been 

suggested that humans are more prone to autoimmune disease than chimpanzees, particularly as a result 

of T and B cell response to viral infection (Anon 2013; Anon 2017). Interestingly, ancestral NCF1, which 

encodes Neutrophil Cytosolic Factor 1, has been shown to regulate autoimmune response via T cell 

activation in mice (Hultqvist et al. 2004). CN differences of the gene and its derived full-length paralogs 

(NCF1B and NCF1C) are associated with reduced risk of systemic lupus erythematosus (Zhao et al. 

2017), suggesting an additive functional effect. DUSP22, which encodes a tyrosine phosphatase, is also a 

regulator of immune response, with knockout mice exhibiting increased inflammation and autoimmune 

encephalomyelitis as a result of enhanced T cell proliferation (Li et al. 2014). The full-length paralog 

DUSP22B is located at chromosome 16p12.1 at variable CN (Figure 2B) but functionally 

uncharacterized, as it is missing from the human reference. Thus, any information related to gene 

regulation may provide insights into the putative roles of these HSD paralogs in immune response and 

related disorders. For example, it is plausible that DUSP22B is functionally redundant with DUSP22 and 

expressed at variable dosage in humans, in a manner similar to NCF1. 

 

Our characterization of promoters and distal regulatory elements of these gene families uncovered 

potential drivers of differential expression. The ancestral DUSP22 promoter and an enhancer element 

upstream of NCF1 both exhibited activity patterns concordant with the mRNA levels of these gene 
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families for which the ancestral gene is most highly expressed. Searching for potential trans effectors, we 

identified an ancestral DUSP22 deletion of four bases in a homopolymer repeat, with as many as 13 

similar transcription-factor binding sites (TFBSs) found only in the less active DUSP22B and chimpanzee 

DUSP22 ortholog. Some of these belonged to transcriptional repressors (ZNF394 and ZNF350). 

Examining predicted TFBSs within NCF1 promoters, which did not exhibit differential activity, we 

observed no gains or losses of any TFBSs relative to chimpanzees. Puzzlingly, no predicted TFBSs were 

unique to the most active NCF1 enhancer, but the paralogous NCF1B and NCF1C possessed many 

TFBSs that were missing from the ancestral, at least one of which belonged to the transcriptional 

repressor ZNF394. Finally, we showed that the derived ARHGAP11B promoter exhibited greater strength 

in a reporter assay versus the ancestral ARHGAP11A ancestral paralog and chimpanzee ortholog in a 

luciferase reporter assay. We noted a single PSV that more than doubles the number of significant motif 

matches of the more active ARHGAP11B promoter for the transcriptional activators FLI1, GABPA, 

ETS1, and ELK1 (Figure S16). Based on chimpanzee homology, these are likely ARHGAP11A-specific 

losses, which matches its reduced activity relative to the derived paralog and chimpanzee ortholog (Figure 

5). While our reporter-assay results were discordant with the mRNA-expression levels of these paralogs 

in LCLs, they may help to explain the unique expression of ARHGAP11B in other cell types, such as 

cortical progenitor neurons (basal radial glia) (Florio et al. 2015). This highlights a need to expand our 

characterization of CREs to additional relevant cell types and systems, such as neurons and/or cortical 

organoids. Nevertheless, this study is the first to directly validate and compare CRE activities of recently 

duplicated paralogs in humans pointing to a variety of mechanisms contributing to differential expression 

in these gene families.  

 

Though this work represents an important step toward a more complete picture of the regulation of HSD 

genes, there are still some technical limitations to overcome. We implemented an alignment-free 

approach for transcript quantification, which accommodates ambiguous mappings resulting from methods 

and is demonstrated to accurately distinguish highly similar transcripts (Soneson et al. 2015; Patro et al. 

2017). However, reads originating from multiple transcripts are assigned probabilistically, and, as such, 

some genes may appear artificially similar in expression. For instance, DUSP22B expression was nonzero 

in individuals completely missing this paralog (Figure 2B) due to the recent nature of this duplication (<1 

million years), which has resulted in very few PSVs differentiating the duplicates at the mRNA level. 

Conversely, RNA-seq quantification of older gene families (such HIST2H2BF) appeared entirely 

distinguishable between paralogs. In addition, the available contigs of complete HSD loci have only been 

generated from a single haplotype (Dennis et al. 2017). As such, PSVs are not necessarily fixed, and may 

also be shared between genes (Dumont 2015). Accordingly, a more advanced understanding of genetic 
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variation at HSD loci is required to separate similarly expressed genes with maximum leverage. This 

would also allow for the identification of reliable eQTLs within duplications. We also find, as expected, 

that longer read lengths allow greater bioinformatic distinction between duplicated loci, which remains an 

inherent limitation of many existing data sources, such as the relatively short reads (~30 nt) of ENCODE 

ChIP-seq. While longer reads are fundamentally more informative, some discrepancies between the 

ENCODE and long ChIP CSEM analyses could be a result of misallocation of reads. We were 

encouraged to find that a standard single-mapping approach (bwa mem) identified novel peaks in HSD, 

albeit at a lower rate than genome-wide. As such, longer ChIP read lengths can be used in future studies 

to further describe the epigenetic state of duplicated loci with a broader array of epitopes and cell/tissue 

types. Finally, though we used existing chromatin conformation information to connect non-duplicated 

adjacent regions with HSD gene promoters, improved experimental and bioinformatic methods are 

required to accurately link distal CREs within SDs to their target promoters. Like other genomic assays, 

available chromatin interactions from Hi-C data are sparse in SD regions due to poor mapping quality at 

similar paralogs. To our knowledge, one method exists (mHiC) that allocates multi-mapping reads to their 

possible alignments (Zheng et al. 2019), similar to CSEM. Future work might discover interactions within 

duplicated regions by reanalyzing chromatin conformation data in the most recent human reference 

(GRCh38) with this tool. 

 

Despite limitations, we show that HSD regions contain differentially regulated genes and have identified 

potentially active chromatin in these regions. Using these data, we demonstrated that recently duplicated 

regulatory sequences are often functional, and that small sequence changes can significantly alter their 

activity. Our study did not identify a universal factor that gives rise to the observed differential expression 

between paralogs, and the underlying molecular mechanisms are likely unique to each HSD gene. In the 

three duplicate gene families tested, promoter activity is only sometimes concordant with overall gene 

expression, suggesting that other types of regulatory elements, like enhancers and silencers, may 

cooperatively control overall expression. Currently, the challenge is to pinpoint functional CREs impacted 

by PSVs or residing within non-duplicated regions that may differentially alter specific paralogs. We have 

produced and leveraged a variety of analyses to narrow down likely candidates by chromatin state, 

expression modulation, and physical proximity to promoters. However, the number of candidate regions 

is too great to test via low-throughput methods such as luciferase reporter assays. This problem is 

exacerbated by the need to compare regulatory behavior across multiple cell types. To address this, 

massively-parallel reporter assays should be employed to validate and quantify CRE activity of thousands 

of candidate paralogous sequences. Such data could determine to what extent HSD gene expression is 

predicted by nearby CRE activity. We could also integrate additional types of data, such as targeted 
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chromatin capture of CREs within SDs (such as 4C or capture Hi-C) or nascent transcription (GROseq, 5’ 

CAGE). Finally, characterization of DNA methylation, which is especially challenging in duplicated loci, 

will be vital to build a more complete picture of the epigenetic landscape of HSD loci. This study 

represents a first step toward improving quantification of gene expression and active chromatin states in 

recent duplications and provides a foundation for future work characterizing regulatory and functional 

changes in recently duplicated loci.  

 

MATERIALS AND METHODS 

Quantification of HSD gene expression 

The following aligned Iso-Seq filtered alignments were obtained from the ENCODE portal (Davis et al. 

2018) (https://www.encodeproject.org/): ENCFF225CCJ, ENCFF648NAR, ENCFF192PJS, 

ENCFF538BNH, ENCFF596ODX, ENCFF694CBG, ENCFF049QGQ, ENCFF846YHI, 

ENCFF600MGT, ENCFF810FRP, ENCFF479SQR, ENCFF504GVG, ENCFF731THW, 

ENCFF936VUF, ENCFF939EUU, ENCFF100RGC, ENCFF927MKK, ENCFF292UIE, 

ENCFF738RAA, ENCFF437SYY, ENCFF989FKA, ENCFF911RNV, ENCFF305AFY, ENCFF016SHE, 

ENCFF479EHE, ENCFF914XOH, ENCFF054YYA, ENCFF470UHX, ENCFF158KCA, 

ENCFF757LOZ, ENCFF809QBD, ENCFF779VVX, ENCFF971JDY, ENCFF319JFG, ENCFF901XCR, 

ENCFF117DUA, ENCFF772MSZ, ENCFF644PGG, ENCFF955XSL, ENCFF509GHY, ENCFF803KIA, 

ENCFF058HQU, ENCFF973OML, ENCFF745HHL, ENCFF472TSL. Reads were counted per HSD 

gene with HTSeq (Anders et al. 2015) before calculating RPKM values. For Figure S2B, DUSP22 and 

DUSP22B reads were counted separately based on PSV sequence using Samtools mpileup and the raw 

alignments in the following accessions: ENCFF132HLS, ENCFF234YIJ, ENCFF407TMX, 

ENCFF592BQN, ENCFF615XZM, ENCFF810UWA. 

 

Human and chimpanzee RNA-seq data were quantified alignment-free with a custom reference 

transcriptome. Due to poor annotation of many HSD paralogs, custom transcriptomes were generated to 

ensure equivalent isoform models for paralogous genes, biasing against differential expression. First, 

transcript sequences for ancestral genes were extracted from GENCODE and mapped to derived human 

loci (contig from (Dennis et al. 2017) or GRCh38 for SERF1B) and a long-read chimpanzee assembly 

(Kronenberg et al. 2018) using BLAT (Kent 2002). GENCODE v27 transcripts were used for human-

chimpanzee comparisons, since the chimpanzee transcriptome (Kronenberg et al. 2018) was built on this 

version; for human-only analyses, GENCODE v32 was used. Alignments were manually curated, and 

new derived transcripts were extracted from contigs. These transcripts, in addition to HSD transcripts 

generated from whole-isoform sequencing of brain tissue (Dougherty et al. 2018), were added to 
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GENCODE (human) or the chimpanzee (after aligning to the chimpanzee assembly) transcriptome. 

Expression quantification was performed using Salmon v1.2.0 (Patro et al. 2017), the custom 

transcriptomes, and reference genomes (GRCh38 or Kronenberg et al.) as a decoy sequence. For paired-

end data, we used the flags “--validateMappings” and “--gcBias”. RNA-seq data were first lightly 

trimmed prior to quantification using trim_galore (https://github.com/FelixKrueger/TrimGalore) with the 

following flags: -q 20 --illumina --phred33 --length 20. Length-normalized TPM values or counts per 

gene were obtained using the tximport package in R (Soneson et al. 2015). 

 

Differential expression analysis 

Human and chimpanzee RNA-seq data from four primary tissues (Blake et al. 2020), LCLs (Khan et al. 

2013; Blake et al. 2020), induced pluripotent stem cells (iPSCs) (Pavlovic et al. 2018), and iPSC-derived 

neural progenitor cells (Marchetto et al. 2019) were analyzed as described above. Count data from 

chimpanzee genes were duplicated to allow for pairwise comparison to each HSD duplicate, as well as the 

sum of all HSD genes in each family. Genes expressed below the 75% percentile (corresponding to 1-2 

counts per million reads) were filtered from the analysis, leaving 16,752–18,225 genes. A linear model 

including species and sex was fitted to each shared gene (N=55,461) using limma-voom (Law et al. 2014; 

Ritchie et al. 2015), and differentially expressed genes were identified at a 5% false discovery rate (FDR) 

(Nguyen et al. 2012). 

  

Copy number-controlled differential expression analysis 

Paralog-specific CN estimates were generated using QuicK-mer2 (Shen and Kidd 2020), whole-genome 

sequence data from the 1000 Genomes Project (30X) (Fairley et al. 2020), and a custom reference 

consisting of GRCh38 plus an additional contig representing the DUSP22B duplicon (Dennis et al. 2017). 

Expression analysis was performed using RNA-seq data from LCLs included in the Geuvadis study 

(Lappalainen et al. 2013) for which CN genotypes were generated (N=445). Ancestral-derived gene pairs 

were compared with a linear model to identify significant differences in log2-transformed TPM values 

after controlling for continuous CN genotypes. Models were first fit with an interaction coefficient, and if 

no interaction was detected (p > 0.05), models were fit to expression and CN only. Resulting p-values 

were corrected via the Benjamini-Hochberg procedure using the R package qvalue 

(http://github.com/jdstorey/qvalue) and used to identify differential expression of ancestral-derived gene 

pairs at a 5% FDR. For visualization purposes (Figure 2B), DUSP22 CN genotypes were adjusted to 

known values for GM12878 (as determined by fluorescence in situ hybridization in (Dennis et al. 2017)). 

 

Cell Culture 
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Human LCLs were obtained from the Coriell Institute. The cells were grown in suspension in RPMI 1640 

medium (Genesee Scientific) supplemented with 15% fetal bovine serum, 100 U/mL penicillin, and 100 

µg/mL streptomycin and maintained at 37°C with 5% CO2. To test the impact of NMD inhibition, two 

million cells of each LCL (GM19204, GM18508, GM19193, GM19238, GM12878, and 

S003659_Chimp1) were grown overnight and subsequently treated with 100 µg/ml of emetine (Sigma) 

for seven hours (Noensie and Dietz 2001). Parallel cultures were left untreated and grown at standard 

conditions. HeLa cells were grown in Dulbecco's Modified Eagle Medium (DMEM), High Glucose, with 

L-Glutamine (Genesee Scientific) supplemented with 10% fetal bovine serum (Gibco, Life 

Technologies), penicillin (100 U/mL) and streptomycin (100 µg/mL) (Gibco, Life Technologies) at 37°C 

with 5% CO2.  

 

RNA extraction and cDNA generation 

LCLs were harvested and added to an appropriate volume of TRIzol® solution (Invitrogen™) (1 ml per 

107 cells) and stored at -80°C for ~24 hr before extraction to ensure complete lysis of cells. The next day, 

200 µl of chloroform (Fisher Scientific) was added, and the homogenate was shaken vigorously for 20 

seconds and incubated at room temperature for 2–3 min. Samples were spun at 10,000×g for 18 min at 

4°C and the aqueous phase was transferred to a sterile RNase-free tube. An equal volume of 100% 

RNAse-free ethanol was added, samples were mixed by vortex, and then purified with an RNeasy Mini 

Kit (Qiagen). Samples were eluted in 30 µl RNase-free water and stored at -80°C. Transcriptor High 

Fidelity cDNA Synthesis Kit (Roche) was used for cDNA synthesis with OligodT primers. Following 

reverse transcription, samples were treated with RNase A (Qiagen) at 37°C, and cDNAs were stored at -

20°C. 

 

Identification of miRNA binding sites 

For ancestral paralogs of each HSD gene family, the 3′-UTR was extracted from canonical transcript 

isoforms using the UCSC Genome Browser (GRCh38) and compared using blastn (Altschul et al. 1990) 

against existing alignments of homologs previously generated for human, chimpanzee, and rhesus 

(Dennis et al. 2017). Using TargetScan 7.0 and annotated miRNA sequences and families (release 7.1; 

Sept 2016) (Agarwal et al. 2015), we identified miRNA targets of individual human paralogs and non-

human primate orthologs. 

 

Correlation of expression skew and sequence divergence 

Ancestral-derived paralog expression skew was calculated as the absolute value of 

log2(derived/ancestral), using the median TPM values for each gene and a pseudocount 1×10-4 (an order 
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of magnitude below the smallest nonzero value). Sequence divergence as the pairwise identity with the 

ancestral sequence was taken from (Dennis et al. 2017). Gene families were included if at least one 

paralog was expressed at a level >1 TPM. For promoters, sequence divergence was tabulated as the sum 

of all mismatches and alignment gaps within ±500 base pairs of the transcription start site (Gencode v32). 

These quantities were correlated and the strength of the relationship was determined with a linear 

regression. 

 

ChIP assays 

ChIP assays were carried out as previously described with minor modifications (O’Geen et al. 2019). 

GM12878 cells were cross-linked in growth media containing 1% formaldehyde (Fisher Scientific 

BP531) for 10 min at room temperature and the reaction was stopped with 0.125 M glycine. Cross-linked 

cells were washed twice in PBS and stored at -80°C. 2×106 cells were used per ChIP assay. Cells from 

two biological replicates were lysed with ChIP lysis buffer (5 mM PIPES pH8, 85 mM KCl, 1% Igepal) 

with a protease inhibitor (PI) cocktail (Roche). Nuclei were collected by centrifugation at 2,000 rpm. for 5 

min at 4°C and lysed in nuclei lysis buffer (50 mM Tris pH8, 10 mM EDTA, 1% SDS) supplemented 

with PI cocktail. Chromatin was fragmented in microTUBEs with the E220 (Covaris) using the low cell 

shearing protocol (Duty cycle 2%, PIP 105, CPB 200, 4 min) and diluted with 5 volumes of RIPA buffer 

(50 mM Tris pH 7.6, 150 mM NaCl, 1 mM EDTA pH8, 1% Igepal, 0.25% Deoxycholic acid). ChIP 

enrichment was performed by incubation for 16 h at 4°C with the following antibodies: 2 µg H3K27ac 

antibody (Active Motif #39133), 4 µg H3K4me1 antibody (Millipore 07-436), 2 µg H3K4me3 antibody 

(Active Motif #39915), or 2 µg RNA Polymerase II (PolII) antibody clone 8WG16 (Covance MMS-

126R). RNA PolII samples were incubated for an additional hour with 2 µg Rabbit Anti-Mouse IgG (MP 

Biomedical #55436). Immune complexes were bound to 20 µl magnetic protein A/G beads 

(ThermoFisher) for 2 hours at 4°C. Beads were washed 2x with RIPA, 3x with ChIP wash buffer (100 

mM Tris pH8, 500 mM LiCl, 1% Deoxycholic acid) and once with ChIP wash buffer plus 150 mM NaCl. 

ChIP samples were eluted in 100 µl ChIP elution buffer (50 mM NaHCO3, 1% SDS) and cross-linking 

reversed with addition of 0.5 M NaCl and heating at 65°C overnight. Samples were treated with 2 µg 

RNaseA (Qiagen) and DNA was purified using the QIAquick PCR Purification Kit (Qiagen). ChIP 

enrichments were confirmed by qPCR with 2× SYBR FAST mastermix (KAPA Biosystems) using the 

CFX384 Real-Time System C1000 Touch Thermo Cycler (BioRad). ACTB primers served as positive 

control and HER2 primers as negative controls (Table S7). ChIP enrichment was calculated relative to 

input samples using the dCt method (dCt = Ct[HER2-ChIP]-Ct[input]). Each entire ChIP sample was used 

to prepare Illumina sequencing libraries using the KAPA Hyper Prep Kit (Roche). Adapter-ligated DNA 

was separated on a 2% E-Gel EX (Invitrogen) and the 500–800 bp fraction was excised and purified using 
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the QIAquick gel extraction Kit (Qiagen). Indexed primers were used to generate dual-indexed libraries 

and amplified libraries were size selected (500–700 bp) using the PippenHT (Sage Science).  Equimolar 

library amounts were pooled and sequenced on the NovaSeq SP (Illumina). 

 

Analysis of ChIP-seq data 

ChIP-seq peaks obtained with the ENCODE pipeline were directly downloaded from the ENCODE portal 

(Davis et al. 2018) (https://www.encodeproject.org/) for H3K4me3 (ENCFF228GWY), H3K27ac 

(ENCFF367KIF), H3K4me1 (ENCFF453PEP), POLR2A (ENCFF455ZLJ), and H3K27me3 

(ENCFF153VOQ).  For “short” ChIP-seq peak calling using raw ENCODE data, GM12878 ChIP-seq 

reads were downloaded from the ENCODE portal for RNA Polymerase II (ENCSR000AKA), H3K4me3 

(ENCSR000BGD), H3K4me1 (ENCSR000AKF), H3K27ac (ENCSR000AKC), and H3K27me3 

(ENCFF000OBB). Illumina adapters and low quality bases (Phred score < 20) were trimmed using 

Trimmomatic (Bolger et al. 2014) (parameters SLIDINGWINDOW:4:20 MINLEN:20) and aligned to a 

custom reference genome (GRCh38 with an added DUSP22B contig) using single-end Bowtie (Langmead 

et al. 2009) configured to allow multiple mappings per read (parameters a -v2 -m99). After mapping, PCR 

duplicates were removed using Picard Markduplicates and secondary alignments were removed with 

samtools v1.9. Multi-mapping reads were allocated to their most likely position using CSEM v2.4 (Chung 

et al. 2011). CSEM was run using the --no-extending-reads option and the fragment size was calculated 

with phantompeakqualtools run_SPP.R script (Landt et al. 2012). A custom script was developed to select 

the alignment with the highest posterior probability as assigned by CSEM for each multi-mapping read, 

choosing one alignment randomly in case of a tie. Peaks were called using MACS2 callpeak (v2.2.6) on 

default settings using MACS2’s shifting model (Zhang et al. 2008) (https://github.com/macs3-

project/MACS). Broad peaks were called at a FDR of 5%, while narrow peaks were called at a FDR of 

1%. BigWig files for peak’s visualization were obtained with MACS2 bdgcmp tool and UCSC 

bedGraphToBigWig. For H3K27me3, which occurs in large domains, enriched regions were identified 

with hiddenDomains (Starmer and Magnuson 2016). Paired-end long-ChIP reads were generated as 

described above. Illumina adapters were removed using Trimmomatic (parameters 

SLIDINGWINDOW:4:30 MINLEN:50). Reads were mapped using both paired-end BWA mem and 

single-end Bowtie allowing for multiple mappings (parameters  -a -n -S -e 200 -m 99). For single-end 

alignments, forward and reverse reads were concatenated into a single file and properly renamed to secure 

unique reads IDs. Reads aligned with BWA were filtered by MAPQ ≥ 20 while reads with multiple 

mappings aligned with Bowtie were allocated with CSEM and most likely alignments were selected with 

the custom script. Duplicates and secondary alignments were removed as explained above. Peaks were 

called using MACS2 with identical parameters used for short-reads, adding the BAMPE option in the 
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case of paired-end reads aligned with BWA mem. Sets of peaks were compared between analysis 

methods using HOMER mergePeaks (parameters: “-d given”) (Heinz et al. 2010) and a unidirectional 

correlation metric derived from IntervalStats using peaks with an overlap p-value below 0.05 (Chikina 

and Troyanskaya 2012). 

 

For depletion analyses, SD coordinates were directly downloaded from UCSC Table Browser and HSD 

coordinates were obtained by filtering alignments with sequence identity over 98% in the fracMatch 

column, converting them to BED format and merging overlapping entries using bedtools merge. The 

number of peaks and bases under peaks on each region of interest were obtained with bedtools intersect. 

To obtain depletion statistics, 1000 regions of the same size as SD and HSD were randomly sampled from 

the human genome GRCh38. Empirical p-values of depletion tests were calculated as p-value = 

(M+1)/(N+1), where M is the number of iterations less than the observed value and N is the number of 

iterations. 

 

Additionally, mapping quality scores (MAPQ) distributions for H3K27ac following a similar approach as 

explained before, but using BWA aln and BWA mem for short and long ChIP-seq reads respectively, 

after PCR duplicates and secondary alignments removal. Posterior probabilities distributions for 

H3K27ac were examined using the output of CSEM after selecting the most likely alignment with the 

custom script. Entries in unique space were subsampled to 10 million and plots were obtained with the 

geom_density function in ggplot R package. 

 

All ChIP-seq analyses are available as a TrackHub for the UCSC Genome Browser 

(https://bioshare.bioinformatics.ucdavis.edu/bioshare/download/cpqqdfge5lfvovq/hsd_noncoding/hub.txt)

. Further, the bioinformatic pipeline is freely available for use in Snakemake format 

(https://github.com/mydennislab/snake-chipseq), allowing the analysis to be replicated in any cell or 

tissue type of interest. 

 

Paralog-specific validation of RNA expression and ChIP data 

Following published protocols (Integrated DNA Technologies), we used the rhAMP assay in 10 µl total 

reaction volumes to quantify abundance of PSVs (for all assays except ARHGAP11 expression, the 

fluorophores FAM=A paralog and VIC=B paralog) as a proxy for paralog-specific expression (RNA) and 

enrichment (ChIP) (Table S7). We used 10 ng total of RNA converted to cDNA to validate gene 

expression for duplicated gene families ARHGAP11, ROCK1, and DUSP22. We calculated dCt of cDNA 

and gDNA as CtFAM-CtVIC and ddCt as dCtcDNA-dCtgDNA from the same cell line. We calculated dCt of the 
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input and ChIP-enriched library as CtFAM-CtVIC and ddCt as dCtChIP-dCtinput from the same cell line. For 

both expression and ChIP analyses, the ratio of abundance of the B to the A paralog is 2ddCt. 

 

ChromHMM annotations 

We generated ChromHMM (version 1.19) (Ernst and Kellis 2012) models separately for ENCODE short-

read data and long ChIP after multi-mapping and CSEM allocation, using active chromatin histone 

modifications (H3K4me3, H3K4me1, and H3K27ac). States corresponding to active transcription start 

sites and active enhancers were identified manually (Ernst and Kellis 2017). In the ENCODE analysis, 

promoters were assigned to state 1, which corresponded to active transcription start sites, and enhancers 

were assigned to state 8, which corresponded to active enhancers (Figure S9A). Similarly, in the long 

ChIP analysis, promoters were assigned to state 3 and active enhancers were assigned to states 6; state 4 

was considered to be an additional enhancer state lacking enrichment in H3K4me1 (Ernst and Kellis 

2017) (Figure S9B). Together, these sets of elements were defined as cCREs. 

 

Luciferase reporter assays 

Promoters of highly and differentially expressed HSD gene families (ARHGAP11, NCF1, and DUSP22) 

were chosen for screening in a reporter assay. Fragments containing the TSS and spanning ~1 kb were 

amplified with KpnI and SacI restriction sites included in primers (Table S7) and cloned into the 

luciferase reporter vector pGL3-basic (Promega). Candidate enhancers within 50 kb of genes bodies were 

selected based on the presence of ChromHMM CREs in the re-analyzed data from human LCLs. Target 

regions were a maximum size of 5 kb, and peaks larger than this were tiled with multiple targets. Gateway 

homology arms were added to primers in accordance with the manual (ThermoFisher), and PCR products 

were cloned into the entry vector pDONR221 (ThermoFisher 12536017). Expression clones for luciferase 

assays were generated by cloning pDONR221 inserts into the luciferase reporter pE1B (Antonellis et al. 

2008) with the Gateway system.  

 

Constructs were co-transfected (ThermoFisher Lipofectamine 3000) in equimolar amounts with 50 ng of 

the control plasmid pRL-TK (Renilla luciferase) into HeLa cells in 96-well plates. Cells were at 70-90% 

confluence at the time of transfection. Luciferase assays were performed with the Dual-Luciferase 

Reporter Assay System (Promega E1910). 48 hours post-transfection, cells were washed with PBS, and 

lysed with Passive Lysis Buffer for at least 15 min sharking at 500 rpm. Lysates were stored at -80C. For 

LCLs, cells were split 48 and 24 hours pre-transfection to ensure active division. Cells were counted, 

washed in PBS, and resuspended such that each transfection contained 12.5×106 cells, 6.25 ug of test 

construct, and equimolar pRL-TK in RPMI. Cells were electroporated using the Neon Transfection 
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System in accordance with previously published work (Tewhey et al. 2018) and recovered at a density of 

3×106 cells/mL in pre-warmed RPMI including 15% FBS without antibiotics. Transfection efficiencies of 

~15% were achieved. To perform luciferase assays, ~5×105 cells were pipetted into each well of a 96-well 

plate, washed with PBS, and lysed with Passive Lysis Buffer as described for HeLa. Luminescence 

measurements were performed according to the manufacturer’s instructions using a Tecan Infinite or 

Tecan Spark plate reader with injectors. 

 

Transcription factors binding motifs 

Alignments of cloned sequences were scanned for HOmo sapiens COmprehensive MOdel COllection 

(HOCOMOCO) v11 (Kulakovskiy et al. 2018) TFBS motifs using FIMO (Grant et al. 2011). 

HOCOMOCO motifs were limited to transcription factors expressed above 1 TPM in >75% of ENCODE 

mRNA-seq libraries generated for GM12878 (ENCSR077AZT, ENCLB555AQG, ENCLB555AQH, 

ENCLB555ANP, ENCLB555ALI, ENCLB555ANM, ENCLB555ANN, ENCLB037ZZZ, 

ENCLB038ZZZ, ENCLB043ZZZ, ENCLB044ZZZ, ENCLB041ZZZ, ENCLB042ZZZ, ENCLB045ZZZ, 

ENCLB046ZZZ, ENCLB700LMU, ENCLB150CGC). Significant matches above a 5% FDR were 

retained for the analysis. TFBSs were compared across homologous sequences to identify putative 

paralog-specific gains and losses of binding sites. 
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