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Abstract 

Malaria transmission-blocking vaccines (TBVs) are a critical tool for disease elimination. TBVs 

prevent completion of the developmental lifecycle of malarial parasites within the mosquito vector, 

effectively blocking subsequent infections. The mosquito midgut protein Anopheline alanyl 

aminopeptidase N (AnAPN1) is the leading, mosquito-based TBV antigen and structure-function studies 

have identified two Class II epitopes that induce potent transmission-blocking (T-B) antibodies. Here, 

we functionally screened new immunogens and down-selected to the UF6b construct that has two 

glycine-linked copies of the T-B epitopes. We established a process for manufacturing UF6b and 

evaluated in outbred female CD1 mice the immunogenicity of the preclinical product with the human-

safe adjuvant Glucopyranosyl Lipid Adjuvant in a liposomal formulation with saponin QS21 (GLA-

LSQ). UF6b:GLA-LSQ was immunogenic and immunofocused the humoral response to one of the key 

T-B epitopes resulting in potent T-B activity and establishing UF6b as a prime TBV candidate to aid in 

malaria elimination and eradication efforts.  

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 29, 2020. ; https://doi.org/10.1101/2020.11.29.402669doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.29.402669


3 

 

MAIN TEXT 

Introduction 

Malaria is responsible for about 405,000 deaths each year, predominantly among children under 

the age of five in Sub-Saharan Africa1. To achieve malaria elimination and eradication, we must 

leverage concerted approaches to reduce clinical disease and prevent new cases. RTS,S (Mosquirix™), 

the most advanced malaria vaccine that has been rolled out in selected African countries, reduces disease 

burden for individuals, but alone it cannot ultimately support malaria eradication since it does not 

completely prevent malaria transmission2-4.  

The Plasmodium parasites responsible for causing malaria have an obligatory developmental 

cycle in the female Anopheles mosquito vector, which begins when a mosquito takes up male and 

female Plasmodium gametocytes in a blood meal from infected humans. Within the mosquito bloodmeal 

bolus, the gametocytes transform to male and female gametes that combine to form motile zygotes 

(ookinetes), which must first attach to the midgut epithelium followed by enterocyte traversal to form an 

oocyst just beneath the midgut lamina. Within two weeks, mature oocysts rupture releasing thousands of 

sporozoites that are passively transported to the salivary glands. Malaria parasite transmission is 

completed once the infectious mosquito injects salivary fluid containing sporozoites while taking a 

blood meal from a naïve human host.  

Transmission-blocking vaccines (TBVs) work by preventing parasite sporogonic development in 

the mosquito, thereby disrupting human-mosquito-human transmission (Fig. 1a)2-5. As a result, they also 

have the added benefit of preventing the spread of parasites that have developed drug resistance2,6. As a 

complementary intervention to RTS,S, TBVs may extend the utility of the RTS,S vaccine by reducing 

parasite breakthrough transmission in vaccinated populations2-7. While several TBVs that target 

Plasmodium proteins have already been tested in the clinic, parasite-centric vaccines are inherently 
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species-specific, requiring the production and validation of several malaria vaccine modalities2,3. In 

contrast, a pan-malaria TBV, which targets a conserved mosquito protein that acts as a parasite receptor 

in the mosquito midgut, may address the limitations inherent in parasite-centric vaccines. 

 
Fig 1. Design of AnAPN1 Transmission-Blocking Vaccine (TBV) constructs. (Top) Schematic 

depicting malaria mosquito-based TBV mode of action, wherein antibodies generated in a human host 

 are taken up by the mosquito  and prevent parasite (purple)-protein receptor (yellow) interaction  

and subsequent development within the mosquito, effectively blocking the spread of parasites within a 

community . (Bottom) AnAPN1 subdomain antigen design. Several second-generation immunogen 
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constructs of AnAPN1 were developed based on structural and functional information for peptides 1, 7, 

and 9 (note: peptide locations were not assigned left to right). Location of a Mouse T Helper Epitope 

(brown) identified through the Epitope Identification Suite (Merck Research Labs) is indicated7, which 

overlaps with the carboxy-terminal side of peptide 1.  AnAPN1 constructs; UF1: Original AnAPN1 

design, UF2: Mouse T Helper Epitope Deletion, UF3: Peptides 2-9 only, UF4: [PADRE: 

AKFVAAWTLKAAA] + Peptides 2-9 (UF3), UF5: UF3 + PADRE + UF3 construct, UF6: UF3+ 

[Glycine Linker: GS(GGGS)2G] + UF3. (Protein domains are not drawn to scale). See table S1 for 

additional details.  

 

The mosquito midgut surface protein Anopheline Alanyl aminopeptidase N (AnAPN1) is an 

advanced, pan-malaria mosquito-based TBV candidate7. Antibodies raised against the N-terminal 

domain of this protein were shown to prevent the Plasmodium falciparum ookinete from traversing the 

midgut wall and developing into oocysts, blocking further development and transmission of the 

parasite7-10. Our previous studies demonstrated that anti-AnAPN1 antibodies can completely (100%) 

block transmission of naturally circulating P. falciparum in Cameroon7-10. By solving the crystal 

structure of AnAPN1, we mapped two conformational and protective transmission-blocking (T-B) 

epitopes, peptides 7 and 9, and a non-protective, “decoy” peptide 1 epitope7,8. Considering that a 

monoclonal antibody to Peptide 7 alone8, and polyclonal antibodies that target only Peptide 9 can both 

result in potent transmission-blocking activity7, a vaccine formulation that promotes a highly focused 

and functional humoral response in humans to either peptide epitope would be considered successful.  

Peptide 1 includes a mouse CD4+ T cell epitope, allowing it to act as an “immune decoy” and elicit a 

significant humoral response with a robust but non-protective antibody titer8. Therefore, removing this 

immune-decoy epitope from the original 125 amino acid subdomain design of the AnAPN1 TBV (125 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 29, 2020. ; https://doi.org/10.1101/2020.11.29.402669doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.29.402669


6 

 

amino acid recombinant AnAPN1)7,8 may prevent the induction of an unintended and a predominant 

humoral response to peptide 1, and consequently improve T-B activity. We hypothesized that altering 

the immunogen design would focus ideally the humoral immune response to both of the critical peptide 

epitopes (peptide 7 and 9) and potentiate T-B activity, essentially requiring lower antibody titers to be 

elicited in the mammalian host while still achieving potent T-B activity. Here, we report the results of an 

immunological and functional screen in mice of new AnAPN1 constructs that do not contain the mouse 

immunodominant peptide 1 epitope, and are capable of immunofocusing the vertebrate humoral 

response to at least one of the critical T-B epitopes, peptide 9. In this study, we not only demonstrated 

the marked immunogenicity and T-B functionality of the selected second-generation AnAPN1 construct 

(UF6), but also identified a potent formulation of the preclinical product and purification process for a 

tag-free immunogen (UF6b) with the human-safe Glucopyranosyl Lipid Adjuvant in a liposomal 

formulation with saponin QS21 (GLA-LSQ) adjuvant9,11. Overall, our results highlight UF6b:GLA-LSQ 

as a strong TBV candidate that may be a critical component in the fight to eliminate if not eradicate 

malaria. 

 

Results  

Down-selection to the UF6 immunogen construct 

Previous studies on the T-B activity of anti-AnAPN1 IgG together with data on the protein 

structure revealed that there are multiple epitopes on the AnAPN1 protein, some of which contribute to 

T-B activity, while others, such as peptide 1 do not7,8. Hence, we used these data to inform the design of 

new immunogen variants to specifically present to the immune system only the relevant T-B domains of 

AnAPN1, thereby effectively avoiding undesired immunodominant epitopes. Using a wheat germ cell-

free protein expression system, we prepared as a reference standard, the original AnAPN1 antigen 
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construct (UF1), along with five new antigen candidates for the screening study (Fig. 1b, fig S1a,b). A 

UF2 antigen was constructed based on UF1 without peptide 1, the mouse T helper epitope 

(RTEIHRNERTFT) and the flanking regions (Fig. 1b) but produced insufficient yields in the wheat-

germ system for further study. The four other constructs were as follows: UF3 deleted the decoy peptide 

(peptide 1) and consisted of peptides 2-9; UF4 consisted of a 13 amino acid, non-natural, pan-DR-

binding human T helper epitope [PADRE: AKFVAAWTLKAAA] and the UF3 sequence; the UF5 

antigen was a dimer construct of UF3 + PADRE + UF3; and finally the UF6 antigen, a dimer construct 

similar to UF5 but connected with a glycine linker (GS(GGGS)2G) (Fig. 1b, table S1). These antigens 

were tested in immunization studies with a prime and two boost regimen (boosting on days 28 and 42) 

using outbred CD1 mice formulated with either Alhydrogel™ or GLA-LSQ adjuvant. The ranking 

criteria for progressing forward were (1) induction of an antibody response to both peptide 7 and 9, (2) 

induction of an antibody response to either peptide 7 or 9, and (3) functional T-B activity.  Our initial 

immunological screen demonstrated that wheat germ expressed AnAPN1 constructs UF5 and UF6 were 

more immunogenic than the original AnAPN1 construct (UF1) (fig. S2). Based on serum endpoint titers 

alone, the immunogenicity of UF5 appeared to superior to that of other constructs. Antibodies generated 

using UF5:GLA-LSQ or UF6:GLA-LSQ were also found to be focused on the T-B epitope, peptide 9, 

and the recognition signals were significantly greater than that observed for UF1 (fig. S2).  

Serum samples from the immunized mice were then used to further determine the T-B activity of 

the different antigens in both the standard membrane feeding assay (SMFA) using laboratory strains of 

Plasmodium (NF54) and by direct membrane feeding assay (DMFA) using circulating parasite strains in 

Cameroon (fig. S3). Including the wild-type Plasmodium strains helped us to further demonstrate the 

high T-B potential of the two “down-selected” antigen candidates (UF5 and UF6) that had also shown  
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Table 1. UF6b-phoA-T7 Master Cell Bank (MCB)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1: 

Reference EVENT-2020-0039 

 

the highest endpoint titers in the immunization studies (fig. S2). However, our results indicated that 

there was no clear correlation between the antibody titer and T-B activity. Although we did not initially 

observe any advantage in terms of immunogenicity of formulating UF5 with GLA-LSQ over 

Analysis Method 
Acceptance 

Criteria 
Results Pass/Fail 

Viable Cell Count: 
Pre-freeze  

TM-0088 ≥1x106 CFU/mL 3x108 CFU/mL Pass 

Viable Cell Count: 
Post-freeze 

TM-0088 ≥1x106 CFU/mL 4x108 CFU/mL Pass 

Lysogenic 
bacteriophage 

510088GMP.BUK 
(BioReliance) 

Bacteriophage not 
detected 

Not detected Pass 

Mycoplasma 
300201GMP.BUK 

(BioReliance) 
Negative for 
Mycoplasma 

Negative Pass 

Purity testing of 
microbial cell banks 

510008GMP.BUK 
(BioReliance) 

No evidence of 
contaminating 

organisms 
Absent Pass 

Morphology 
510057GMP.BUK 

(BioReliance) 
Gram negative, rod 
shaped bacterium 

Conforms Pass 

Host Cell Phenotype 
512002GMP.BUK 

(BioReliance) 
Profile consistent 
with host cell line 

Conforms Pass 

Host Cell Genotype 
105058GMP.BUK 

(BioReliance) 

Banding pattern of 
MCB consistent with 

host cell line 
Conforms Pass 

Percentage of E.coli 
cells retaining 
expression vector 

104030GMP.BUK 
(BioReliance) 

Report Results 

100% retain 
antibiotic resistance 
gene, 100% retain 

expression 
construct 

N/A 

Retention of the 
foreign UF6 gene: 
Sequencing 

106603GMP.BUK 
(BioReliance) 

Conforms with the 
reference sequence 

for the coding 
sequence 

Conforms Pass 

Plasmid Identity: 
Restriction Digestion 

104034GMP.BUK 
(BioReliance) 

Coherent fragments 
with plasmid 

restriction map 
Conforms Pass 

Retention of the 
recombinant 
construct – 
determination of 
plasmid copy number 

107315GMP.BUK 
(BioReliance) 

Report Results 

Test article AF85BF 
contained between 

21.81 and 87.22 
copies of AF85BF 

transgene target per 
cell 

 (43.61 ± 2-fold) 

N/A 

Expression of ΔN-
AnAPN1 (UF6) 

TM-0087 
Anti-UF6b antisera 
identified a protein 

of MW 28 kDa 

Conforms to 
Reference1 

Pass 
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Alhydrogel™ (ALUM) (fig. S2), the subsequent functional studies suggest that the UF6:GLA-LSQ 

formulation produces the most effective T-B antibodies. Moreover, despite higher UF5:GLA-LSQ 

antibody titers, the UF6:GLA-LSQ antibodies proved to be more potent at blocking oocyst development 

in a DMFA (fig. S3). 

Table 2. Certificate of Testing for UF6b Drug Product. 

aTAMC, Total Aerobic Microbial Count 
bTYMC, Total combined yeasts and molds count 

 

Establishing a large-scale CGMP production process for UF6b 

Based on the finding that UF6 produced the most robust T-B antibodies, we developed a process to 

produce large scale CGMP quantities of the UF6 immunogen in preparation for First-In-Human clinical 

trials. In this process we made two changes to the antigen resulting in the “UF6b” immunogen: (i) 

removal of the C-terminal His-tag that was used for purification and (ii) addition of an inert, non-

immunogenic peptide sequence, CGGSG at the C-terminus to protect from anticipated carboxyterminal 

protease clipping at higher fermentation scales (table S1). This construct was inserted into the E. coli 

Analysis Method Results 

pH USP <791> 8.05 

Visual Appearance Visual Inspection 
Free from visible particulates, slightly opalescence, 

slightly yellow 

Identity Western Blot Conforms to Major Band in Reference Standard 

Protein Concentration 
Spectrophotometric/ 

A280 
3.96 mg/mL 

Purity SEC-HPLC 

Four peaks, in sequence high MW to low MW 
Peak 1: 48.04% 
Peak 2: 33.09% 
Peak 3: 10.91% 
Peak 4: 7.96% 

Purity RP-HPLC 100% 

Purity CE-SDS-PAGE 96.43% 

Residual DNA PicoGreen 24.3 ng/mL 

Residual HCP ELISA 206 ng/mg 

Endotoxin USP<1115> 6.7 EU/mg 

Bioburden USP<85> TAMCa = 0 cfu/mL 
TYMCb = 0 cfu/mL 
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expression vector pD1841 for expression under the control of phoA promoter in transformed 

BL21(DE3) cells (Fig. 2). A Master Cell Bank was generated and used to produce UF6b (Table 1). The 

identified process produced 52.3 g of total UF6b at harvest (469.94 mg/mL in 111.3 L volume) in 

relatively low biomass of 45.8 g/L at the 120 L fermenter scale. This calculates to a specific productivity 

of 1% (0.010 g UF6b per g of E. coli).  The pre-clinical grade bulk drug substance met all established 

acceptance criteria for quality attributes, including an endotoxin level of 6.7 EU/mg (Table 2). 

 

Fig. 2. Process flow diagram for UF6b manufacture.  (Top right) UF6 antigen produced by CellFree 

Sciences in the wheat germ cell-free system, which was recognized as a 29 kDa band by anti-UF6 
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antibody, was used as reference material by Ology Bioservices for process development. (Top left) 

E.coli BL21 (DE3) were transformed with UF6b-phopD1841 to produce a Master Cell Bank (MCB) 

expressing the UF6b, HIS-tag-free antigen. Using a lot from the MCB, pilot small-scale expression was 

followed by replicate 120-L scale runs with the goal of high yield production of UF6b in inclusion 

bodies to aid in the purification steps to reduce endotoxin. In-process UF6b was used for all 

immunological and functional assays.  Bulk Drug Substance was further characterized and observed to 

yield low endotoxin levels. kDa, kilodalton. BSA, bovine serum albumin standards. See Table 1 and 

Table 2 for more details.  

 

UF6b is immunogenic and elicits anti-Peptide 9 antibodies in mice 

To test the immunogenicity of the selected new preclinical UF6b product, outbred CD1 mice 

were immunized intramuscularly (20 μg/dose/mouse) following a prime plus two-boost regimen, with 

boosting on Days 28 and 70 to reflect an anticipated dosing interval in a clinical trial (Fig. 3a, table S1). 

UF6b alone (in the absence of adjuvant) is highly immunogenic in mice, achieving reciprocal serum 

endpoint titers of 10⁶ on Day 98 of the study (Fig. 3b), establishing its baseline immunogenicity. Mice 

were also immunized with UF6b formulated with either GLA-LSQ (Fig. 3c) or AddaVax™ (RUO 

version of the more potent MF-59 human-safe adjuvant to replace Alhydrogel™ as the adjuvanted UF6b 

positive control, Fig. 3d). The formulation of UF6b:GLA-LSQ elicited a higher, more rapid, and more 

stable response than either UF6b alone or UF6b:AddaVax™ (Fig. 3e).  

Considering that immunization regimens can influence the magnitude and durability of antibody 

responses to an immunogen, we also tested a Day 0 (prime) with a Day 28 and Day 56-boosting regimen 

to determine whether a more contracted 70-Day study would affect the overall humoral immune 
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response in mice. We found that the contracted 70-Day immunization regimen (Fig. 3a) produced a 

comparable, antibody response to the 98-Day study with serum endpoint titers at ~1:108 (Fig. 3f). 

 

Fig 3. Immunogenicity of the UF6b construct. (a) Mice were immunized (i.m.) following a longer 

D98 prime and two-boost regimen (boosts on Days 28 and 70) or a compressed D70 prime and two-

boost regimen (boosts on Days 28 and 56) (20 μg/dose/mouse).  Analyses of the longer regimen sera are 

shown in b-e. (b-d) Mice were immunized with UF6b [grey] in the absence of adjuvant (b), with 

UF6b:GLA-LSQ [blue] (c), or with UF6b:AddaVax [orange] (d). (e) The kinetics of the antibody (1:100 

dilution) response over time. Analyses of the shorter regimen sera are given in f-g: (f) UF6b given with 
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either GLA-LSQ [blue] or AddaVax [orange] in the contracted D70 study. (g) ELISA analyses used 

pooled sera collected at the designated timepoints. Absorbances taken at 570 nm were deducted from 

absorbances at 450 nm to account for background. Error bars indicate SEM of triplicates. D, Day.   

 

We hypothesized that deleting the N-terminal “decoy” peptide epitope (peptide 1) would focus 

the humoral response of immunized mice to the two key T-B epitopes, peptide 9 and peptide 7.  We 

tested this hypothesis by conducting indirect peptide enzyme-linked immunosorbent assays (ELISAs) 

using only synthetic peptides for these two epitopes. Using sera collected from the 70-Day study as a 

representative humoral response for two different dosing regimens, we observed that the mice mounted 

an antibody response to peptide 9, with UF6b formulated with either adjuvant but failed to mount a 

response to peptide 7 (Fig. 3g). Both the longer and contracted studies were repeated with new cohorts 

of mice and the pooled antibody responses generated against UF6b and both key peptides remained 

similar (fig. S4). Importantly, a closer examination of individual mouse antibody titers from the 70-Day 

study indicated a high peptide 9 responder rate across all mice per group (fig. S5-S6). 

 

UF6b elicits potent T-B antibodies in mice 

Previously, we have shown that immunizing mice with the N-terminal 125-aa recombinant 

AnAPN1 protein generates functional T-B antibodies7-10. In the current study, we assessed whether total 

IgG purified from mice immunized with the new construct UF6b similarly blocked parasite transmission 

by both SMFA and DMFA. The total IgG concentration of 50 µg/mL, corresponding to about 3.3 µg/mL 

of antigen-specific IgG, effectively blocked transmission of P. falciparum in Anopheles gambiae 

mosquitoes (Fig. 4), leading to a significant reduction in  oocyst intensity (i.e., the number of oocysts 

present per midgut). Antibodies raised in mice immunized with UF6b:GLA-LSQ were able to 
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significantly reduce mean oocyst intensity greater than 90% (P<0.001, GLMM, Kruskal-Wallis, α<0.05) 

(Fig. 4a, c). Additionally, higher concentrations of total IgG did not appear to enhance T-B activity at 

concentrations above 50 µg/mL (Fig. 4b).  This phenomenon has been described previously, wherein 

higher antibody concentrations have either resulted in plateauing of T-B activity or enhancement of 

parasite infection of the midgut; effects within the known intrinsic error of the assay12-14. 

 

Fig. 4. Functional activity of UF6b antibodies. (a-e) UF6b:GLA-LSQ generates potent 

transmission-blocking antibodies against both lab and naturally circulating Plasmodium strains. 

(a) Representative standard membrane feeding assay (SMFA) using 50 µg/mL total IgG purified from 

pooled sera of mice immunized with UF6b collected on Day 98. (b)  Representative SMFA using serial 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 29, 2020. ; https://doi.org/10.1101/2020.11.29.402669doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.29.402669


15 

 

dilutions of purified IgG from Day 70 of the D98 study. The monoclonal antibody (mAb) 4H5B7 was 

included at 250 µg/mL as a positive control. (c) Representative SMFA with a higher mean oocyst count 

in the control group, using 50 µg/mL total IgG purified from pooled sera of mice immunized with UF6b 

collected on Day 98. (d-e) Direct membrane feeding assay (DMFA) in Cameroon conducted with blood 

from 2 gametocytemic children (Case codes C514 and C519) with varying concentrations of total IgG. 

The peptide 7 mAb 4H5B7 served as the positive control. (a-e) Total IgG was purified from the same 

cohort of mice. Treatments without a common letter were found to be statistically significant (α = 0.05, 

p < 0.01, N =14-59) as calculated by Kruskal-Wallis test with Dunn’s post hoc correction or by zero-

inflated Generalized Linear Mixed Model as appropriate. Red horizontal bar indicates mean oocyst 

number per mosquito midgut. (f) Comparison of Ig isotypes present in antisera between UF6b alone, 

UF6b:GLA-LSQ and UF6b:AddaVax™. (g) Comparison of Ig isotypes from collections at D70, D84, 

and D98 from the protracted dose regimen studies. (h) Ig isotypes for two replicates of the contracted 

dose regimen studies. (f-h) Sera used at 1:1,000 dilution. Error bars indicate the SEM for replicate wells. 

 

We also tested the ability of purified total IgG from mice immunized with UF6b:GLA-LSQ to 

block naturally circulating P. falciparum parasites from infecting An. gambiae mosquitoes in Cameroon 

by DMFA. UF6b-specific IgG at 3.3 µg/mL resulted in reproducible reductions of 80-90% in mean 

oocyst intensity (P<0.001, GLMM, α<0.05) (Fig. 4d,e). 

To determine whether the observed differences in apparent T-B activity for antisera from 

UF6b:GLA-LSQ and UF6b:AddaVax immunizations can be explained by variances in antibody quality 

and quantity, we compared the immunoglobulin isotypes for these two groups as well as for UF6b alone 

and the contracted 70-Day dosing studies. In the absence of adjuvant, UF6b elicited primarily an IgG1 

response with lower levels of IgG2a and IgG2b (Fig. 4f). When given in conjunction with either GLA-
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LSQ or AddaVax™, the immunoglobulin profile is more equally divided between these three subtypes. 

Also, between these three immunization groups no differences were noted for IgG3, IgA, and IgM, 

which were all comparably low and all groups had a higher proportion of kappa to lambda light chains 

(Fig. 4f). Very little variation in the immunoglobulin profile was seen in the D98 study after the D70 

time point, although we did notice an increase in lambda light chain in the repeat D98 study (Fig. 4g). 

We noted that the contracted study of UF6b:GLA-LSQ produced a comparable immunoglobulin 

subclass profile (Fig. 4h) as compared to the longer D98 study (Fig. 4g), indicating flexibility in dose 

regimen schedules in future clinical studies. There was some variation in the amounts of IgG2a and 

lambda light chain between the two replicate 70-Day studies, which can be expected with outbred mice. 

 

Discussion  

Here we successfully optimized our mosquito-based AnAPN1 candidate for further development 

and evaluation as a potent malaria TBV antigen. Moreover, our studies further demonstrated the benefits 

of using structural information in antigen optimization as a crucial step in the development of any 

malaria vaccine candidate. UF6b was reliably immunogenic in mice even when inoculated alone, 

unformulated with an adjuvant. The UF6b construct is based on a structure-function understanding of 

the immunogenic and mosquito-specific domains of the full-length APN1 from An. gambiae10.  UF6b 

generated a peptide 9-specific response, which we have demonstrated previously8 confers potent T-B 

activity. While our original goal had been to target both peptides 9 and 7, which were predicted to 

strongly bind MHC II encoded by the HLA-DRB1 alleles common to East African populations7,11, we 

were unable to elicit a peptide response specific to peptide 7. This lack of a peptide 7-specific antibody 

response may result from an altered presentation of the peptide 7 epitope due to the flexibility of the 

glycine linker introduced in the new UF6b dimer construct.  However, the lack of a peptide 7-specific 
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response did not appear to affect the overall T-B activity of the antibodies, and achieves two priority 

goals:  induction of antibodies to either peptide 7 or peptide 9 and demonstrated functional T-B activity 

at lower antibody concentrations. 

In previous studies, between 0.8-1.6 mg/mL of purified total IgG from rabbits immunized with a 

near-full length recombinant AnAPN1 (i.e., UF1) was needed to block oocyst development in both 

SMFAs and DMFAs7. At this high total IgG concentration, it was estimated that only ~5-10 µg/mL were 

antigen-specific IgG. However, these studies used an immunogen containing the “immune decoy” 

epitope (peptide 1), causing a larger proportion of the murine IgG profile to target this malaria-irrelevant 

epitope7,8.  We observed that a comparable amount of UF6b-specific IgG (3.3 µg/mL) was present in the 

antisera of mice immunized with UF6b:GLA-LSQ. These data suggest that the UF6b:GLA-LSQ 

formulation was indeed able to focus or skew the vertebrate immune response towards the peptide 9 

epitope, resulting in a 32-fold lower concentration of total IgG (50 µg/mL as opposed to 1.6 mg/mL) 

needed to confer marked T-B activity.  It remains to be seen if antibodies with similar potency can be 

induced in non-human primates or humans.   Maximal T-B activity for total IgG following UF6b:GLA-

LSQ immunization was comparable to that observed for the potent monoclonal antibody (mAb) 4H5B7, 

which targets peptide 7 only8.  The degree of blocking activity appears to be related to the intensity of 

the infection of the mosquito in SMFAs and in DMFAs, the variation in T-B activity may be related to 

the genetic complexity of the gametocytes in the blood obtained from infected volunteers15. This is not 

entirely unexpected since the membrane feeder (although the gold standard for measuring T-B activity 

in the field) is artificial and circulation of infected red blood cells and antibody within the small feeders 

is not currently possible. As such, the distribution of antibody throughout the bloodmeal may not be 

even.  The intrinsic error of membrane feeding assays notwithstanding12-14, complete blockade can be 
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observed when oocyst intensities are less than 50 oocysts/midgut, which is a level expected in natural 

infections based on observations from field studies examining the range of possible oocyst intensities16.  

Differences in T-B activity between the UF6b:GLA-LSQ and UF6b:AddaVax™ vaccine 

formulations cannot be explained by total antibody titers alone.  Previous studies suggest that a 

predominantly Th2 response is elicited in mice following immunization with AnAPN1 (UF1) 

formulated with Alhydrogel™ [10].  This is generally observed as lower IgG2 titers relative to IgG1 titers 

in immune sera.  However, higher IgG2a and IgG2b titers to UF6b were observed with UF6b:GLA-LSQ 

and UF6b:AddaVax™ than UF6b alone, indicative of a Th1-biased humoral response in these outbred 

CD1 mice.  UF6b:GLA-LSQ elicited a slightly higher IgG2a titer as compared to UF6b:AddaVax™ and 

more than a log higher IgG2a titer than UF6b alone.  Saponin-based adjuvants (GLA-LSQ) and 

emulsions such as AddaVax™ or MF-59 are designed to induce robust and balanced Th1/Th2 responses, 

and this was clearly observed in our study for UF6b:GLA-LSQ and UF6b:AddaVax™ [17].  The 

observation of a higher proportion of kappa light chains in antigen-specific IgG (all Ig subclasses) for 

the UF6b:GLA-LSQ has not been previously observed in studies using UF1:Alhydrogel™.  In humans, 

variable light chains can influence antibody-binding specificity, serum half-life, and conformational 

flexibility in addition to other physicochemical properties, whereas subtle differences in these same 

properties have been described for variable heavy chains18.  IgG3 responses have not been noted in our 

previous work with AnAPN1-targeted immunization, and although associated as a co-marker of a Th1 

profile, the overall IgG3 titers in this study were low.  Given that the potent mAb 4H5B7 is an IgG2b, 

kappa isotype, it is possible that the higher titers of IgG2a and IgG2b and light chain isotype ratio may 

have resulted in not only more antibody, but also a qualitatively better antibody repertoire.  This 

hypothesis bears further study and could be relevantly and appropriately addressed in a Phase 1 clinical 

trial. It should be noted that mice are an imperfect model organism for predicting the success of malaria 
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vaccines in humans, as mice generate different immune responses with distinct antibody characteristics 

as compared to non-human primates (NHPs) and humans19. As such, further testing of the tolerance, 

immunogenicity, and longevity of our UF6b:GLA-LSQ formulation are currently being completed in 

NHPs to allow a quicker transition to First-In-Human clinical trials. 

The process development workflow (Fig. 2) established in this study positions the program well 

to move forward to CGMP production of UF6b. Based on a theoretical 0.1 mg/mL/subject as the highest 

dose in a Phase 1 study, the conservative estimated endotoxin level would be 0.35 EU/mL. This is 

already well below the <20 EU/mL recommendation for each dose of a recombinant protein vaccine and 

is 15-fold lower than the upper limit of endotoxin for Rubella vaccines20. In fact, the current process sets 

AnAPN1 (UF6b) endotoxin level within the reported range of several recommended pediatric vaccines. 

Malaria TBVs are a critical component in the fight to eliminate and eradicate malaria. Our results 

meet and surpass the functional benchmark for a successful TBV, i.e., confer ≥80% T-B activity in 

terms of oocyst intensity and achieve this using lower concentrations of target-specific antibody titers in 

the membrane feeding assay5. Considering the inherent variation in vaccine response in human 

populations in malaria-endemic countries, partly as a result of acute malaria, concomitant infections 

and/or malnutrition21, it is important that the bar for the required concentration of antibodies with  

functional malaria T-B activity is lowered.  Doing so would increase the likelihood of success that 

implementation of such a vaccine would result in demonstrable efficacy at the community level. The use 

of the GLA-LSQ adjuvant is predicted to help overcome limitations in the induced T follicular helper 

(Tfh) cell response, as circulating Tfh cells were found to be impaired in B cell help during an acute 

malaria episode21, and this adjuvant has proved to be critical in improving the total Tfh response in 

clinical studies with the Pfs25 transmission-blocking vaccine22.  Overall, our results are promising and 

underscore the candidacy of the AnAPN1 molecule (exemplified by UF6b:GLA-LSQ) as a prime 
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malaria TBV formulation. Coupled with the high-yield and low endotoxin level of the current pre-

clinical Drug Product, the AnAPN1 TBV is positioned nicely to move forward with CGMP 

manufacture, lot release testing, and toxicity studies as a prelude to a Phase 1 clinical trial.   

 

Materials and Methods 

Experimental Design 

For both SMFAs and DMFAs, IgG was purified from each 0.8-1 mL cardiac puncture sample 

per mouse.  Since a single mouse cannot yield sufficient purified IgG for an assay, using current best 

practices, immune serum from either ten or twenty mice were pooled before purification.  The purified 

IgG from the pooled immune sera permitted us to perform dose-response membrane feeding assays in 

triplicate.  

Data collection was stopped at a predetermined timepoint of either Day 70 or 98. As per the 

animal care use committee approved protocol (protocol #201909359), data collection endpoints were 

also determined by the following humane endpoints for the test mice: if any of the test mice sustained 

greater than or equal to 15% weight loss from baseline weight or age-matched controls for those animals 

still maintained during the study; a body condition score of 2 or less; inability to reach food or water; 

impaired mobility; the presence of tumors; labored breathing, respiratory distress or cyanosis (blue 

tinged color); tremors, convulsions or seizures lasting more than 1 minute or occurring more than once a 

day; dehydration lasting over 24 hours that is unresponsive to treatment; or moribund - unable to right 

itself.  

The objective of this study is to down-select to a new AnAPN1 construct capable of 

immunofocusing the humoral response to the two key T-B epitopes. Once this was accomplished, we 

sought to determine the immunogenicity and immunofocusing ability of the UF6b antigen as well as 

quantify the T-B activity of the elicited immune sera. To test if UF6b immunofocused the murine 
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humoral response to peptides 7 and 9, mice were immunized via intramuscular injection (i.m.) with 

either UF6b alone, UF6b:GLA-LSQ, or UF6b:AddaVax™. At pre-specified timepoints blood samples 

were collected to perform ELISAs, SMFAs, and DMFAs. All data relevant data are included. The study 

was performed twice per dosing regimen with each mouse serving as a biological replicate in each 

cohort. Tests were performed with two-three technical replicates. There was no blinding in this study.  

 

Ethics 

All research protocols have been approved by the relevant institutional review boards and national 

ethics committees for Cameroon (2016/03/730 and 2019/07/1168/CE/CNERSH/SP) and the University 

of Florida (UF) for concurrence and laboratory-based studies (IRB201800971, IRB201902261 and 

IRB201602150).  Use of vertebrate animals (mice) for these studies have been approved by the UF 

Animal Care and Use Committee (UF Animal Welfare Assurance number A3377-01, Protocol# 

201909359, approved on 06/07/2019).  

 

Wheat Germ Cell-Free Immunogen Expression 

 Templates for the expression of proteins UF1 to UF6 were prepared by gene synthesis 

(GenScript, USA). Before synthesis, sequences were optimized for expression in wheat, and a His-tag 

with six histidine residues was directly added without spacer to the C-terminus of the proteins. 

Templates were then cloned into the expression vector pEU-E01-MCS (CellFree Sciences, Japan) using 

the XhoI and BamHI restriction sites, and the DNA sequences of the templates confirmed before use in 

protein production. Plasmid DNA for each template was prepared using a Plasmid Maxi Kit (Qiagen, 

Germany). Protein expression was first confirmed by performing a 50 µL dialysis expression reaction 

using the wheat germ cell-free protein expression system extract WEPRO7240H (CellFree Sciences, 
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Japan) according to the manufacturer’s directions for performing separate transcription and translation 

reactions. After a 72-h translation reaction, the crude reaction mixtures were centrifuged for 10 min at 

21,500 x g to remove the insoluble fraction before loading onto a chelated-Ni resin (Ni-NTA Agarose, 

Qiagen, Germany). Proteins were purified on the Ni resin using a commercial buffer set (His Buffer Kit, 

GE Healthcare, USA). In brief, crude reaction mixtures were centrifuged at 10 min at 21,500 x g to 

separate the soluble from the insoluble fraction. The samples were diluted 4-fold using a buffer 

containing 20 mM Na-phosphate, 0.5 M NaCl, 0.02 M imidazole (pH 7.5) before loading onto the resin. 

After the binding reaction, the resins were washed three times with a 20 mM Na-phosphate, 0.5 M NaCl, 

0.05 M imidazole buffer before the proteins were eluted twice with 20 mM Na-phosphate, 0.5 M NaCl, 

0.5 M imidazole Elution Buffer. Proteins from each fraction during expression and later processing were 

resolved by 15% SDS-PAGE (DRC, Japan) and stained with Coomassie Brilliant Blue. Different 

amounts of BSA were run in parallel to quantitate yields of the expressed proteins. Because protein UF2 

was partially insoluble and expressed at lower yields compared to the UF1 protein, further studies with 

UF2 expression were discontinued in favor of UF1. Remaining proteins UF1 and UF3 to UF6 were 

produced on a larger scale using 3 mL dialysis translation reactions following the same procedures 

established during the expression tests. As a part of large-scale protein preparation, a buffer containing 

15% sucrose, 10 mM Tris, 0.2% Tween-80 (pH 7.8) replaced the Elution Buffer. Proteins were shock-

frozen in liquid nitrogen and stored at -80°C until later use. 

 

Process Development of UF6b Manufacture 

UF6 sequence was modified to remove C-terminus His-tag and in its place, we added a 

protective C-terminal, inert peptide linker sequence (CGGSG) to generate UF6b23
. The produced 

sequence (GenScript) was cloned into the expression vector pD1841 under phoA promoter control and 
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kanamycin as a selection marker. Competent E. coli BL21(DE3) (ThermoFisher) were transformed and 

screened for expression of UF6b by Western blot. Research cell banks (RCB) and Master cell bank 

(MCB) were generated for production of UF6b. Process development was performed in a scale-down 

models in a 10 L glass-vessel bioreactor (BioFlo 320, Eppendorf). Established process parameters were 

then scaled up to 120 L in a BioFlo Pro 150 stainless steel fermenter (Eppendorf). Phosphate depletion 

during the growth phase induced UF6b expression into inclusion bodies. Harvest was performed via 

tangential flow filtration using 750 kDa hollow fiber cartridge (Spectrum/Repligen) at load challenge 

<50 g/m2. The biomass was concentrated to >100 g/L and buffer exchanged into 50 mM HEPES (pH 

8.0) buffer and subsequently diluted to 50 g/L for mechanical lysis by microfluidization (Microfluidics 

M-110E) at 20,000 psi for four (4) cycles with temperature controlled ≤16 °C. The insoluble inclusion 

body (IB) fraction was separated by centrifugation at 10,000 x g for 30 minutes at 2-8 °C (Sorvall Lynx 

6000, ThermoFisher). The IB pellet was washed with 20 mM HEPES (pH 8.0), 2 M urea, 1% Triton X-

100 at a 1:10 ratio (g of WCW biomass to wash buffer) and isolated by centrifugation. Two-phase 

separation wash with Triton X-114 was performed to reduce endotoxin levels24.  The washed pellet was 

then solubilized with 6 M urea in 20 mM HEPES (pH 8.0) buffer for 1 h with mild agitation and an 

additional endotoxin removal step performed on the soluble preparation as previously referenced. 

Solubilized UF6b was refolded by dilution (from 6 M urea to 1 M urea) with 20 mM HEPES (pH 8.0) 

and buffer exchanged into 20 mM Tris-HCl (pH 8.0) + 15% sucrose + 200 mM NaCl by TFF to prepare 

the material for further purification by anion exchange chromatography (AEX).   

UF6b polishing was performed by tandem AEX on Capto Q ImpRes (Cytiva) medium at linear 

velocity of 150 cm/h in flow-through mode followed by bind and elute mode. The effluent from flow-

through mode was diluted with 20 mM Tris-HCl (pH 8.0) to achieve conductivity <7 mS/cm. After 

equilibration with 20 mM Tris-HCl (pH 8.0), binding of UF6b to AEX at ≤50 mg/mL resin was 
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followed by a 5-column volume (CV) wash with equilibration buffer and eluted by linear gradient from 

0 to 500 mM NaCl over 15 CV. Peak fractions were further analyzed for field and endotoxin content and 

pooled. Formulation was performed by TFF (ProStream mPES,1 m2 10 kDa MWCO, L-screen; 

Repligen) operated with a TMP of 15 psig at a process flux of 8 LMH. The retentate was concentrated to 

>1 mg/mL then buffer exchanged with 7 diavolumes of 20 mM HEPES, 15% sucrose, 0.2% Tween 20 

(pH 8.0). After the retentate was recovered, Tween-20 was added to Bulk Drug Substance (BDS) to a 

final concentration of 0.2%, and the BDS was filtered through a sterilizing grade 0.2 µm filter (Opticap 

PES, Millipore Sigma) to generate formulated BDS. BDS was aliquoted into HDPE bottles and stored at 

≤65 °C. 

 

Mouse Immunizations 

To down-select to the optimal AnAPN1 construct, female outbred CD1 mice (N=5) aged 5-7 

weeks (Charles River) were immunized with 20 μg of either wheat germ cell-free expressed UF1, UF3, 

UF4, UF5, or UF6 emulsified 1:1 with GLA-LSQ or Alhydrogel. Mice were primed subcutaneously and 

boosted on Days 28 and 42 intraperitoneally (i.p.) for antigens formulated with Alhydrogel and 

intramuscular (i.m.) for antigens formulated with GLA-LSQ. Sera was collected on Day 0 and prior to 

boosting on Days 28 and 42. On Day 56 the mice were sacrificed, and sera collected via cardiac 

puncture.  

To test the new UF6b construct, female CD1 outbred mice (Charles River) aged 6-8 weeks were 

used. Forty mice were split into three groups (table S1): Group A contained 10 mice immunized (i.m.) 

with UF6b; Group B (main focus group) contained 20 mice immunized (i.m.) with UF6b:GLA-LSQ; 

and Group C contained 10 mice immunized (i.m.) with UF6b:AddaVax™. For all treatment groups, 

mice received 20 μg UF6b in diluent (20 mM HEPES, 15% sucrose, 2% Tween-20, pH 8.0) to 100 μL 
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total volume without or with adjuvant. For treatment groups B and C described above, 50 μL adjuvant 

was mixed 1:1 (vol/vol) with 50 μL antigen in diluent (total volume = 100 μL). At Day 0, mice received 

an i.m. injection of 50 μL of the antigen/adjuvant formulation in each caudal thigh, resulting in a total 

priming dose volume of 100 μL. At Days 28 and 70 post-priming, all mice were boosted i.m. with the 

same formulations described above (Fig. 3a). Every two weeks post-priming, mice were bled to collect 

sera for anti-AnAPN1 antibody titer determination via ELISA. Mice were sacrificed four weeks after the 

final boost and serum was collected via cardiac puncture. A single replicate study was completed with 

10 mice immunized with the same UF6b:GLA-LSQ formulation in the same manner and timepoints. 

Unfortunately, due to COVID-19 closures, Day 84 sera could not be collected.  

Two replicate studies with a contracted dosing schedule were completed with 20 female CD1 

mice (Charles River) and used at 6 to 8 weeks of age. Ten mice were immunized with the same 

UF6b:GLA-LSQ formulation described above, and ten mice received the UF6b:AddaVax™ 

formulation. All mice received a prime dose i.m. on day 0 and were subsequently boosted on Days 28 

and 56 post priming (Fig. 3a). Sera was collected every two weeks post-priming until the endpoint at 

Day 70 when the mice were sacrificed.  

 

Indirect Enzyme-Linked Immunosorbent Assays 

Maxisorp 96-well ELISA plates (Nunc, Fisher Scientific) were incubated overnight at 4°C with 1 

μg/mL antigen in 0.1 M PBS (pH 7.2). After three washes with PBS-Tween 20 (0.1%) (PBST20), the 

plates were blocked for 1 h at room temperature with 1% bovine serum albumin (BSA) in 1xPBS. 

Serum samples were diluted to 1:50 and 1:100, then diluted ten-fold to 1:108 in 0.5% BSA in 1xPBS. 

After discarding the BSA and drying the plates, 100 μL of each of the eight serum dilutions were added 

to each well in triplicate and incubated 1 h at room temperature. Plates were again washed three times 
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with PBST20.  For detection, 100 μL of a horseradish peroxidase (HRP)-conjugated goat anti-mouse 

IgG(H+L) (KPL) diluted 1:5,000 in 0.5% BSA was added to each well and incubated for 1 h at room 

temperature. Plates were washed three times with PBST20 and developed by adding 100 μL of 

(3,3′,5,5′-tetramethylbenzidine) microwell peroxidase substrate (KPL) to each well. Development was 

stopped after 5 min by the addition of 100 μL of 1 M phosphoric acid. A Synergy™ HTX Multi-Mode 

Microplate Reader was used to read the OD values at 450 nm and 570 nm. The OD value at 570 nm was 

subtracted from the OD value at 450 nm to correct for background. Serum end point titers were defined 

as the reciprocal serum dilution giving a higher density reading than the average OD value at 450 nm-

570 nm of the pre-immune serum plus three standard deviations. 

 

Peptide Indirect Enzyme-Linked Immunosorbent Assays 

Maxisorp 96-well ELISA plates (Nunc, Fisher Scientific) were coated with 100 μL of Poly-L-

Lysine (PLL) at a concentration of 50 μg/mL in 0.05 M sodium bicarbonate buffer (pH 9.6) and 

incubated covered for one h at room temperature. The plates were washed once with PBST20, then 

coated in 100 μL 1% (v/v) glutaraldehyde in PBS and incubated covered for 15 minutes at room 

temperature. The plates were washed again once with PBST20, and then coated with 100 μL of either 

peptide 1, peptide 7, or peptide 9 (7,8) and incubated covered overnight at 4°C. The next day the plates 

were washed twice with PBST20, then 200 μL 1M glycine was added to each well and plates were 

incubated covered for one h. The plates were washed twice with PBST20 and 300 μL of a 1:1 solution 

of 5% milk and 1% gelatin was added to the plates and incubated covered for one h. The serum samples 

were diluted in PBS using serial ten-fold dilutions from 1:102 to 1:109. After washing the plates once 

with PBST20, each of the eight sample dilutions was added to each well in triplicate and incubated 

covered for one h. The plates were washed three times with PBST20 and 100 μL (HRP)-conjugated goat 
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anti-mouse IgG(H+L) (KPL) diluted 1:5000 in PBS was added to each well and incubated covered for 

one h at room temperature. Plates were washed three times with PBST20 and developed by adding 100 

μL of (3,3′,5,5′-tetramethylbenzidine) microwell peroxidase substrate (KPL) to each well. Development 

was stopped after five min by the addition of 100 μL of 1 M phosphoric acid. A Synergy™ HTX Multi-

Mode Microplate Reader was used to read the OD values at 450 nm and 570 nm. The OD value at 570 

nm was subtracted from the OD value at 450 nm to correct for background. Serum end point titers were 

defined as the reciprocal serum dilution giving a higher density reading than the average OD value at 

450 nm-570 nm of the pre-immune serum plus three standard deviations. 

 

Mosquito colony 

An. gambiae (Keele) was used in all experiments. Mosquitoes were reared under standard 

insectary conditions of 27oC, 80% relative humidity, and 12 h light:12 h dark cycle. Eggs were hatched 

in milli-Q water supplemented with 0.02% yeast slurry. The emerging larvae were reared in plastic trays 

(25 cm long × 20 cm wide × 14 cm high) at a density of 300-400 larvae per tray and provided a daily 

ration of 1g koi fish food per tray/day. Pupae were collected and put in holding cages for emergence. 

Emerged adults were fed ad libtum on 10% sucrose solution. For all experiments, 5-to-6-day old adult 

females were used. 

 

Standard Membrane Feeding Assays 

P. falciparum (NF54) gametocyte cultures were produced as previously described25. Briefly, 

cultures were seeded at 0.5% parasitemia and grown under hypoxic conditions in RPMI culture media 

supplemented with HEPES, hypoxanthine, glutamine, and 10% heat-inactivated human serum. The 

RPMI media was changed daily during culturing. Gametocyte cultures were harvested 17-18 days after 
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initiation, and infected red blood cells were brought up in heat-inactivated human serum (LifeSouth 

Community Blood Center Inc, Gainesville, FL) plus human RBCs (blood type O-positive) at 1% 

gametocytemia and 30% hematocrit. Infective blood was mixed with control (IgG purified from naïve 

mouse serum) or total IgG purified from pooled sera of mice immunized with UF6b prior to delivery 

directly into water-jacketed membrane feeders maintained at 37°C via a circulating water bath. The final 

concentration of total IgG in 300 µL total volume of infective blood was 50 µg/mL for each technical 

replicate. Female An. gambiae were starved for 6 h, placed in paper cups with tops covered with netting 

(n = 40 per cup) and allowed to feed from each feeder for 20 min. Fully engorged female mosquitoes 

were maintained for 8 d when they were dissected for midgut oocyst enumeration. The dissected 

midguts were stained with 0.1% mercurochrome to visualize oocysts. A total of three biological 

replicate experiments were conducted. 

 

Direct Membrane Feeding Assays 

Mosquito infections were conducted during the rainy seasons in 2019. Procedures for 

gametocyte carrier detection, blood collection and mosquito infections were performed as previously 

described24. Briefly, P. falciparum gametocyte carriers were identified among asymptomatic children 

(ages 5 to 11) in primary schools in the Mfou district, 30 km from Yaoundé, Cameroon.  Venous blood 

was drawn from gametocyte-positive individuals in heparinized Vacutainer tubes from the antecubital 

fossa. Membrane feedings were set using donor’s blood with replacement of the serum by a non-

immune AB serum. The local laboratory strain of An. coluzzii, named Ngousso, was used for mosquito 

feedings. Following infection, mosquitoes were maintained at the laboratory under standard insectary 

conditions (27 ± 2°C, 85 ± 5% RH, 12h light/dark) for 8 days until dissections. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 29, 2020. ; https://doi.org/10.1101/2020.11.29.402669doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.29.402669


29 

 

IgG purification and antigen-specific IgG quantification 

Total IgG was purified from pooled serum using Protein A/G Magnetic Agarose Beads (Thermo 

Fisher Scientific) according to manufacturer’s instructions. The antibodies were quantified using 

Peirce™ BCA protein assay kit. Antigen-specific IgG was purified from pooled serum with UF6b-

conjugated Dynabeads™ M-270 Epoxy (Thermo Fisher Scientific) following manufacturer’s 

instructions. The antibody titer of the purified UF6b-specific IgG and total IgG (serum) was determined 

with the Easy-Titer™ Mouse IgG assay kit (Thermo Fisher Scientific). 

 

Antibody Isotyping 

 Anti-UF6b immunoglobulin isotypes were determined with the Mouse Typer Isotyping Panel 

(Bio-Rad). Plates were coated and blocked, as described above, and mouse sera diluted 1:1,000 was 

added. After washing five times the isotyping panel was added, followed by five washes, then (HRP)-

conjugated goat anti-rabbit IgG(H+L) (KPL). Absorbances were detected as described above.  

 

Statistical Analysis 

To determine differences in oocyst intensity (defined by either the mean oocyst count) between 

pre-immune sera and test sera in SMFAs the data was first cleaned of outliers using a robust nonlinear 

regression test (ROUT) and a Q coefficient of 1% for all treatment and control groups27 using GraphPad 

Prism 6.  After comparing the raw and cleaned data and considering that assumptions and overall 

significance results were not affected, outliers were removed to account for the intrinsic noise in the 

feeding assays, contributed in part by the uneven distribution of spiked antibody and pooling of 

gametocytes in the membrane feeder as well as variability in mosquito feeding voracity. The cleaned 

data was then analyzed by either a zero-inflated or normal Generalized Linear Mixed Model statistical 
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test (GLMM) using the R package28, and when neither was appropriate, a non-parametric Kruskal-

Wallis test followed by Dunn’s post hoc test using GraphPad Prism 67,8,10,29. 

Data availability 

All materials generated through this study are available following a request with the corresponding 

author. 
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