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ABSTRACT
Pharmacometric modeling establishes causal quantitative relationship between administered
dose, tissue exposures, desired and undesired effects and patient’s risk factors. These models
are employed to de-risk drug development and guide precision medicine decisions. Recent
technological advances rendered collecting real-time and detailed data easy. However, the
pharmacometric tools have not been designed to handle heterogeneous, big data and complex
models. The estimation methods are outdated to solve modern healthcare challenges. We
set out to design a platform that facilitates domain specific modeling and its integration
with modern analytics to foster innovation and readiness to data deluge in healthcare.
New specialized estimation methodologies have been developed that allow dramatic perfor-
mance advances in areas that have not seen major improvements in decades. New ODE
solver algorithms, such as coefficient-optimized higher order integrators and new automatic
stiffness detecting algorithms which are robust to frequent discontinuities, give rise to up
to 4x performance improvements across a wide range of stiff and non-stiff systems seen in
pharmacometric applications. These methods combine with JIT compiler techniques and
further specialize the solution process on the individual systems, allowing statically-sized
optimizations and discrete sensitivity analysis via forward-mode automatic differentiation,
to further enhance the accuracy and performance of the solving and parameter estimation
process. We demonstrate that when all of these techniques are combined with a validated
clinical trial dosing mechanism and non-compartmental analysis (NCA) suite, real appli-
cations like NLME parameter estimation see run times halved while retaining the same
accuracy. Meanwhile in areas with less prior optimization of software, like optimal experi-

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.28.402297doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.28.402297
http://creativecommons.org/licenses/by/4.0/


A PREPRINT - NOVEMBER 29, 2020

mental design, we see orders of magnitude performance enhancements. Together we show a
fast and modern domain specific modeling framework which lays a platform for innovation
via upcoming integrations with modern analytics.

Keywords pharmacometrics, nonlinear mixed effects models, pharmacokinetics, pharmacodynamics,
differential equations, high-performance computing, parallelism, optimal design, noncompartmental analysis,
stiffness, just-in-time compilation, Julia
Clinical pharmacologists, pharmacometricians, systems biologists and statisticians have been leveraging the
latest advances in scientific computing to solve complex healthcare problems. The scientific analyses continue
to evolve to be more complex as more data became available historically. However, the latest advances in
computational science are not readily available to healthcare scientists.
Scientific computing and machine learning have continued to make strides in recent decade, improving core
methodologies from multigrid preconditioners and neural network architectures all the way down to the ba-
sics of matrix multiplication. Surprisingly, one field which has remained consistent in both the methodologies
and software used in practice is small systems of ordinary differential equations. The core software, such as
the Hairer’s widely used Runge-Kutta methods (DOPRI5, DOP853) [13] and the backwards differentiation
formulae (BDF) methods derived from LSODE [16] (LSODA [15], VODE [8], and CVODE [17]), were fully
developed by the 90’s and have been the stable core of scientific computing ever since. However, in this
manuscript we will demonstrate that this general area of computational science can see dramatic computa-
tional performance improvements by developing a new set of solver algorithms specialized for simulation of
small-scale stiff and non-stiff dynamical systems.
The delay in the availability of the latest advances to healthcare scientists limits their ability to gain deep
insights into why some patients do not respond to treatment, why some develop serious toxicity, risk factors
for deciding on the right treatment for the right patient (precision medicine). The access to heterogenous
data from laboratory measurements, radiographic scans, clinical scripts, genomic and genetic data has not
fully translated into actionable science due to the lack of more efficient tools, to a large extent [12]. A related
challenge has also has been the lack of a unified platform to perform these advanced scientific analyses. For
example, a systems biologist cannot perform nonlinear mixed effects modeling for the same project within
one software. Unknowingly, this caused serious communication issues between scientists at different stages
of the same project. On other hand, one scientist cannot be expected to master all software tools. An
integrated platform that allows scientists to build tools in a seamless manner is urgently needed.
Fields which require high fidelity and stable estimation of parameters of such dynamical systems, such
as pharmacometrics and systems biology, are frequently constrained by the calculation times required when
solving large numbers of such systems [2, 7]. In this manuscript we will demonstrate how these new differential
equation solvers are integrated with automatic differentiation and parameter fitting routines in a manner
that decreases the time of real-world applications by an order of magnitude.
Likewise, without a bridge that connects these new solver and compiler tools to domain-specific tooling,
the ability for pharmacometricians to make use of these tools is limited and requires a modeler to go to
tools usually written in low level languages like C++ or Fortran. This limits the flexibility of the allowed
models and decreases the speed at which the latest advancements in high performance computing become
available to the practitioner. Pumas (PharmaceUtical Modeling And Simulation) is impacting this flow
by directly packaging the latest mathematical and hardware advances inside of a pharmacometric modeling
context inside of the Julia high level high performance language [6]. The driving paradigm of Pumas is
to have a completely flexible core while successively simplifying interfaces through generally useful defaults.
This allows for a graded approach to learning the modeling framework where beginners can simply use
the defaults and expect it to match standard behavior, while keeping non-standard pharmacometric models
(such as stochastic differential equations) directly accessible, optimized, and able to utilize all of the hardware
compatibility tooling in a first-class manner. This is made possible because Pumas is written for the Julia
programming language while being written entirely written with the Julia programming language; allowing
user-written extensions to flow directly from standard usage. While Julia is a high level programming
language which allows Pumas to have ease of use for non-programmers, the Julia language is a just-in-time
(JIT) compiled language as fast as low level languages like C or Fortran. Thus both the library and any
user-written components are free from interpreter overhead imposed in languages like Python or R. Therefore,
our approach with Pumas is to not shy away from using the language and its extensive package ecosystem,
and instead integrate our approaches with these tools.
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Figure 1: Diagrammatic description of nonlinear mixed effect models. A plate diagram of the model:
rectangle nodes denote parameters, circles denote random quantities which are either latent (unfilled) or
observed (filled), diamonds are deterministic given the inputs, and nodes without a border are constant.

In this paper we will describe the generalized nonlinear mixed effects models (NLME) [7] framework which
Pumas utilizes for personalized precision dosing [31]. We will then showcase how the deep integration
with the DifferentialEquations.jl [33] software package can allow for many domain-optimized approaches
to be accessible within the context of pharmacometric models such as those seen in pharmacokinetics and
pharmacodynamics (PK/PD) [3, 43]. We will demonstrate how this connection facilitates Integrated Phar-
macometrics and Systems Pharmacology (iPSP) [41] by allowing the optimized solution of large sparse PBPK
and QSP models within the NLME context, and showcase how alternative differential equation forms like
Differential-Algebraic Equations (DAEs) can be used to stabilize a model or Stochastic Differential Equations
(SDEs) can be used to generalize a model to include process noise. Features of Pumas, like integrated high-
performance noncompartmental analysis (NCA), automatically parallelized visual predictive checks (VPCs),
and fast tooling for optimal design of clinical experiments is all integrated into the Pumas system to allow
full applications to be simple and fast. After seeing the modeling benefits of such a framework, we detail
the performance benefits, showcasing acceleration over previous software in the standard ODE NLME cases
while demonstrating automated parallelism. Together Pumas is a tool built for the next-generation of phar-
macometric analysis that will allow for modeling and developing personalized precision medicine in areas
that were previously inaccessible due to excessive computational cost.

1 Introduction to Nonlinear Mixed Effects Modeling with Pumas

1.1 Nonlinear Mixed Effects Models

Many pharmacometric studies fall into a class of models known as nonlinear mixed effects models [7]. Figure
1 gives a diagramatic overview of this two-stage hierarchical model. In the context of pharmacometrics, the
lower level model describes the drug dynamics within a subject via a differential equation while the higher
level model describes how the dynamical model is different between and within subject. The fixed effects are
the values 𝜃 which are independent of the subject. One can think of the fixed effects as population typical
values. With every subject 𝑖 there is a set of covariate values 𝑍𝑖 which we can know about a subject in
advance, such as their weight, height, or sex. We then allow a parameter 𝜂𝑖 which is known as the random
effect to be the difference between the typical value and the subject. The structural model 𝑔 is the function
that collates these values into the dynamical parameters for a subject 𝑝𝑖, i.e.:

𝑝𝑖 = 𝑔(𝜃, 𝑍𝑖, 𝜂𝑖) (1)

The dynamical parameters are values such as reaction rates, drug clearance, and plasma volume which
describe how the drug and patient reaction evolves over time through an ordinary differential equation
(ODE):

𝑢′
𝑖 = 𝑓(𝑢𝑖, 𝑝𝑖, 𝑡) (2)
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where 𝑓 is the dynamical model and 𝑢 is the state variables that are being evolved, such as the drug
concentrations over time. The 𝑗th observables of patient 𝑖, 𝑦𝑖𝑗, such as the maximum concentration or area
under the curve (AUC), are derived values from the dynamical simulation through a function ℎ:

𝑦𝑖𝑗 = ℎ𝑗(𝑢𝑖, 𝑝𝑖, 𝑍𝑖, 𝜂𝑖, 𝜃) (3)
Lastly, measurements are taken on the derived values by assuming measurement noise of some distribution
(commonly normal) around the prediction point.
The following showcases a classic model of Theophylline dynamics via a 1-compartment model implemented
in Pumas, where patients have covariates:

𝑍𝑖 = [ 𝑤𝑡𝑖,
𝑠𝑒𝑥𝑖,] (4)

a structural collocation:

𝑔𝑖 = [
𝐾𝑎
𝐶𝐿
𝑉

] = ⎡⎢
⎣

𝜃1𝑒𝜂𝑖,1𝜅𝑖,𝑘,1 ,
𝜃2( 𝑤𝑡𝑖

70 )0.75𝜃𝑠𝑒𝑥𝑖
4 𝑒𝜂𝑖,2 ,

𝜃3𝑒𝜂𝑖,3 ,
⎤⎥
⎦

(5)

internal dynamics:

𝑑[Depot]
𝑑𝑡 = −𝐾𝑎[Depot], (6)

𝑑[Central]
𝑑𝑡 = 𝐾𝑎[Depot] − 𝐶𝐿

𝑉 [Central]. (7)

and normally distributed measurement noise. The reason for the NLME model is that, if we have learned
the population typical values, 𝜃, then when a new patient comes to the clinic we can guess how they are
different from the typical value by knowing their covariates 𝑍𝑖 (with the random effect 𝜂𝑖 = 0). We can
simulate between-subject variability not captured by our model by sampling 𝜂𝑖 from some representative
distributions of the 𝜂𝑖 from our dataset (usually denoted 𝜂𝑖 ∼ 𝑁(0, Ω)). Therefore this gives a methodology
for understanding and predicting drug response from easily measurable information.

model = @model begin
@param begin
θ ∈ VectorDomain(4)
Ω ∈ PSDDomain(3)
σ ∈ RealDomain()

end

@random begin
η ~ MvNormal(Ω)

end

@covariates wt sex

@pre begin
CL = θ[1] * (wt/70)^0.75 * exp(η[1])
V = θ[2] * (wt/70)^0.75 * θ[4]^sex * exp(η[2])
Ka = θ[3] * exp(η[3])

end

@dynamics begin
Depot' = -Ka*Depot
Central' = Ka*Depot - Central*CL/V

end

@derived begin
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Figure 2: Clinical dosing simulation comparison against NONMEM. Shown is the continuous sim-
ulation trajectory outputted from Pumas using the default (right) and left continuity choices, compared
against NONMEM. This figure both showcases a relative difference < 1 × 10−10 except at the starting point,
where the NONMEM simulation requires a pre-dose estimate of zero whereas the Pumas simulations allows
a continuous output via a post-dose observation and allows for switching to the NONMEM behavior.

conc := Central/V
dv ~ @. Normal(Central/V,sqrt(conc^2*σ))

end
end

1.2 Clinical Dosage Regimen Modeling

In addition to nonlinear mixed effects model designations, Pumas allows for the specification of clinical
dosage regimens. These dosage regimens are modeled as discontinuities to the differential equation and can
be specified using a standard clinical dataset or by using the programmatic DosageRegimen method directly
from Julia code. Figure 2 showcases the result of a Pumas simulation of this model with steady state dosing
against the pharmaceutical software NONMEM [4], showcasing that Pumas recovers the same values. The
test suite for the dosing mechanism is described in Appendix 5. Appendix Figures 9 and 10 demonstrate
similar results across a 20 different dosage regimens using numerical ODE solving and analytical approach for
accelerated handling of linear dynamics. One interesting feature of Pumas demonstrated here is the ability
to specify the continuity of the observation behavior. Because of the discontinuities at the dosing times, the
drug concentration at the time of a dose is not unique and one must choose the right continuous or the left
continuous value. Previous pharmaceutical modeling software, such as NONMEM, utilize right-continuous
values for most discontinuities but left-continuous values in the case of steady state dosing. To simplify this
effect for the user, Pumas defaults to using the right-continuous values, but allows the user to change to left
continuity through the continuity keyword argument. By using right continuity, the observation is always
the one captured post-dose. Since the simulations usually occur after the dose, this makes the observation
series continuous with less outlier points, a feature we believe will reduce the number of bugs in fitting due
to misspecified models.

1.3 Maximum Likelihood and Bayesian Model Fitting

To understand how a drug interacts within the body, we can either simulate populations of individuals and
dosage regimens or utilize existing patient data to estimate our parameters. Transitioning from a simulation
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approach to a model estimation approach is simply the change of the verb applied to the model object. The
follow code demonstrates how moving between simulation and fitting in Pumas is a natural transition:

## Specify the parameters to simulate from
fixeffs = (
θ = [0.4, 20, 1.1, 2],
Ω = diagm(0 => [0.04, 0.04, 0.04]),
σ = 0.04
)

## Create a dosage regimen
ev = DosageRegimen(100, time=0)

## Create subject(s) with doses and covariates
s1 = Subject(id=1, events=ev, covariates=(sex=0, wt=70))
s2 = Subject(id=2, events=ev, covariates=(sex=1, wt=70))

## A population is a vector of subjects
data = [s1, s2]

## Simulate using model, data, parameters over a time range
obs = simobs(model, data, fixeffs, obstimes=0:0.1:120)

## Model Fitting
data = read_pumas("data_path", covariates=[:sex,:wt])
res = fit(model, data, fixeffs, Pumas.FOCEI()) # Fit using the FOCEI likelihood approximation

## Simulate using fitted model parameters
obs = simobs(model, data, coef(res), obstimes=0:0.1:120) # Check the fit

This example first generates a data set using simobs and then proceeds to fit the parameters of the model
to data using fit. For fitting one currently has a choice between using:

1. FO: a first order approximation to the likelihood integral
2. FOCE: a first order conditional estimation of the likelihood integral without interaction
3. FOCEI: a first order conditional estimation of the likelihood integral with interaction
4. LaplaceI: a second order Laplace approximation of the likelihood integral with interaction
5. BayesMCMC: A Bayesian Markov Chain Monte Carlo estimation of model posteriors using the
Hamiltonian Monte Carlo no-U-turn sampler (NUTS)1

We use the Optim.jl package [27] for the numerical optimization and default to using a safeguarded BFGS al-
gorithm with a backtracking line search for the fixed effects and Newton’s method with a trust region strategy
for the empirical bayes estimates. The result of the fitting process is a FittedPumasModelwhich we call res.
This object can be inspected to determine many quantities such as confidence intervals (as demonstrated
later). Importantly, coef(res) returns the coefficients for the fixed effects in a NamedTuple that directly
matches the style of fixeffs, and thus we demonstrate calling simobs on the returned coefficients as a way
to check the results of the fitting process. When applied to the model of Section 1.1, this process returns
almost exactly the coefficients used to generate the data, and thus this integration between the simulation
and fitting models is routinely used within Pumas to generate unit tests of various methodologies.

2 Generalized Quantitative Pharmacology Models with Pumas

The following sections detail featured which are new to pharmaceutical modeling software or enhanced via
parallelization or direct integration. In summary:

1Prior distributions are required for this fitting method and are specified in the param block by using a
distribution instead of a domain.
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1. We show how the integrated Non-compartmental Analysis (NCA) module can be mixed with NLME
simulation and estimation.

2. We show how alternative dynamical formulations, such as stochastic differential equation can be
directly utilized in the NLME models.

3. We showcase how the Pumas generalized error distribution form allows for mixing discrete and
continuous data and likelihoods

4. We detail the model diagnostics and validation tools

5. We demonstrate the functionality for optimal design of experiments.

2.1 Integrated Non-compartmental Analysis (NCA)

NCA is a set of common analysis methods performed in all stages of the drug development program, pre-
clinical to clinical, that has strict rules and guidelines for properly calculating diagnostic variables from
experimental measurements [11]. In order to better predict the vital characteristics, Pumas includes a fully-
featured NCA suite which is directly accessible from the nonlinear mixed effects modeling suite. Appendix
Figures 11 and 12 demonstrate that Pumas matches industry standard software such as PKNCA [9] and
Phoenix on a set of 13104 scenarios and 78,624 subjects as described in Section 5. The following code
showcases the definition of a NLME model where the observables are derived quantities calculated through
the NCA suite, demonstrating the ease at which a validated NCA suite can be coupled with the simulation
and estimation routines.

m_diffeq = @model begin
@param begin

θ ∈ VectorDomain(5, lower=zeros(5), init=ones(5))
Ω ∈ PSDDomain(2)
σ_prop ∈ RealDomain(init=0.1)

end

@random begin
η ~ MvNormal(Ω)

end

@pre begin
Ka = θ[1]
CL = θ[2]*exp(η[1])
V = θ[3]*exp(η[2])
lags = [0,θ[4]]
bioav = [1,θ[5]]

end

@covariates isPM Wt

@dynamics begin
Depot' = -Ka*Depot
Central' = Ka*Depot - (CL/V)*Central

end

@derived begin
cp := @. 1000*(Central / V)
nca := @nca cp
auc = NCA.auc(nca)
thalf = NCA.thalf(nca)
cmax = NCA.cmax(nca)

end
end
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2.2 Alternative Differential Equations via A Function-Based Interface: Stochastic, Delay,
and Differential-Algebraic Equations for Pharmacology

While ODEs are a common form of dynamical model, in many circumstances additional features are required
in order for the realism of the model to adequately predict the behavior of the process. For example, many
biological processes are inherently stochastic, and thus an extension to ordinary differential equations, known
as stochastic differential equations, takes into account the continuous randomness of biochemical processes
[34, 36, 22, 46]. Many biological effects are delayed, in which case a delay differential equation which allows
for an effect to be determined by a past value of the system may be an appropriate model [19, 23]. Together,
Pumas allows for the definition of dynamical systems of the following non-standard forms:

1. Split and Partitioned ODEs (Symplectic integrators, IMEX Methods)
2. Stochastic ordinary differential equations (SODEs or SDEs)
3. Differential algebraic equations (DAEs)
4. Delay differential equations (DDEs)
5. Mixed discrete and continuous equations (Hybrid Equations, Jump Diffusions)

where each can be simulated with high-performance adaptive integrators with specific method choices stabi-
lized for stiff equations. The following code demonstrates the definition solving of a stochastic differential
equation model with steady state dosing via a high strong order adaptive SDE solver specified using an
alternative interface known as the Pumas function-based interface. This interface is entirely defined with
standard Julia functions, meaning that any tools accessible from Julia can be utilized in the pharmacological
models through this context.

using StochasticDiffEq

θ = [
1.5, #Ka
1.0, #CL
30.0 #V
]

p = ParamSet((θ=VectorDomain(3, lower=zeros(4),init=θ), Ω=PSDDomain(2)))

function randomfx(p)
ParamSet((η=MvNormal(p.Ω),))

end

function pre_f(params, randoms, subject)
function pre(t)

θ = params.θ
η = randoms.η
(Ka = θ[1],
CL = θ[2]*exp(η[1]),
V = θ[3]*exp(η[2]))

end
end

function f(du,u,p,t)
Depot,Central = u
du[1] = -p.Ka*Depot
du[2] = p.Ka*Depot - (p.CL/p.V)*Central

end

function g(du,u,p,t)
du[1] = 0.5u[1]
du[2] = 0.1u[2]

end

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.28.402297doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.28.402297
http://creativecommons.org/licenses/by/4.0/


A PREPRINT - NOVEMBER 29, 2020

prob = SDEProblem(f,g,nothing,nothing)

init_f(col,t) = [0.0,0.0]

function derived_f(col,sol,obstimes,subject, param, randeffs)
V = col.V
Σ = col.Σ
central = sol(obstimes;idxs=2)
conc = @. central / V
dv = @. Normal(conc, conc*Σ)
(dv=dv,)

end

function observed_f(col,sol,obstimes,samples,subject)
samples

end

model = Pumas.PumasModel(p,randomfx,pre_f,init_f,prob,derived_f,observed_f)

param = init_param(model)
randeffs = init_randeffs(model, param)

data = Subject(events = DosageRegimen([10, 20], ii = 24, addl = 2, ss = 1:2,
time = [0, 12], cmt = 1))

sol = solve(model,data,param,randeffs,alg=SRIW1())
plot(sol)

2.3 Generalized Error Distribution Abstractions

Traditional nonlinear mixed effects models formulate the error distribution handling in a different manner,
focusing on the perturbation via the error against the estimate. Mathematically, this amounts to having an
𝜖 measurement noise, i.e. defining the observables as:

𝑦𝑖𝑗 = ℎ𝑗(𝑢𝑖, 𝑝𝑖, 𝑍𝑖, 𝜂𝑖, 𝜃) + 𝜖𝑖𝑗 (8)
Instead of using the perturbation format, Pumas allows for users to specify the likelihood directly via any
arbitrary Distributions.jl [5] distribution, with the mean of the distribution corresponding to the prediction.
This has some immediate advantages. For one, many distributions are not directly amenable to the perturba-
tion form. For example, one may wish to model a discrete observable, such as a pain score, probabilistically
based on clinical outputs. A discrete likelihood function, like a Poisson distribution, can thus be given to
described the predicted outputs like in the following example:

poisson_model = @model begin
@param begin
tvbase ∈ RealDomain(init=3.0, lower=0.1)
d50 ∈ RealDomain(init=0.5, lower=0.1)
Ω ∈ PSDDomain(fill(0.1, 1, 1))

end

@random begin
η ~ MvNormal(Ω)

end

@covariates dose

@pre begin
baseline = tvbase*exp(η[1])
Dose = dose
D50 = d50

9
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end

@derived begin
dv ~ @. Poisson(baseline*(1-Dose/(Dose + D50)))

end
end

This type of model could not be described with continuous perturbations and thus would have to be approx-
imated in other scenarios. In addition, since any distribution is possible in this format, users can extend
the modeling schema to incorporate custom distributions. Discrete Markov Chain models, or Time to Event
models for example can be implemented as a choice of a custom distribution, thus making it easy to extend
the modeling space directly from standard language use.

2.4 Integrated and Parallelized Model Diagnostics and Validation

After running the estimation procedure, it is important to have a wide suite of methods to post-process the
results and validate the predictions. Model diagnostics are used to check if the model fits the data well.
Pumas provides a comprehensive set of diagnostics tooling A number of residual diagnostics are available as
well as shrinkage estimators. Additionally, for model validation, Visual Predictive Checks (VPCs) [18] can
be used for a variety of models in a performant and robust manner.
The diagnostics tooling comprises of:

1. Residuals: Populations residuals take the inter-individual variability into account as opposed to
Individual residuals which are correlated due to the lack of accounting for inter-individual variability.
The following Population residuals are available in Pumas2:
• Normalized Prediction Distribution Errors (NPDE) [26]
• Weighted Residuals (WRES)
• Conditional Weighted Residuals (CWRES)
• Conditional Weighted Residuals with Interaction (CWRESI)

Similarly the following Individual residuals are also available -
• Individual Weighted Residuals (IWRES)
• Individual Conditional Weighted Residuals (ICWRES)
• Individual Conditional Weighted Residuals with Interaction (ICWRESI)
• Expected Simulation based Individual Weighted Residuals (EIWRES)

2. Population Predictions: Population prediction are defined as the difference between the observations
and the model expectation for subject 𝑖, i.e. 𝑦𝑖 −E[𝑦𝑖] where the E[𝑦𝑖] are the population predictions.
The population predictions, EPRED, PRED, CPRED and CPREDI are defined as the E[𝑦𝑖] from
equations of NPDE, WRES, CWRES and CWRESI respectively.

3. Individual Predictions: The individual residuals are defined as the difference between the observa-
tions and the model prediction for subject 𝑖 , i.e. 𝑦𝑖 −𝑓𝑖(𝜃, 𝜂∗

𝑖 , 𝑍𝑖, 𝑡𝑖) where the 𝑓𝑖(𝜃, 𝜂∗
𝑖 , 𝑍𝑖, 𝑡𝑖) are the

individual predictions. The individual predictions IPRED, CIPRED and CIPREDI are defined as
the 𝑓𝑖(𝜃, 𝜂∗

𝑖 , 𝑍𝑖, 𝑡𝑖) from equations of IWRES, ICWRES and ICWRESI. The individual expected pre-
diction (EIPRED) is defined as the individual mean conditioned on 𝜂𝑘, i.e. E[𝑦𝑖|𝜂𝑘], from equation
of EIWRES.

4. Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)
5. 𝜂 Shrinkage and 𝜖 Shrinkage [35]

The above discussed diagnostics can be evaluated through the inspect function and further exported as
a DataFrame. Additionally, the infer function is available for computing the covariance matrix of the
population parameters thus giving the the 95% confidence intervals and the standard errors for the parameter
estimates. As an example below we call infer and inspecton the FittedPumasModel object res obtained
as the result of fit call in earlier section.

2Defined in [28] unless mentioned otherwise
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Figure 3: Convergence Plot for the HCV model

resinfer = infer(res)
DataFrame(resinfer)
resinpect = inspect(res)
DataFrame(resinspect)

Additionally several out of the box visualizations are available for practitioners to evaluate the model fit
are are mainly provided by the PumasPlots.jl package. Convergence plot for fitting obtained with the
convergencefunction for the HCV model is shown in the following Figure 3.

convergence(res)

In Pumas we provide the ability to run Visual Predictive Checks with vpc function. For continuous mod-
els VPCs are computed using the Quantile Regression based approach discussed in [20]. The syntax for
computing and plotting the VPCs is shown below followed by the Figure 4 of a stratified VPC plot in
Pumas.

vpc_res = vpc(res, stratify_by = [:Wt])
using Plots
plot(vpc_model)

2.5 Optimal Design of Experiments

Optimal design of clinical trials has increasingly played a central role in increasing the effectiveness of such
studies while minimizing costs [25]. To facilitate the advancement of optimal design methodologies into stan-
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Figure 4: Visual Predictive Check

dard clinical trial workflows, Pumas includes functionality for high performance calculations of the Fisher In-
formation Matrix (FIM) which is central to optimal design methodologies. The function informationmatrix
takes in a FittedPumasModel, the output of the fit estimation function, and computes either the expected
or observed FIM dependent on a keyword argument expected using a normality approximation [40]. The fol-
lowing demonstrates the workflow for performing parameter estimation with FO and calculating the expected
FIM in the Warfarin Pk model [29]:

data = read_pumas(example_data("warfarin"))

model = @model begin

@param begin
θ1 ∈ RealDomain(lower=0.0, init=0.15)
θ2 ∈ RealDomain(lower=0.0, init=8.0)
θ3 ∈ RealDomain(lower=0.0, init=1.0)
Ω ∈ PDiagDomain(3)
σ ∈ RealDomain(lower=0.0001, init=sqrt(0.01))

end

@random begin
η ~ MvNormal(Ω)

end

@pre begin
Tvcl = θ1
Tvv = θ2
Tvka = θ3
CL = Tvcl*exp(η[1])
Vc = Tvv*exp(η[2])
Ka = Tvka*exp(η[3])

end

@dynamics Depots1Central1
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@vars begin
conc = Central / Vc

end

@derived begin
dv ~ @. Normal(log(conc), σ)

end
end

param = (θ1 = 0.15,
θ2 = 8.0,
θ3 = 1.0,
Ω = Diagonal([0.07, 0.02, 0.6]),
σ = sqrt(0.01))

ft = fit(model, data, param, Pumas.FO())
fim = informationmatrix(ft)

Note that the derivative calculations used within the FIM calculation are the discrete sensitivity analysis
derivatives derived via forward-mode automatic differentiation as described in Section 3.2.

3 High Performance and Stability-Enhanced Model Fitting

3.1 Fine-Tuning Differential Equation Solver Behavior to Model Features

The core computation of the model fitting process utilizes the simobs function for generating solutions to
the differential equation during the likelihood approximation, meaning that every step of the optimization is
solving thousands of the same small differential equation representing different possible parameter configu-
rations amongst all subjects in a clinical trial. Thus, while in isolation these small ODEs may simulate very
fast, real-world NLME model fitting with large numbers of subjects consistently arrives at workflows which
take hours to days or weeks with the majority of the time due to the cost of solving small ODEs. Thus
practical workflows of industry pharmacologists would be heavily impacted if the speed of these systems
could be dramatically decreased.
Pumas recognizes the crux of the computational issue and thus has many new features for optimizing the
internal solve of the fitting process. The options for controlling the solvers are same between the simulation
and estimation workflows. The full gamut of options from DifferentialEquations.jl are exposed to allow users
to control the solvers as much as possible. This allows for specializing the solver behavior on the known
characteristics of the functions and its solution. For example, the concentrations modeled in the ODEs
need to stay positive in order for the model to be stable, but numerical solvers of ODEs do not generally
enforce this behavior which can cause divergences in the optimization process. In Pumas, one can make
use of advanced strategies [38] like rejecting steps out of the domain by using isoutofdomain or using the
PositiveDomain callback.
However, a more immediate effect of this connection is the ability to choose between a large set of highly
optimized integration methods. Table 1 shows timing results of Pumas on pharmacokinetic (PK) and phar-
macokinetic/pharmacodynamic (PK/PD) models using both the native DifferentialEquations.jl methods and
some classic C++ and Fortran libraries and demonstrates a performance advantage averaging around 3x be-
tween the best Julia-based method against the best wrapped C++ or Fortran solver method. This table
also demonstrate a few different dimensions by which this performance advantage is achieved. First of all,
the DifferentialEquations.jl library uses different Runge-Kutta methods which are derived to have asymptot-
ically better error qualities for the same amount of work [42, 44], with a much larger effect for the high order
(7th order) integrator. Secondly, DifferentialEquations.jl uses a tuned PI-adaptive timestepping method [39]
which is able to stabilize the solver and increase the timesteps, thus decreasing the total amount of work to
integrate the equation. Lastly, Pumas is able to utilize the JIT compiler to compile a form of the differential
equation solver that utilizes stack-allocated arrays and is specific to the size and ODE function. While
this optimization only applies to small ODE systems (the optimization is no longer beneficial at around
10 or more ODEs), many pharmacometric models fall into this range of problems and these benchmarks
demonstrate that it can have a noticeable effect on the solver time.
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ODE Solver vs Time (seconds) OC OC(LT) MR MR(LT) HCV HCV(LT)
AutoTsit5-Rosenbrock23 (SArray) 0.000057 0.000216 0.000051 0.000222 0.000133 0.000542

Tsit5 (SArray) 0.000038 0.000173 0.000034 0.000186 0.000110 0.000475
Vern7 (SArray) 0.000050 0.000140 0.000053 0.000141 0.000160 0.000423

AutoTsit5-Rosenbrock23 (Array) 0.000211 0.000359 0.000233 0.000420 0.000360 0.000787
Tsit5 (Array) 0.000043 0.000207 0.000052 0.000222 0.000138 0.000634
Vern7 (Array) 0.000068 0.000169 0.000075 0.000166 0.000207 0.000522
CVODE (Array) 0.000091 0.000294 0.000119 0.001456 0.000400 0.001075
DOP853 (Array) 0.000184 0.000647 0.000191 0.000765 0.000410 0.001829
DOPRI (Array) 0.000205 0.000330 0.000239 0.000397 0.000464 0.001364

Table 1: Effect of specialized ODE solvers on forward simulation of small pharmacometric
ODE models. Shown is the effect of the ODE solver choice on the speed of the forward pass of common
pharmacometric models. OC for the one-compartment model of Section 1.1, MR for the multiple response
model described in Section 5, and HCV for the hapatitis C model described in Section 5. Times are all shown
in seconds. By default the tolerances for the solvers was 1 × 10−3 for the relative tolerance and 1 × 10−6
for the absolute tolerance, while LT stands for low tolerance with 1 × 10−8 for the relative tolerance and
1 × 10−12 for the absolute tolerance (representative of tolerances used when simulating vs when simulating).
Solutions were checked against a tolerance 1 × 10−14 reference solution to ensure the actual errors were
within the same order of magnitude. The automatic stiffness detection AutoTsit5-Rosenbrock23 method
is a combination between Tsit5 [42] and a Rosenbrock method Rosenbrock23 [37], while Tsit5 and Vern7
[44] are explicit Runge-Kutta methods from the DifferentialEquations.jl library [33]. CVODE is from the
Sundials library [17], while DOP853 and DOPRI are from the Hairer Fortran methods suite [13]. The Array
methods are generically compiled for heap-allocated mutable arrays, where the SArray versions are specially
optimized for the specific size of the ODE using Julia’s JIT compiler.

ODE Solver PBPK PBPK(LT)
AutoVern7-Rodas5 0.168 0.695

Rodas5 0.143 1.072
KenCarp4 0.865 3.167
RadauIIA5 0.183 1.973
CVODE 0.505 1.472

Table 2: Effect of specialized ODE solvers on forward simulation the Voriconazole
physiologically-based pharmacokinetic (PBPK) model [48]. Shown is the effect of the ODE solver
choice on the speed of the forward pass of the PBPK model with steady state dosing. Given the high degree
of variance in the stiff ODE solver accuracies at the same tolerances, the tolerances were aligned using a
reference solution computed at 1 × 10−14 tolerances, and high tolerance was chosen to be the tolerance pair
by power of 10 which achieve a true error closest to 1 × 10−5 and for low tolerance the pair closes to 1 × 10−9

The automatic stiffness detection method AutoVern7-Rodas5 is a combination between Vern7 and Rodas5,
while Rodas5 [45], KenCarp4 [21], and RadauIIA5 [14] are implicit methods from the DifferentialEquations.jl
library [33]. CVODE is from the Sundials library [17]

One additional advantage of this tweak-ability is the ease to span multiple domains. Physiologically-based
pharmacokinetic (PBPK) models are typically larger stiff ODE-based models which incorporates systems-
type mechanistic modeling ideas to enhance the model’s predictive power [24]. Table 2 demonstrates the
performance advantage of the native Julia methods that are unique to Pumas on a 15 stiff ODE PBPK model
with steady state dosing, demonstrating a 2x-3x performance advantage over the classic CVODE method
used in many other pharmacometric modeling suites.

3.2 Fast and Accurate Likelihood Hessian Calculations via Automatic Differentiation

When performing maximum likelihood estimation or Bayesian estimation with a gradient-based sampler like
Hamiltonian Monte Carlo, the limiting step is often the calculation of the gradient of the likelihood. Finite
difference calculations are not efficient since every calculation of a perturbation involves a numerical solve
of the ODE system and either or two perturbations are required for each model parameter for forward
and central differencing respectively. Furthermore, the finite difference approximation of a derivative is an
unstable process [10] which in some cases can result in very inaccurate gradients when combined numerical
solutions to ODEs.
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AD Almquist FD Almquist FD simple
Relative error 9.52e-7 0.811 0.00047
Time in seconds 0.431 0.641 18.6

Table 3: Timings and relative errors for the gradient computations of the marginal likelihood in
a non-linear fixed effects model with time varying coefficients in the ODE. Shown are the timings
of the three likelihood gradient calculation methods along with their relative error. AD stands for automatic
differentiation while FD stands for finite differentiation, demonstrating both the efficiency and accuracy gains
obtained through by utilizing the automatic differentiation derived discrete sensitivity analysis.

The performance of the derivative calculations for the marginal likelihoods can be improved by utilizing
a formulation with the sensitivity equations due to [1]. While very efficient, the method relies on second
order derivatives in a way that makes the process unstable and accurate derivatives are required for process
to work well. Instead of utilizing the traditional form of the sensitivity equations, Pumas generates an
implementation of discrete forward sensitivity analysis by utilizing dual number arithmetic through the
differential equation solver (cite ForwardDiff). Our group has previously shown that this discrete sensitivity
analysis via automatic differentiation outperforms traditional sensitivity analysis since it allows the compiler
more freedom to optimize the generated code for passes like single instruction, multiple data (SIMD) auto-
vectorization [32].
Table 3.2 demonstrates the effect on run time and and accuracy of using the sensitivity method from [1] with
finite difference and automatic differentiation based derivatives respectively as well as a simple but expensive
finite difference based gradient computation. The error is computed relative to a solution computed with
256 bit precision floating point numbers. All ODE solutions are computed to a relative tolerance of 10−8.
The results show that the simple finite difference based gradient doesn’t have too large an error but is slow
while the faster sensitivity based method has a large relative error. The error is so large that gradient
based optimization is no longer practical. In contrast, the sensitivity based gradient computation based on
automatic differentiation loses almost no precision and is even faster that the finite difference based gradient
because it requires fewer evaluations of the objective function.

3.3 Accelerated Maximum Likelihood Fitting

Maximum likelihood directly corresponds to repeated calculation of likelihood gradients. Given the perfor-
mance advantages that are obtained due to the ODE solver and discrete sensitivity analysis advantages
over previous software, one would predict that the model estimation routines would see a similar benefit
as derived from these components. Appendix 5 describes the full set of benchmark models for maximum
likelihood estimation. In Figure 5 we demonstrate this is the case by calculating the elapsed run time to
estimate 6 models in both Pumas and NONMEM. We note that the Pumas fitting mechanism has a higher
fixed cost which effects the results on the smallest models, but on the two larger models we see more than a 2x
performance advantage for Pumas, similar to the difference between the non-fully optimized ODE solver and
the alternative array-based algorithms and implementations. Figure 6 demonstrates that this performance
advantage over NONMEM extends to larger nonlinear models, showcasing the general applicability of the
performance enhancements seen in Pumas. In all of the occasions the resulted in similar likelihoods.

3.4 Automated Parallelism and Full-Application Benchmarks

Pumas is able to automatically parallelize the solution of the NLME model solution across subjects. 2 forms
of parallelism are currently available:

1. Multithreaded parallelism for shared memory machines
2. Multiprocessing for distributed memory architectures

Multithreaded is enabled by default and no extra steps are required for this parallelism to occur. Meanwhile
the multiprocessing allows a user to utilize cores across any cluster with passwordless SSH, which includes
architectures like traditional high-performance computing (HPC) clusters and cloud architectures like Azure.
Figure 7 demonstrates the good scaling of multithreading on a PK/PD maximum likelihood estimation. The
scaling does not meet the theoretical optimal properties of linear scaling because there are parts of the fitting
process that cannot be parallelized.
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Figure 5: Maximum likelihood estimation results. Shown is the run time of a fit of the various Pk/Pd
models

3.5 High Performance Non-Compartmental Analysis (NCA)

In the previous sections we demonstrated that the integrated NCA suite reproduced the results of industry-
standard tools, demonstrating the correctness of the implementation over 13104 scenarios. In addition to
determining the correctness, we calculated the run times. The full analysis tool 3 hours and 16 minutes in
PKNCA while in Pumas the run time was 56 seconds, demonstrating a 210x acceleration. This speed is
particularly useful when 1,000s of clinical trials are simulated during the planning of a large patient trial.

3.6 Accelerated Optimal Design of Experiments

In order to assess the effectiveness of accelerated differential equation solving on optimal design workflows,
we tested the calculation time of the FIM on the Warfarin PK model (Section 2.5) and the HCV PK/PD
model Section 5 against the PopED Population Optimal Experimental Design framework [30]. Figure 8
showcases that Pumas calculates the FIM approximately 20x faster than PopED on the Warfarin model
and approximately 220x faster on the HCV model. Much of the acceleration can be attributed to the
AutoVern7(Rodas5()) ODE solver used in the Pumas version of the FIM calculation as opposed to the
ode45 method internally used by PopED. This demonstrates how central improvements to the solving of
small ODEs can give large advantages to real applications built on top of such methodologies.

4 Conclusion

Pumas pulls together a diverse array of pharmacometrics problems into a single platform and utilizes the JIT
optimization to directly specialize the internal solvers. We have showcased how the Pumas platform achieves
across the board performance improvements from preclinical to clinical analyses over existing pharmacomet-
rics tools. This more broadly illustrates how integrating optimizing compilers into dynamic tool chains can
improve performance over traditional approaches which do not specialize on the problem’s scale. Even some-
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Figure 6: Runtime comparisons of non-linear mechanistic TMDD models. Shown is the run time
of a fit of the Michaelis-Menten (MM) model, Constant Rtot model and Rapid binding (QE) and quasi
steady-state (QSS) models

Figure 7: Scaling of multithreaded fitting of a HCV model. Shown is the run time of a fit of a
simultaneous PK/PD model HCV model described in 5 with multithreading with 1, 2, 3, 4, 6, 8 and 12
threads.
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Table 1

Pumas PopED PopED/Pumas 
timings

Warfarin 0.348 7.13 20.4885057471264

HCV 0.352 77.25 219.460227272727
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Figure 8: Accelerated Optimal Design of Experiments. Shown is the relative time to compute the
Fisher Information Matrix (FIM) between PopED [30] and Pumas on the Warfarin and HCV models. The
FIM was calculated 1000 times in order to reduce noise in the timings.

thing as standardized as an ODE solver can be improved. Pumas is still early in its development and will
continue to increase its performance as it demonstrates new features to the pharmacometrics community.
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Appendix

Model Definitions

Multiple Response Model

𝑑[Ev1]
𝑑𝑡 = −𝐾𝑒[Ev1] (9)

𝑑[Cent]
𝑑𝑡 = 𝐾𝑒[Ev1] − [Cent]

𝑉𝑐
(𝐶𝐿 + 𝑉𝑚𝑎𝑥

𝐾𝑚 + [Cent] + 𝑄) + 𝑄[Periph]
𝑉𝑝

(10)

𝑑[Periph]
𝑑𝑡 = 𝑄[Cent]

𝑉𝑐
− 𝑄[Periph]

𝑉𝑝
(11)

𝑑[Resp]
𝑑𝑡 = 𝐾𝑖𝑛

⎛⎜
⎝

1 −
𝐼𝑀𝐴𝑋 ( [Cent]

𝑉𝑐
)

𝛾

𝐼𝐶𝛾
50 + ( [Cent]

𝑉𝑐
)

𝛾 ⎞⎟
⎠

− 𝐾𝑜𝑢𝑡[Resp] (12)

where:

𝐾𝑒 = 1 (13)
𝐶𝐿 = 1 (14)
𝑉𝑐 = 20 (15)
𝑄 = 2 (16)
𝑉𝑝 = 10 (17)

𝐾𝑖𝑛 = 10 (18)
𝐾𝑜𝑢𝑡 = 2 (19)
𝐼𝐶50 = 2 (20)

𝐼𝑀𝐴𝑋 = 1 (21)
𝛾 = 1 (22)

𝑉𝑚𝑎𝑥 = 0 (23)
𝐾𝑚 = 2 (24)

HCV Model

The ”HCV Model” is a multiple response PKPD model from [29] that models the effect of a pegylated
interferon dose given as a 24h infusion once a week for 4 weeks. Twelve simulated samples are obtained for
the PK and PD at times 𝑡 = [0.0, 0.25, 0.5, 1.0, 2.0, 3.0, 4.0, 7.0, 10.0, 14.0, 21.0, 28.0]. The internal dynamics
are:

𝑑[X]
𝑑𝑡 = −𝑘𝑎[X], X(0) = 0 (25)

𝑑[A]
𝑑𝑡 = 𝑘𝑎[X] − 𝑘𝑒[A], A(0) = 0 (26)

𝑑[T]
𝑑𝑡 = 𝑠 − [T] ⋅ (𝑒[W] + 𝑑), T(0) = 𝑐𝛿

𝑝𝑒 (27)

𝑑[I]
𝑑𝑡 = 𝑒[W][T] − 𝛿[I], I(0) = 𝑠𝑒𝑝 − 𝑑𝑐𝛿

𝑝𝛿𝑒 (28)

𝑑[W]
𝑑𝑡 = 𝑝 (1 − [C]𝑛

[C]𝑛 + EC𝑛
50

) [I] − 𝑐[W], W(0) = 𝑠𝑒𝑝 − 𝑑𝑐𝛿
𝑐𝛿𝑒 . (29)

where 𝐶(𝑡) = 𝐴(𝑡)/𝑉𝑑. The PK variable 𝐶 is modelled with an additive normal distribution and the PK
variable 𝑊 is modelled as being log-normal. We use the parameters reported in the original paper.
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Dosing Regimen Verification

The event handling of Pumas and the accuracy of simulation under different kinds of events was evaluated
systematically. The examples for this testing were adapted from mrgsolve test suite3. The dosing and
sampling scenarios were setup in R’s mrgsolve package which were then used to simulate concentration time
profile for a single subject in NONMEM and Pumas. The listing of all the tested scenarios is presented
below:

1. Infusion (10 mg/hr) into the central compartment with 4 doses given every 12 hours
2. Infusion (10 mg/hr) into the central compartment with lag time (5 hr) with 4 doses given every 12
hours

3. Infusion (10 mg/hr) into the central compartment with lag time (5 hr) and bioavailability (0.4) with
4 doses given every 12 hours

4. Infusion (10 mg/hr) into the central compartment at steady state (ss)
5. Infusion (10 mg/hr) into the central compartment at steady state (ss) with 81% bioavailability, where
frequency of events (ii) is less than the infusion duration (DUR)

6. Infusion (10 mg/hr) into the central compartment at steady state (ss) with 100% bioavailability,
where frequency of events (ii) is less than the infusion duration (DUR)

7. Infusion (10 mg/hr) into the central compartment at steady state (ss) with 100% bioavailability,
where frequency of events (ii) is a multiple of infusion duration (DUR)

8. Infusion (10 mg/hr) into the central compartment at steady state (ss) with 41% bioavailability, where
frequency of events (ii) is exactly equal to the infusion duration (DUR)

9. Infusion (10 mg/hr) into the central compartment at steady state (ss) with 100% bioavailability,
where frequency of events (ii) is exactly equal to the infusion duration (DUR)

10. Oral dose at steady state with lower bioavailability of 41%
11. Oral dose at steady state with lower bioavailability of 41% and 5 hour lag time
12. Zero order infusion followed by first order absorption into gut
13. Zero order infusion into central compartment specified by duration parameter
14. First order bolus into central compartment at ss followed by an ss=2 (superposition ss) dose at 12

hours
15. First order bolus into central compartment at ss followed by an ss=2 (superposition ss) dose at 12

hours followed by reset ss=1 dose at 24 hours
16. Two parallel first order absorption models
17. Mixed zero and first order absorption

Maximum Likelihood Tests

The Pumas-NLME parameter estimation algorithms, specifically 𝐹𝑂𝐶𝐸𝐼() were compared with NONMEM
in a richly-sampled data setting with multiple models.
After a single administration 19 samples were collected over 72 hours via simulations for 4 different dose
levels of 30 subjects each. A total of 6 test cases were generated that were a combination of:

• one- or two-compartmental disposition [26]
• oral (first-order absorption), intravenous (IV) bolus, or IV infusion administration.

The Ω’s, representing the between subject variability were set to 30% CV, implemented as diagonal covariance
matrix. A proportional residual error with 20% CV was chosen to capture the error distribution. For the
structural model, all one-compartment models had a population 𝑉 𝑐 of 70 L, and all two-compartment models
had an additional peripheral volume (𝑉 𝑝) of 40 L. For all oral absorption models, 𝐾𝑎 was set to 1.0 h-1. All
models with linear elimination had a 𝐶𝐿 of 4.0 L/h. All two-compartment models had inter-compartmental
clearance (𝑄) set to 4.0 L/h.

3https://github.com/mrgsolve/nmtests/blob/master/nmtest7.md
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TMDD Model Tests

While the maximum likelihood tests above compared the standard compartmental models, we also evaluted
the performance of highly non-linear mechanistic models in the class of Target Mediated Drug Disposition
(TMDD). Three models from this class were selected

1. Michaelis-Menten (MM) model
2. Constant Rtot
3. Rapid binding (QE) and quasi steady-state (QSS) models

Data were simulated from a Full TMDD model in 224 subjects over a range of doses with a total of 3948
observations. The simulated data were then estimated using the reduced models listed above using NONMEM
and Pumas

NCA Implementation Verification

Simulations were performed in R with scenarios consisting of 1-, 2-, and 3-compartment models with typical
parameters and ±4-fold from those typical parameters on the ratio of absorption rate (𝐾𝑎) to elimination
rate (𝐾𝑒𝑙), ratio of peripheral volume of distribution 1 and 2 (𝑉 𝑝1 and 𝑉 𝑝2) to central volume of distribution
(𝑉 𝑐), intercompartmental clearance between 𝑉 𝑐 and 𝑉 𝑝1 or 𝑉 𝑝2 (𝑄𝑐𝑝1 and 𝑄𝑐𝑝2), and ratio of clearance
(𝐶L) to 𝑉 𝑐 all models, as the parameters apply; with and without target-mediated drug disposition (TMDD);
and oral and intravascular bolus dosing. All models were simulated with 4%, 10%, and 20% proportional
residual error. Each model was simulated with 6 subjects. This yielded a total of 13104 scenarios and 78624
subjects simulated.
Each subject was then grouped with all other subjects in its simulation scenario, and 5, 10, and 20% of
concentration measurements were set to below the limit of quantification (LOQ). NCA was to be performed
on each of those LOQ scenarios in PKNCA [9], Pumas, and Phoenix 4 (a total of 707616 NCA intervals with
calculations). Comparisons were made between the results of those NCA calculations performed on a single
machine.
Five parameters, were chosen as the metrics for comparison as they included both observed and derived
parameters:

1. 𝐴𝑈𝐶𝑙𝑎𝑠𝑡
2. 𝐶𝑚𝑎𝑥
3. 𝑇 𝑚𝑎𝑥
4. 𝐻𝑎𝑙𝑓 − 𝑙𝑖𝑓𝑒
5. 𝐴𝑈𝐶𝑖𝑛𝑓(𝑝𝑟𝑒𝑑)

Eighteen percent of subjects were randomly selected from the 13104 scenarios to form a subset of 2367
subjects. This smaller subset was used to perform the NCA calculations across the three software while
ensuring to maintain the same default options. All analysis were conducted on the same laptop and discussed
at ACoP 2019 [47].
Results from all three software for the key NCA parameters match. Most results matched within ±0.1%
between all software. The difference between PKNCA /Pumas and Phoenix in half-life appears to be the
result of PKNCA/Pumas selecting the best fit first and then filtering for decreasing slope while Phoenix
first considers only consecutive sets of points that generate a descending slope and then selects the final set
of points with the best regression adjusted R squared. None of the different results would be reported in a
typical reporting workflow as all 𝑟2 values were <0.7.

Additional Figures and Tables

4https://www.certara.com/software/phoenix-nlme/
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Figure 9: Clinical dosing simulation verification against NONMEM for analytical solutions.
Shown are the clinical dosing simulation verification of the models described in Section 5 using analytical
solutions of the differential equation mixed with the event handling system.
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Figure 10: Clinical dosing simulation verification against NONMEM for analytical solutions.
Shown are the clinical dosing simulation verification of the models described in Section 5 using numerical
approximations of the solutions of the differential equation mixed with the event handling system.

25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.28.402297doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.28.402297
http://creativecommons.org/licenses/by/4.0/


A PREPRINT - NOVEMBER 29, 2020

intravascular bolus
HL_Lambda_z

intravascular bolus
Tmax

extravascular
Tmax

intravascular bolus
AUCINF_pred

intravascular bolus
AUClast

intravascular bolus
Cmax

extravascular
AUCINF_pred

extravascular
AUClast

extravascular
Cmax

extravascular
HL_Lambda_z

0.1 1.0 10.0 100.0 0.5 1.0 3.0

1 3 10 30 0.03 0.100.30 1.003.00 0.03 0.100.30 1.003.00 0.3 0.5 1.0

1e−031e−021e−011e+001e+01 0.0010.0100.1001.000 0.001 0.010 0.100 1.000 0.1 1.0 10.0 100.0
0.1

1.0

10.0

100.0

0.3
0.5

1.0

0.001

0.010

0.100

1.000

0.03

0.10
0.30

1.00
3.00

0.001

0.010

0.100

1.000

0.03

0.10
0.30

1.00
3.00

0.5

1.0

3.0

1e−03

1e−02

1e−01

1e+00

1e+01

1

3

10

30

0.1

1.0

10.0

100.0

Pumas NCA Estimates

P
ho

en
ix

 N
C

A
 E

st
im

at
es

% BLQ 5 10 20

Comparison of Pumas and Phoenix parameter estimates

Figure 11: Pumas and Phoenix NCA Results Comparison. Eighteen percent of subjects were randomly
selected from the 13104 scenarios to form a subset of 2367 subjects. This smaller subset was used to perform
the NCA calculations across the three software while ensuring to maintain the same default options. All
analysis were conducted on the same laptop.
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Figure 12: Pumas and PKNCA Results Comparison. Eighteen percent of subjects were randomly
selected from the 13104 scenarios to form a subset of 2367 subjects. This smaller subset was used to perform
the NCA calculations across the three software while ensuring to maintain the same default options. All
analysis were conducted on the same laptop.

27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.28.402297doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.28.402297
http://creativecommons.org/licenses/by/4.0/

	Introduction to Nonlinear Mixed Effects Modeling with Pumas
	Nonlinear Mixed Effects Models 
	Clinical Dosage Regimen Modeling
	Maximum Likelihood and Bayesian Model Fitting

	Generalized Quantitative Pharmacology Models with Pumas
	Integrated Non-compartmental Analysis (NCA)
	Alternative Differential Equations via A Function-Based Interface: Stochastic, Delay, and Differential-Algebraic Equations for Pharmacology
	Generalized Error Distribution Abstractions
	Integrated and Parallelized Model Diagnostics and Validation
	Optimal Design of Experiments 

	High Performance and Stability-Enhanced Model Fitting
	Fine-Tuning Differential Equation Solver Behavior to Model Features
	Fast and Accurate Likelihood Hessian Calculations via Automatic Differentiation 
	Accelerated Maximum Likelihood Fitting
	Automated Parallelism and Full-Application Benchmarks
	High Performance Non-Compartmental Analysis (NCA)
	Accelerated Optimal Design of Experiments

	Conclusion
	Acknowledgements

