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Abstract 

Motivation: Unsupervised clustering of single-cell transcriptomics is a powerful method for 

identifying cell populations. Static visualization techniques for single-cell clustering only display 

results for a single resolution parameter. Analysts will often evaluate more than one resolution 

parameter, but then only report one. 

Results: We developed Cell Layers, an interactive Sankey tool for the quantitative investigation 

of gene expression, coexpression, biological processes, and cluster integrity across clustering 

resolutions. Cell Layers enhances the interpretability of single-cell clustering by linking 

molecular data and cluster evaluation metrics, to provide novel insight into cell populations. 

Availability and implementation: Upon request 
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1. Introduction 

Single-cell RNA sequencing (scRNA-seq) technology allows for the classification of 

heterogeneous cell populations. Interpreting scRNA-seq profiles computationally requires 

clustering, which aims to group cells with similar transcriptional signatures (Hwang, B. et al. 

2018). The number of clusters and subsequent cell type characterization is commonly reliant on a 

clustering algorithm’s parameter choice, e.g., k-means clustering. A popular scRNA-seq 

clustering algorithm called Louvain is parameterized by a modularity optimization technique 

called ‘resolution’. The resolution parameter regulates the number of clusters, with low values 
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producing a few large clusters and higher values producing many small clusters (Traag,V.A. et 

al. 2019).  A primary hurdle lies in providing a quantitative representation and explanation of 

cell type relationships in multi-resolution clustering. 

Traditional scRNA-seq cluster analysis is visualized using t-distributed stochastic 

neighbor embedding (t-SNE) or uniform manifold approximation projection (UMAP) (Schwartz, 

G.W. et al. 2020) . While dimensionality reduction algorithms typically provide biologically 

meaningful topology, they only allow users to visualize and assess one clustering resolution at a 

time. Furthermore, since the cluster resolution governs cell delineation, it may not subdivide all 

populations at a single parameter. Analysts often evaluate multiple resolutions for different 

analytical purposes. For these reasons, we developed Cell Layers- an interactive data 

visualization tool for scRNA-seq multi-resolution cluster analysis. 

Cell Layers is a Sankey network. The network’s nodes are clusters. We call the edges 

between nodes the “flow”, which represent the transfer of cluster assignments across a cluster 

parameter grid search. A ternary chart can also be used for interpreting the coexpression of two 

to three marker genes for each flow. The Sankey representation of multi parameter clustering 

enables the rapid evaluation of single cell type characterization. 

2. Methods 

2.1. Louvain Strategies 

The Louvain algorithm takes a cell-to-cell KNN graph as input. In scRNA-seq analysis, the 

default construction method is based on the euclidean distance of a user-defined PCA subspace 

(Blondel,V.D. et al.  2008). Cells are then iteratively grouped together to optimize the Louvain 

modularity function, which is thresholded by the resolution parameter. Louvain clusters are 
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numerically labeled, with lower numbers signifying larger clusters. The output of a 

multi-resolution Louvain analysis is a cell by resolution parameter matrix, where values are the 

cluster assignment. The primary input to Cell Layers is a multi-resolution and cell by gene 

expression matrix. 

2.2. Data Representation 

In Cell Layers, each column of nodes represents a community structure Cv,j,  where v 

represents clusters {0,1,..n} at resolution parameter j ∈ ℝ. The Sankey network’s columns are 

ordered by a linearly increasing cluster parameter specified by a user-defined range and 

increment q. Each column’s community structure Cv,j is represented by nodes that are scaled by 

the cluster sample size and arranged to minimize edge overlap. The edges or “flow” between 

clusters is computed as the number of cells from Cv,j assigned to Cv,j+q. The data structure 

generated by Cell Layers is a directed acyclic graph. 

2.3. Single Cell Features 

The flow may be painted by marker gene expression for cell-type characterization. Users 

define the genes and their expression signature. To assess a single gene, each flow in the network 

is painted by the gene’s average expression for cells between Cv,j to Cv,j+q (Fig. 1A). The first 

drop-down menu allows users to select a gene, which will dynamically update the diagram’s 

flow and expression scale bar. The second drop-down menu allows the user to update node color 

by cluster metrics or biological process activity (BPA, see below for details). Additional 

drop-downs allow the user to set node width and modify the network layout. Users may choose 

any Matplotlib colormap for painting the flow and nodes. 
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Nodes may be painted by cluster metrics or BPA. For example, to assess cluster 

performance users may paint a Cv,j by their silhouette score or any cluster evaluation metric for 

Cv,j. Moreover, users can paint Cv,j by BPA, which provides a robust representation of cellular 

states and may be used for alignment across species (Fig. 1B) (Ding,H. et al. 2019). The ability 

to quickly switch between cluster evaluation metrics and BPA provides users two orthogonal 

quantitative approaches for cell type characterization. 

Many cell types are characterized by the coexpression of marker genes. To evaluate the 

coexpression for a user-defined geneset E containing n={2,3} genes over a flow with m cells, we 

created a gene expression percentile (GEP) for each gene Ei . We calculated GEP as: 

 GEPi =
∑
m

j=1
Ei,j

∑
m

j=1
∑
n

k=1
Ek,j

 

The GEPs for a geneset is then mapped to an RGB hex code using Matplotlib. A Plotly ternary 

chart is used to depict the percentile ratios of coexpressed genes for each flow (Fig. 1C). Each 

point in the ternary plot corresponds to a flow’s sample size and expression percentile. 

2.4. Future Directions 

Cell Layers was built for versatility and it’s application extends beyond the single cell 

features outlined previously. Node hover templates may include cluster metadata, which users 

may use to assess batch composition or integration. Downstream of multi-resolution analysis, 

Cell Layers can be used to evaluate data imputation models by assessing cluster stability metrics. 

Multi-resolution marker gene detection methods may be devised using statistical methods, such 

as the Jaccard Index. Additionally, protein activity profile methods could be integrated to resolve 

tissue-specific clusters (Ding,H. et al. 2018).  
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2.5. Software Availability 

Cell Layers is integrated in the JupyterLab computing environment, which also supports 

popular scRNA-seq tools. Plotly is open-source software for data analytics and visualization of 

data science models. We made significant adaptations to Plotly’s interactive Sankey and Ternary 

API for scRNA-seq multi-resolution Louvain analysis. Cell Layers will be available via pip, 

GitHub, Docker, and Singularity. 

3. Conclusion 

Clustering of scRNA-seq data is used for computationally identifying cell populations. 

Analysts typically assess multiple cluster parameters, cluster performance metrics, and marker 

genes before annotating clusters. Fixed dimensionality reduction methods for visualizing 

single-cell clustering are limited by the number of attributes that users can assess. Cell Layers 

enables analysts to easily utilize multi-resolution parameters for interactively exploring and 

characterizing single cell populations. 
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Fig. 1. Application of Cell Layers on PBMCs or iPSC-derived cardiomyocyte differentiation 
(Kathiriya, I.S. et al. 2020). All nodes are labeled by their resolution parameter followed by an 
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underscore indicating their cluster assignment. (a) PBMC multi resolution analysis from 0.1 to 
0.5. Edges are painted by CD3E , which is a marker gene for CD8 T, Memory CD4 T, and 
Naive CD4 T cells. Nodes are painted by Silhouette score. The lower Silhouette values 
indicate samples are near the decision boundary of neighboring clusters. (b) Nodes painted by 
enrichR GO 2018 Biological Process gene set scores for GO:0002480. The node hover 
template provides users cluster performance metrics (modularity and silhouette scores), GO 
term title, enrichR gene set score, and the top 5 differentially expressed genes. Edges are 
colored by NK marker gene CD8A . ( c) iPSC-derived cardiomyocyte multi resolution analysis 
from 0.1 to 0.5. Edges are painted by coexpression of TNNT2 (red), COL1A1 (green), and 
NR2F2 (blue). Nodes are painted by Silhouette score. Arrows on the Ternary plot indicate the 
direction of the co-expression scale for each edge in the Sankey chart. 
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