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Abstract
Sample sizes vary substantially across tissues in the Genotype-Tissue

Expression (GTEx) project, where considerably fewer samples are avail-
able from certain inaccessible tissues, such as the substantia nigra (SSN),
than from accessible tissues, such as blood. This severely limits power
for identifying tissue-specific expression quantitative trait loci (eQTL) in
undersampled tissues. Here we propose Surrogate Phenotype Regression
Analysis (Spray) for leveraging information from a correlated surrogate
outcome (e.g. expression in blood) to improve inference on a partially
missing target outcome (e.g. expression in SSN). Rather than regarding
the surrogate outcome as a proxy for the target outcome, Spray jointly
models the target and surrogate outcomes within a bivariate regression
framework. Unobserved values of either outcome are treated as miss-
ing data. We describe and implement an expectation conditional maxi-
mization algorithm for performing estimation in the presence of bilateral
outcome missingness. Spray estimates the same association parame-
ter estimated by standard eQTL mapping and controls the type I error
even when the target and surrogate outcomes are truly uncorrelated. We
demonstrate analytically and empirically, using simulations and GTEx
data, that in comparison with marginally modeling the target outcome,
jointly modeling the target and surrogate outcomes increases estimation
precision and improves power.

Keywords: EM Algorithm; Genetic Association Analysis; Missing Data; Multivari-
ate Analysis; Surrogate Outcomes.

1 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115;
2 Department of Biostatistics, MD Anderson Cancer Center, Houston, TX 77030; 3 Department of
Statistics, Harvard University, Cambridge, MA 02138.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 20, 2022. ; https://doi.org/10.1101/2020.11.29.403063doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.29.403063


1 Introduction
Tissue-specific expression quantitative trait loci (eQTL) are of substantial biological
interest as mechanisms for explaining how the genetic variants identified in genome-
wide association studies (GWAS) influence complex traits and diseases [1, 2, 3, 4, 5].
Traditional eQTL studies have focused on accessible tissues such as blood [6, 7], while
eQTL discovery in inaccessible tissues, such as the substantia nigra (SSN), have been
impeded by insufficient sample sizes. Cross-tissue studies, including the Genotype-
Tissue Expression Project (GTEx), have demonstrated that the effect sizes of eQTL
are heterogeneous across tissues [8]. Consequently, studying only accessible tissues
is insufficient to understand the genetic basis of gene regulation. Larger sample sizes
are needed to provide sufficient power for reliable eQTL detection in inaccessible
tissues, and there is great interest in borrowing information from accessible tissues
to increase the effective sample sizes of inaccessible tissues.

Our work was motivated by the goal of improving power for eQTL mapping in the
SSN, a region of the midbrain implicated in the development of Parkinson’s disease
[9]. Due to the scarcity of expression data, no previous studies have focused on eQTL
mapping in this region. At the time of our analysis, only 80 genotyped subjects with
expression data in SSN were available from GTEx, in contrast to 369 with expression
in whole blood. Among subjects with expression in blood, nearly 90% were missing
expression in SSN. The methodology developed here leverages gene expression from
a correlated surrogate tissue, such as blood, to improve power for identifying eQTL
in the target tissue, SSN.

Several methods have been developed to address the related problem of multi-
tissue eQTL mapping. [10] developed eQtlBma, a fixed-effects, heteroscedastic ANOVA
model that jointly models gene expression in multiple tissues. Evidence against the
global null hypothesis, that a SNP has no effect on gene expression in any tissue,
is quantified using a Bayes factor averaged across potential non-null configurations.
[11] proposed Meta-Tissue, which jointly estimates the effect of a SNP on gene ex-
pression in multiple tissues using a mixed-effects model, then combines effect size
estimates across tissues via meta-analysis. [12] developed MT-eQTL and its exten-
sion HT-eQTL, which modeles the vector of Fisher-transformed genotype-expression
correlations across tissues. They propose a generative hierarchical model for the mul-
tivariate correlation vector and an empirical Bayes procedure for identifying multi-
tissue eQTL based on the local false discovery rate.

Our approach differs from existing methods in two key respects. First, we are
interested in identifying target-tissue eQTL not multi-tissue eQTL. That is, our null
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hypothesis is that a SNP has no effect on gene expression in the target tissue, not
that a SNP has no effect on gene expression in any tissue. Moreover, we focus on the
setting where the target tissue is subject to missing data, and empower eQTL analysis
of the target tissue by leveraging data from the surrogate. Second, we are interested
in frequentist rather than Bayesian inference, and specifically in asymptotic inference,
which does not depend on computationally-intensive permutation procedures that
are intractable at genome-scale.

In this paper, we propose improving power for eQTL mapping in an inaccessible
tissue (e.g. SSN), for which expression is partially missing, by augmenting the sam-
ple with expression data from an accessible surrogate tissue, for which the sample
size is substantially larger. Specifically, we propose jointly modeling expression in
the target and surrogate tissues while regarding unobserved measurements in either
tissue as missing data. We refer to this approach as Surrogate Phenotype Regres-
sion Analysis (Spray). Spray leverages the correlation in expression levels across
tissues to increase the effective sample size, but maintains eQTL in the target tissue
as the focus of inference. We note that Spray is unrelated to Surrogate Variable
Analysis [13, 14], a method developed to identify latent factors of variation present
in microarray data.

For estimation, we implement a computationally efficient Expectation Condi-
tional Maximization Either (ECME) algorithm [15, 16], which is adapted to fitting
the association model in the presence of bilateral outcome missingness. The algo-
rithm iterates between conditional maximization of the observed data log likelihood
with respect to the regression parameters and conditional maximization of the EM
objective function with respect to the covariance parameters. In addition, we derive
the covariance estimators of all model parameters and implement a flexible Wald
test for evaluating hypotheses about the target regression parameters.

We show analytically that the asymptotic relative efficiency of jointly modeling
the target and surrogate outcomes, compared with marginally modeling the target
outcome only, increases with the target missingness and the square of the target-
surrogate correlation. We numerically demonstrate the analytical results through
extensive simulations evaluating the empirical efficiency of the Spray Wald test.

Compared to complete case analysis, maximum likelihood estimation as imple-
mented by Spray is efficient, making full use of the available data, and provides
more precise estimates of the target regression parameters. All estimation and infer-
ence procedures described in this article have been implemented in an easy-to-use R
package (SurrogateRegression), which is available on CRAN [17].

Using data from GTEx, we applied Spray to identify eQTL in the SSN, consid-
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ering expression in blood, skeletal muscle, and the cerebellum as candidate surrogate
outcomes. Compared with marginal eQTL mapping using expression in SSN only,
Spray identified 4 to 5 times as many Bonferroni-significant eQTL, including all
those identified by marginal analysis. Importantly, while the effect sizes estimated
by Spray were nearly identical to those obtained via traditional, marginal eQTL
mapping (R2 ≥ 0.995), the sampling variance of the estimates was reduced by up
to 26%, on average, indicating that Spray increased power primarily by drawing
on the correlated surrogate outcome to improve precision. Moreover, the effect sizes
estimated by Spray are robust to the choice of surrogate outcome.

The remainder of this paper is organized as follows: Section 2 introduces the
setting and model. Sections 3 and 4 detail the estimation and inference procedures.
Section 5 addresses the estimand of Spray, and the asymptotic relative efficiency of
jointly versus marginally modeling the target outcome. Section 6 presents the results
of simulation studies, and Section 7 the application to the GTEx data. We conclude
with discussions in Section 8.

2 Model and Setting
For each of i = 1, · · · , n independent subjects, suppose that two continuous out-
comes are potentially observed: the target outcome Ti and the surrogate outcome Si.
Consider the model: (

Ti

Si

)∣∣∣(xi, zi) ∼
(
x′
iβ

z′
iα

)
+

(
ϵT,i
ϵS,i

)
, (1)

where xi is a p × 1 vector of covariates for the target outcome, with regression
coefficients β; zi is a q × 1 vector of covariates for the surrogate outcome, with
regression coefficients α; and ϵi = (ϵT,i, ϵS,i)

′ ∼ N(0,Σ), with Σ =
(
ΣTT ΣTS
ΣST ΣSS

)
.

Let yi = vec(Ti, Si) ∈ R2 denote the 2 × 1 outcome vector, Xi = diag(x′
i, z

′
i) the

2× (p+ q) subject-specific design matrix, and γ = vec(β,α) the (p+ q)× 1 overall
regression coefficient. With this notation, model (1) is succinctly expressible as:
yi

∣∣Xi ∼ N
(
Xiγ,Σ

)
.

Our derivations proceed under the assumption of residual normality. However,
because in many applications, including eQTL mapping, the target and surrogate
outcomes may be non-normal, we apply the rank-based inverse normal transforma-
tion (INT) to each outcome prior to analysis [18]. Application of INT, which ensures
that the marginal distribution of each outcome is univariate normal, is common
in eQTL studies, including all published analyses from GTEx [8]. While marginal
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normality of each outcome does not guarantee bivariate normality, our simulation
studies demonstrate that this strategy provides unbiased estimation and valid infer-
ence even under residual distributions that are far from bivariate normal.

Unbiased estimation of model parameters requires that the target and surrogate
outcomes are missing as random (MAR). For the ith subject, define the target RT,i

and surrogate RS,i responses indicators:

RT,i =

{
1, Ti is observed,
0, Ti is missing.

RS,i =

{
1, Si is observed,
0, Si is missing.

These indicators partition the n subjects into 3 missingness patterns: complete cases
(RT,i = 1 and RS,i = 1); subjects with target missingness (RT,i = 0 and RS,i = 1);
and subjects with surrogate missingness (RT,i = 1 and RS,i = 0). Subjects with
neither outcome observed (RT,i = 0 and RS,i = 0) make no likelihood contribution
and are not considered further. Supposing n0 complete cases, n1 subjects with target
missingness, and n2 subjects with surrogate missingness, the total sample size is
n = n0 + n1 + n2.

MAR requires that observation of the target outcome (RT,i) is unrelated to its
value (Ti), given the remaining data (Si,xi, zi), and likewise that RS,i is supposed
unrelated to Si, given (Ti,xi, zi). In our analysis of GTEx, the MAR assumption
is plausible because donors were selected to be free of major diseases and the col-
lection of tissue specimen was based on factors such as provision of consent and on
the availability of sufficient tissue from the autopsy or surgical procedure [19, 20].
Importantly, the decision to ascertain a tissue sample was not directly based on gene
expression.

3 Estimation
3.1 Regression Parameters
Define the response indicator matrix Ri = diag(RT,i, RS,i), and note that Ri is a
projection matrix. The distribution of the observed data is expressible as:

yi

∣∣(Ri,Xi) ∼ N
(
RiXiγ,RiΣRi

)
,

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 20, 2022. ; https://doi.org/10.1101/2020.11.29.403063doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.29.403063


and the observed data log likelihood is:

ℓobs(γ,Σ) ∝− 1

2

n∑
i=1

ln det(RiΣRi)

− 1

2

n∑
i=1

(Riyi −RiXiγ)
′(RiΣRi)

−1(Riyi −RiXiγ). (2)

The observed data score equation for the regression parameters γ is:

Uγ(γ,Σ) ≡ ∂ℓobs

∂γ
=

n∑
i=1

X ′
iR

′
i(RiΣRi)

−1(Riyi −RiXiγ).

Conditional on Σ, the maximum likelihood estimator (MLE) of γ is the generalized
least squares (GLS) estimator:

γ̂(Σ) =

{
n∑

i=1

X ′
iR

′
i(RiΣRi)

−1RiXi

}−1{ n∑
i=1

X ′
iR

′
i(RiΣRi)

−1yi

}
. (3)

3.2 Covariance Matrix
Let ϵi = (yi−Xiγ) denote the residual vector. The observed data score equation for
Σ is:

UΣ(γ,Σ) ≡ ∂ℓobs

∂Σ
= −1

2

n∑
i=1

Ri(RiΣRi)
−1Ri +

1

2

n∑
i=1

Ri(RiΣRi)
−1ϵiϵ

′
i(RiΣRi)

−1Ri.

However, the score equation for Σ does not admit a closed form. To obtain the
MLE, we apply the ECME algorithm [15, 16]. Define the 2×2 residual outer product
matrix:

Vi ≡ ϵi ⊗ ϵi =

(
(Ti − x′

iβ)
2 (Ti − x′

iβ)(Si − z′
iα)

(Si − z′
iα)(Ti − x′

iβ) (Si − z′
iα)2

)
.

The complete data log likelihood is now expressible as:

ℓ(γ,Σ) ∝ −n

2
ln det(Σ)− 1

2
tr
(
Σ−1

n∑
i=1

Vi

)
. (4)
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The EM objective is the expectation of the complete data log likelihood in (4) given
the observed data Dobs and the current parameter estimates (γ(r),Σ(r)):

Q(γ,Σ|γ(r),Σ(r)) ≡ E
{
ℓ(γ,Σ)|Dobs;γ

(r),Σ(r)
}
. (5)

To obtain an expression for (5), define the working outcome vector:

ŷ
(r)
i ≡ E

(
yi|Dobs;γ

(r),Σ(r)
)
=


(Ti, Si)

′, (RT,i = 1) ∩ (RS,i = 1),

(T̂
(r)
i , Si)

′, (RT,i = 0) ∩ (RS,i = 1),

(Ti, Ŝ
(r)
i )′, (RT,i = 1) ∩ (RS,i = 0).

For complete cases, the working outcome vector is identically the observed outcome
vector. For subjects with target missingness, the unobserved value of Ti is replaced
by its conditional expectation given the surrogate outcome and covariates:

T̂
(r)
i ≡ E(Ti|Si,Xi;γ

(r),Σ(r)) = x′
iβ

(r) +
(
ΣTSΣ

−1
SS

)(r)(
Si − z′

iα
(r)
)
.

Note that we adopt the convention that Σ−1
SS refers to subsetting the (S, S)th element

of Σ then taking its inverse, as opposed to subsetting the (S, S)th of Σ−1. For
subjects with surrogate missingness, the unobserved value of Si is replaced by its
conditional expectation give the target outcome and covariates:

Ŝ
(r)
i ≡ E(Si|Ti,Xi;γ

(r),Σ(r)) = z′
iα

(r) +
(
ΣSTΣ

−1
TT

)(r)
(Ti − x′

iβ
(r)).

Let Λ = Σ−1 denote the precision matrix. Define the working residual outer product:

V̂
(r)
i ≡ E(Vi|Dobs;γ

(r),Σ(r))

=
(
ŷ
(r)
i −Xiγ

)
⊗
(
ŷ
(r)
i −Xiγ

)
+


diag(0, 0), (RT,i = 1) ∧ (RS,i = 1),

diag
(
Λ

−1,(r)
TT , 0

)
, (RT,i = 0) ∧ (RS,i = 1),

diag
(
0,Λ

−1,(r)
SS

)
, (RT,i = 1) ∧ (RS,i = 0).

Expressed in terms of the working residual outer product, the EM objective function
is:

Q(γ,Σ|γ(r),Σ(r)) = −n

2
ln det(Σ)− 1

2
tr
(
Σ−1

n∑
i=1

V̂
(r)
i

)
.

The EM score equation for Σ is:

UΣ(γ,Σ|γ(r),Σ(r)) ≡ ∂Q

∂Σ
= −n

2
Σ−1 +

1

2
Σ−1

(
n∑

i=1

V̂
(r)
i

)
Σ−1.
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Conditional on γ, the EM update for Σ is:

Σ̂(r)(γ)← 1

n

n∑
i=1

V̂i(γ|γ(r),Σ(r)). (6)

3.3 Optimization
Spray implements the following ECME algorithm, in which the regression parame-
ters γ are updated via conditional maximization of the observed data log likelihood
in (2), and the covariance matrix Σ is updated via conditional maximization of the
EM objective in (5).

Algorithm 1 ECME for Bivariate Normal Regression
Require: For each subject, observed response and covariate data (Riyi,Xi).
Require: Initial estimates of the regression γ(0) and covariance Σ(0) parameters.

1: repeat
2: GLS step: Update γ(r+1) ← γ̂(Σ(r)) via (3).
3: ECM step: Update Σ(r+1) ← Σ̂(r)(γ(r+1)) via (6).
4: Update observed data log likelihood ℓ

(r+1)
obs ← ℓobs(γ

(r+1),Σ(r+1)) via (2).
5: until ℓ(r+1)

obs − ℓ
(r)
obs < ϵ, where ϵ is the tolerance.

6: return Final estimates of the regression γ̂ and covariance Σ̂ parameters.

The accompanying R package initializes γ via ordinary least squares using all ob-
served data:

γ(0) =

{
n∑

i=1

X ′
iRiXi

}−1{ n∑
i=1

X ′
iRiyi

}
.

Given γ(0), Σ is initialized using the residual outer product of the n0 complete cases:

Σ(0) =
1

n0

n0∑
i=1

(yi −Xiγ
(0))⊗ (yi −Xiγ

(0)).

4 Inference
The ECME algorithm presented in the previous section does not provide the asymp-
totic information of the MLEs. The observed-data information matrices were ob-
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tained using the following identity:

V
[
E
{
U(θ)|Dobs

}]
= V

{
U(θ)

}
− E

[
V
{
U(θ)|Dobs

}]
,

where U(θ) is the complete-data score, and Dobs is the observed data. The observed-
data information for the regression parameters γ decomposes as:

Iγγ′ ≡
(
Iββ′ Iβα′

Iαβ′ Iαα′

)
= Iγγ′,0 + Iγγ′,1 + Iγγ′,2. (7)

Iγγ′,0 is the contribution of complete cases and takes the form:

Iγγ′,0 =

n0∑
i0=1

(
x′
i0
ΛTTxi0 x′

i0
ΛTSzi0

z′
i0
ΛSTxi0 z′

i0
ΛSSzi0

)
.

Iγγ′,1 is the contribution of subjects with target missingness and Iγγ′,2 is the contri-
bution of subjects with surrogate missingness; these take the following forms respec-
tively:

Iγγ′,1 =

n1∑
i1=1

(
0 0
0 z′

i1
Σ−1

SSzi1

)
, Iγγ′,2 =

n2∑
i2=1

(
x′
i2
Σ−1

TTxi2 0
0 0

)
.

Complete cases contribute to the information for all regression parameters. Subjects
with target missingness contribute to the information for the surrogate regression
parameters α only, while subjects with surrogate missingness contribute to the in-
formation for the target regression parameters β only.

The observed-data information matrix for the covariance parameters (ΣTT ,ΣTS,ΣSS)
is presented in the supporting information, and follows a similar pattern of contribu-
tions. The cross information Iγς′ between the regression γ and covariance ς param-
eters is zero. Thus, the MLEs γ̂ and Σ̂ are asymptotically independent. For eQTL
mapping, inference on the target regression parameter β ⊆ γ is performed using the
standard Wald test, the details of which are also presented in the supporting infor-
mation. Standard errors for all model parameters are provided by the accompanying
R package, allowing for inference on α and Σ in addition to β.

5 Analytical Considerations
5.1 Marginal Interpretation of the Regression Parameter
The choice to jointly model the target and surrogate outcomes, rather than con-
ditioning on the surrogate to predict the target, has important ramifications when
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interpreting the regression parameters estimated by Spray. For exposition, suppose
(1) is the generative model, and consider the setting where the target and surrogate
means each depend on genotype gi only:(

Ti

Si

)∣∣∣gi ∼ N

{(
giβG

giαG

)
,

(
ΣTT ΣTS

ΣST ΣSS

)}
. (8)

The implied marginal distribution of the target outcome is:

Ti|gi ∼ N(giβG,ΣTT ). (9)

Observe that the regression parameter for genotype (βG) from the joint model (8) is
identical to that appearing in the marginal model (9). This equality is unchanged
by the presence or absence of an association αG between genotype gi the surrogate
outcome Si. Importantly, as is confirmed by our simulation studies, this implies that
inference on βG under the joint model (1) does not depend on the value of αG. The
same is not true of a model that conditions on the surrogate outcome. In particular,
when conditioning on the surrogate outcome, the target outcome is distributed as:

Ti|(Si, gi) ∼ N
{
(βG − ΣTSΣ

−1
SSαG)gi + ΣTSΣ

−1
SSSi,ΣTT − ΣTSΣ

−1
SSΣST

}
.

Suppose that the target and surrogate outcomes are associated (ΣTS ̸= 0), which
is a prerequisite for modeling the surrogate outcome to improve inference on βG.
Then, in a model that regresses Ti on both (Si, gi), the magnitude and direction of
the regression coefficient for genotype (βG−ΣTSΣ

−1
SSαG) depends on whether and to

what extent genotype is associated with the surrogate outcome (i.e. αG).

5.2 Efficiency Analysis
Consider again the genotype only model in (8). Suppose initially that all subjects are
complete cases, and that the genotypes have been scaled such that:

∑n0

i0=1 g
2
i0
= n0.

Under these assumptions, the efficient information for βG from (8) is:

IβGβG|αG
= n0

(
ΛTT − ΛTSΛ

−1
SSΛST

)
= n0Σ

−1
TT .

This is identical to the information for βG from the marginal model in (9). Thus, in
the absence of missingness, inference on βG under the joint model (8) is asymptoti-
cally equivalent to inference on βG under the marginal model (9).

Now suppose there are n0 complete cases and n1 subjects with target missingness.
For simplicity, assume no subjects have surrogate missingness, n2 = 0. Genotypes
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have again been scaled, within outcome missingness groups, such that
∑n0

i0=1 g
2
i0
= n0

for complete cases and
∑n1

i1=1 g
2
i1

= n1 for subjects with target missingness. The
efficient information from (8) becomes:

IβGβG|αG
= n0

{
ΛTT − ΛTS

n0(
n0ΛSS + n1Σ

−1
SS

)ΛST

}
,

while the information for βG from the marginal model remains IβGβG
= n0Σ

−1
TT . The

asymptotic relative efficiency (ARE) of inference under the joint model (8) versus
inference under marginal model (9) is:

ARE =
IβGβG|αG

IβGβG

= ΣTT

{
ΛTT − ΛTS

n0(
n0ΛSS + n1Σ

−1
SS

)ΛST

}
. (10)

To better understand (10), suppose the covariance matrix in (8) is a correlation
matrix, with ΣTT = ΣSS = 1, and correlation ΣTS = ρ ∈ (−1, 1). The ARE
simplifies to:

ARE =
1

1− ρ2

{
1− ρ2

1− ρ2
· n0

n0(1− ρ2)−1 + n1

}
=

1

1− πTρ2
,

where πT = n1/(n0 + n1) is the proportion of subjects with target missingness.
Now, if the target and surrogate outcomes are uncorrelated (ρ = 0), or if there is
no target missingness (πT = 0), then the ARE is 1, and inference based on the
marginal model is asymptotically equivalent to inference based on the joint model.
For fixed target missingness πT , the ARE increases monotonically in the squared
target-surrogate correlation ρ2. In the limit as ρ → 1, the ARE is maximized at
(1− πT )

−1 = 1+ n1/n0. Likewise, for fixed target-surrogate correlation ρ2, the ARE
increases monotonically in the target missingness πT . In the limit as πT → 1, which
occurs when n1 →∞, the ARE is maximized at (1− ρ2)−1. Overall, the power gain
attributable to jointly modeling the target and surrogate outcomes is expected to
increase with the squared target-surrogate correlation ρ2, and with the number of
subjects with target missingness n1. This demonstrates an interesting property of
the surrogate model: by leveraging the target-surrogate correlation, inference on the
target outcome can be improved by incorporating information from subjects whose
target outcomes are missing.
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6 Simulation Studies
6.1 Brief Methods
The simulation methods are described in detail in the supporting information. Briefly,
for each subject, the target Ti and surrogate Si outcomes were simulated to depend on
genotype gi and covariates xi, including age, sex, and genetic PCs. The simulations
considered both normally and non-normally distributed residuals (ϵT,i, ϵS,i). INT was
always applied to Ti and Si prior to analysis. The number of complete cases was fixed
at n0 = 103. The numbers of subjects with missing outcomes (n1, n2) were varied to
change the proportions (πT , πS) of subjects with target and surrogate missingness.
Seven (target, surrogate) missingness patterns (πT , πS) were considered: no missing-
ness (0.00, 0.00); unilateral target missingness {(0.25, 0.00), (0.50, 0.00), (0.75, 0.00)};
and bilateral outcome missingness {(0.25, 0.25), (0.50, 0.25), (0.25, 0.50)}. For each
missingness pattern, the target-surrogate correlation ρ spanned {0.00, 0.25, 0.50, 0.75}.

6.2 Estimation
Table 1 considers estimation of the target genetic effect βG, the target variance ΣTT ,
and the target-surrogate correlation ρ both in the absence of missingness and in the
presence of unilateral missingness in the target outcome. In all cases, parameter
estimation was essentially unbiased, and the model-based standard errors (SEs),
obtained from equation (7), agreed closely with the empirical standard deviations of
the point estimates. Analogous tables for estimation of (βG,ΣTT , ρ) in the presence
of bilateral missingness (S1), and for estimation of (αG,ΣSS) in the presence of both
unilateral and bilateral missingness (S2) are presented in the supporting information.

To evaluate sensitivity of the estimation procedure to the bivariate normality
assumption, additional simulations were conducted in which the target and surrogate
residuals were generated from non-normal distributions, including bivariate versions
of the exponential, log-normal, and Student t3 distributions. The bias and SE for
estimating the parameter of primary interest, target genetic effect βG, are presented
in supporting table (S3). Even when applied to skewed and kurtotic phenotypes, the
estimation procedure remained unbiased and the SEs correctly calibrated, suggesting
robustness to the residual distribution.
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6.3 Type I Error Simulations
Table 2 presents the empirical type I error and non-centrality parameter (NCP)
of the Spray Wald test in the presence of unilateral missingness; estimates under
bilateral missingness are presented in supporting table S4. For these simulations the
genetic effects were set to zero (βG = 0.00) and the null hypothesis H0 : βG = 0 was
evaluated. The type I error was controlled to within 0.8% of the nominal level, and
the NCP was within 0.2% of the reference value; both were insensitive to outcome
missingness and target-surrogate correlation. Supporting figures S1-S2 demonstrate
that, across outcome missingness patterns and target-surrogate correlation levels,
the p-values provided by the Spray Wald test were uniformly distributed under the
null. Thus, Spray provides a valid test of association between genotype and the
target outcome. Supporting tables S5-S7 and figures S3-S5 indicate that the type
I error is well-controlled even when the distribution of the phenotypic residuals is
non-normal. Supporting table S8 verifies that control of the type I error becomes
increasingly tight as sample size increases, to within 0.2% of nominal by a sample
size of 20× 103.

It is important to note that throughout the simulations, the target-surrogate
correlation was estimated. For a given realization of the data, the MLE ρ̂ will differ
from 0 even when in truth ρ = 0. The type I error simulations verify that this
spurious estimated correlation does not compromise inference on βG.

6.4 Power Simulations
Table 2 presents the estimated power and NCP of the Spray Wald test for rejecting
the H0 : βG = 0 in the presence of unilateral missingness; estimates under bilateral
missingness are presented in supporting table S4. For these simulations, βG was
chosen such that the proportion of variation in the target outcome explained by
variation in genotype (i.e. the heritability) was 0.5%. Figures 1 and S6 present
power curves describing how the probability of correctly rejecting the null hypothesis
increases as the heritability increases from 0.1% to 1.0%. In the absence of target
missingness, no additional power was gained by modeling the surrogate outcome. In
the presence of target missingness, the power of the Spray Wald test increased with
the target-surrogate correlation, and the relative improvement increased with the
extent of target missingness. Supporting tables S5-S7 and figures S7-S9 demonstrate
that similar trends with respect to power held under model misspecification. Whereas
power under an exponential data generating process nearly matched that under a
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normal data generating process, power was attenuated in the more kurtotic cases of
log-normal and Student t3 residuals.

6.5 Empirical Relative Efficiency
To validate the ARE formula in equation (10), we conducted simulations comparing
the Spray estimator β̂Spray

G of βG with the marginal estimator β̂Marginal
G from the

model:

Ti

∣∣(gi,xi) ∼ N
(
giβG + x′

iβX ,ΣTT

)
,

These simulations quantify the efficiency gain attributable to incorporating infor-
mation from the surrogate. Table 3 compares the empirical variances of β̂Spray

G and
β̂Marginal
G in the presence of unilateral missingness, while supporting table S9 com-

pares the empirical variances under bilateral missingness. In the absence of target
missingness (πT = 0), or when the target-surrogate correlation was zero (ρ = 0),
the empirical RE was one, as predicted by (10). Thus, while jointly modeling the
target and surrogate outcomes is unnecessary in the absence of missingness, power is
not substantially diminished by modeling an uninformative surrogate. In the pres-
ence of missingness, modeling an uninformative surrogate (ρ = 0) did not spuriously
inflate the RE. As the target missingness (πT ) and target-surrogate correlation (ρ)
increased, the empirical RE increased as predicted by (10). The precise agreement
between the empirical and theoretical REs suggests that equation (10) could prove
useful for study design.

7 Application to Identifying SSN eQTL in GTEx
7.1 Brief Data Analysis Methods
Details of the GTEx analysis are presented in the supporting information. Briefly,
gene expression in SSN was the target outcome. Three surrogate analyses were con-
duct in parallel, based respectively on whole blood, skeletal muscle, and cerebellum
as the surrogate. We address the idea of using multiple surrogates simultaneously
in the Discussion. For inclusion in the analysis, a transcript was required to be
expressed in both the target and surrogate tissues. SNPs in cis to an expressed tran-
script were tested for association. Two associations methods were applied, a marginal
analysis that regresses the target outcome only on genotype and covariates, and a
joint analysis (Spray) that regresses the target and surrogate outcomes on genotype
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and covariates. Significance was declared at the Bonferroni threshold, adjusted for
the number of SNP-transcript pairs tested for association.

7.2 Results
There were 80 genotyped subjects with expression in SSN. Supporting table S10
presents the sample sizes available in the 3 candidate surrogate tissues. The total
sample size was largest for muscle (n = 507) and smallest for cerebellum (n = 168).
However, as figure S10 demonstrates, the correlation between cerebellum and SSN
was typically higher than that between muscle or blood and SSN. The root-mean-
square correlation between the target and surrogate tissues was 0.18 for blood and
muscle in comparison to 0.31 for cerebellum. Moreover, the number of transcripts
expressed in both SSN and the surrogate tissue was greatest for cerebellum (table
S11).

Table 4 compares the marginal and joint (Spray) eQTL analyses of SSN by
surrogate tissue. In all cases, joint analysis identified more Bonferroni significant
associations and did so more efficiently. All eQTL identified by the marginal analysis
were also identified by the joint analysis, but not conversely. Most eQTL were
detected when using cerebellum as the surrogate, although muscle in fact provided
a more efficient surrogate, meaning the estimated standard errors were on average
lower. More eQTL were identified with cerebellum because 19 transcripts containing
33 significant eQTL were expressed in cerebellum but not muscle.

Figure 2A compares the estimated effect sizes of the marginal and joint analyses
using cerebellum as the surrogate. Analogous figures for blood and muscle are pre-
sented in supporting figures S11 and S12. In all cases, the effect sizes were tightly
correlated, verifying that Spray estimates the same effect as traditional, marginal
analyses. However, figure 2B demonstrates that Spray provides greater power to
detect eQTL. From table 4, this is because, at eQTL considered significant by either
marginal or joint analysis, Spray provided standard errors that were up to 26%
smaller, on average. Finally, figure 3 considers the concordance in effect sizes and
p-values among SNP-transcript pairs that were tested for association in at least 2
of the surrogate analyses and were significant in at least 1. The tight correlation in
effect sizes suggests that Spray is robust to the choice of surrogate outcome.
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8 Discussion
In this article, we have proposed leveraging a correlated surrogate outcome to im-
prove inference on a partially missing target outcome, and derived a computationally
efficient, ECME-type algorithm for fitting the association model. We demonstrated
analytically and empirically, though extensive simulations and in real data, that
the Spray test of association, which incorporates information from the target and
surrogate outcomes, is more efficient than the marginal test of association, which
incorporates information from the target outcome only. The efficiency of Spray
increases with the target missingness, and with the square of the target-surrogate
correlation. Moreover, we showed that modeling the surrogate as an outcome, rather
than conditioning on it as a covariate, allows Spray to estimate the same effect size
as traditional, marginal analysis. All estimation and inference procedures described
in this article have been made available as an R package [17].

We applied Spray to eQTL mapping in GTEx, using expression in SSN as the
target outcome and expression in one of blood, muscle, or cerebellum as the surro-
gate outcome. Relative to marginal analysis, joint analysis using Spray consistently
identified more Bonferroni significant associations. Although the joint and marginal
effect size estimates were highly concordant (R2 ≥ 0.995), the Spray estimator was
up to 26.0% more efficient, on average, at Bonferroni-significant eQTL. The choice
of surrogate tissue highlighted a trade-off between the quality of the surrogate, as
measured by its correlation with the target outcome, and the availability of the sur-
rogate. Expression in muscle was available for 3 times as many subjects as expression
in cerebellum, yet expression in cerebellum was better correlated with expression in
SSN. Although the effect size estimated by Spray is unaffected by the choice of
surrogate, the power is; sample sizes being equal, the better correlated surrogate is
preferred. When the available sample sizes are not equal, equation (10) may be used
to examine the trade-off.

Our work suggests several areas for further improvement. Although INT was
applied to ensure marginal normality of the target and surrogate outcomes, joint
bivariate normality is not guaranteed. While our results show that INT confers
robustness to residual non-normality, a future direction is to develop association
tests that allow for arbitrary patterns of outcome missingness but do not require
specification of a joint distribution. Instead of maximum likelihood based estimation,
this procedure could use a set of inverse probability weighted estimating equations
[21].

Another avenue for future development is to incorporate multiple surrogate out-
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comes. One way to achieve this would be to extend the bivariate normal regression
framework to a multivariate normal regression framework. However, there are draw-
backs to directly modeling multiple surrogate outcomes: the number of nuisance
covariance parameters increases quadratically with the number of surrogates, and
the number of potential missingness patterns increases exponentially. Finally, al-
though the current work was motivated by eQTL mapping, the idea of leveraging
a surrogate outcome to improve inference on a partially missing target outcome is
broadly applicable. For example, in large cohort studies such as the UK Biobank
[22], the target outcome may be any incompletely ascertained phenotype, such as
the concentration of a biomarker only measured for a subset of participants, while
the surrogate outcome may be a readily ascertained phenotype, such as a risk score
based on diagnostic codes from electronic health records.
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Table 1: Target parameter estimation and standard error calibration across
R = 5 × 107 simulations in the presence of unilateral missingness. The
number of complete cases was n0 = 103. The true regression coefficient (βG ≈ 0.08)
was chosen such that the heritability of the target outcome was 0.5% and the true
variance of the target outcome was ΣTT = 1.00. The surrogate missingness was
fixed at πS = 0.00 while the target missingness πT and target-surrogate correlation
ρ were varied. The point estimate (EST) is the average across simulation replicates.
The standard error is presented as the root mean square model-based standard error
(SEM), followed by the empirical standard error (SEE) in parentheses, which is the
standard deviation of the simulation point estimates.

Settings βG ΣTT ρ
ρ πT EST SEM (SEE) EST SEM (SEE) EST SEM (SEE)

0.00 0.00 0.08 0.05 (0.05) 0.99 0.04 (0.04) 0.00 0.03 (0.03)
0.25 0.00 0.08 0.05 (0.05) 0.99 0.04 (0.04) 0.25 0.03 (0.03)
0.50 0.00 0.08 0.05 (0.05) 0.99 0.04 (0.04) 0.50 0.04 (0.04)
0.75 0.00 0.08 0.05 (0.05) 0.99 0.04 (0.05) 0.75 0.04 (0.04)
0.00 0.25 0.08 0.05 (0.05) 0.99 0.04 (0.04) 0.00 0.03 (0.03)
0.25 0.25 0.08 0.05 (0.05) 0.99 0.04 (0.04) 0.25 0.03 (0.03)
0.50 0.25 0.08 0.05 (0.05) 0.99 0.04 (0.04) 0.50 0.03 (0.03)
0.75 0.25 0.08 0.05 (0.05) 0.99 0.04 (0.04) 0.75 0.04 (0.04)
0.00 0.50 0.08 0.05 (0.05) 0.99 0.04 (0.04) 0.00 0.03 (0.03)
0.25 0.50 0.08 0.05 (0.05) 0.99 0.04 (0.04) 0.25 0.03 (0.03)
0.50 0.50 0.08 0.05 (0.05) 1.00 0.04 (0.04) 0.50 0.03 (0.03)
0.75 0.50 0.08 0.04 (0.04) 1.00 0.04 (0.04) 0.75 0.03 (0.03)
0.00 0.75 0.08 0.05 (0.05) 0.99 0.04 (0.04) 0.00 0.03 (0.03)
0.25 0.75 0.08 0.05 (0.05) 0.99 0.04 (0.04) 0.25 0.03 (0.03)
0.50 0.75 0.08 0.05 (0.05) 1.00 0.04 (0.04) 0.50 0.03 (0.03)
0.75 0.75 0.08 0.04 (0.04) 1.00 0.04 (0.04) 0.75 0.03 (0.03)
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Table 2: Empirical type I error and power of the Spray Wald test across
R = 5×107 simulation replicates in the presence of unilateral missingness.
The number of complete cases was n0 = 103. The surrogate missingness was fixed
at πS = 0. For type I error, βG = 0 while for power βG was selected to explain 0.5%
of variation in the target outcome. The target missingness πT and target-surrogate
correlation ρ were varied. Prob refers to the rejection probability at a target type I
error of 5% and NCP is the non-centrality parameter of the Wald test.

Settings Type I Error Power
ρ πT Prob (%) NCP Prob (%) NCP

0.00 0.00 5.01 1.00 72.08 7.50
0.25 0.00 5.02 1.00 72.09 7.50
0.50 0.00 5.02 1.00 72.31 7.52
0.75 0.00 5.01 1.00 72.04 7.48
0.00 0.25 5.01 1.00 72.33 7.53
0.25 0.25 5.03 1.00 72.94 7.59
0.50 0.25 5.03 1.00 75.14 7.96
0.75 0.25 5.02 1.00 78.49 8.58
0.00 0.50 5.02 1.00 72.16 7.52
0.25 0.50 5.03 1.00 73.57 7.73
0.50 0.50 5.01 1.00 77.83 8.45
0.75 0.50 5.03 1.00 85.26 10.06
0.00 0.75 5.03 1.00 72.38 7.55
0.25 0.75 5.04 1.00 74.18 7.86
0.50 0.75 5.03 1.00 80.84 9.06
0.75 0.75 5.02 1.00 91.93 12.34
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Figure 1: Power curves for the Spray test of association in the presence
of unilateral missingness. The number of complete cases was n0 = 103, and the
type I error was α = 0.05. Each point on the curve is the average across R = 5× 105

simulation replicates. The standard errors of the point estimates were negligible.
The target regression coefficient βG was varied between 0.037 and 0.14 to achieve
heritabilities between 0.1% and 1.0%, while the surrogate regression coefficient αG

was fixed at zero. The surrogate missingness was held at πS = 0, while the target
missingness πT and target-surrogate correlation ρ were varied. Note that this figure
appears in color in the electronic version of this article, and any mention of color
refers to that version.
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Table 3: Empirical relative efficiency comparing the Spray estimator to
the marginal estimator of βG test across R = 5×107 simulation replicates
in the presence of unilateral missingness. The number of complete cases was
n0 = 103. The true regression coefficient (βG ≈ 0.08) was chosen such that the
heritability of the target outcome was 0.5%. The true variances of the target and
surrogate outcomes were ΣTT = ΣSS = 1.00. The surrogate missingness was fixed
at πS = 0.00. The target missingness πT and target-surrogate correlation ρ were
varied. Variance refers to the empirical variance of the corresponding estimator
across simulation replicates. The empirical RE is the ratio of the variance of β̂Spray

G

to that of β̂Marginal
G . The theoretical RE was obtained from (10).

Settings Variance Relative Efficiency
ρ πT Marginal Spray Empirical Theoretical

0.00 0.00 0.0027 0.0027 1.0000 1.0000
0.25 0.00 0.0027 0.0027 1.0001 1.0000
0.50 0.00 0.0027 0.0027 1.0005 1.0000
0.75 0.00 0.0027 0.0027 1.0011 1.0000
0.00 0.25 0.0027 0.0027 0.9997 1.0000
0.25 0.25 0.0027 0.0026 1.0158 1.0159
0.50 0.25 0.0027 0.0025 1.0672 1.0667
0.75 0.25 0.0027 0.0023 1.1657 1.1636
0.00 0.50 0.0027 0.0027 0.9995 1.0000
0.25 0.50 0.0027 0.0026 1.0318 1.0323
0.50 0.50 0.0027 0.0023 1.1431 1.1429
0.75 0.50 0.0027 0.0019 1.3931 1.3913
0.00 0.75 0.0027 0.0027 0.9992 1.0000
0.25 0.75 0.0027 0.0026 1.0485 1.0492
0.50 0.75 0.0027 0.0022 1.2305 1.2308
0.75 0.75 0.0027 0.0016 1.7303 1.7297
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Table 4: Comparison of marginal and Spray analyses by surrogate tissue.
Significant eQTL were identified at the Bonferroni threshold for each analysis. The
mean χ2 statistic is calculate across those eQTL significant under either the marginal
or joint (Spray) analyses. Relative efficiency is calculated as the mean of the ratio
of the sampling variance of the marginal estimator to the Spray estimator.

Significant eQTL Mean χ2

Surrogate Marginal Spray Marginal Spray Relative Efficiency
Blood 24 111 40.8 48.0 1.18
Muscle 37 149 40.8 50.1 1.26

Cerebellum 42 176 40.3 49.1 1.25
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Figure 2: Comparison of the marginal and joint (Spray) eQTL analysies
of substantia nigra, using cerebellum as the surrogate tissue. A. Estimated
effect size from the joint analysis vs. the estimated effect size from the marginal
analysis for eQTL significant in at least 1 of the analyses. B. P-value from the joint
analysis vs. p-value from the marginal analysis for eQTL significant in at least 1 of
the analyses. C. Mirrored Manhattan plots comparing the p-values of the joint and
marginal analyses by genomic position. Dotted line is the Bonferroni significance
threshold. Note that this figure appears in color in the electronic version of this
article, and any mention of color refers to that version.
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Figure 3: Effect of the surrogate outcome on the results of joint (Spray)
analysis. A. Estimated effect size by surrogate outcome for eQTL evaluated in at
least 2 of the surrogate analyses and significant in at least 1. B. Association p-value
by surrogate outcome, again for QTL evaluated in at least 2 of the surrogate analyses
and significant in at least 1. Note that this figure appears in color in the electronic
version of this article, and any mention of color refers to that version.
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