
Experimental evaluation of thermodynamic cost and speed limit in living cells via information
geometry

Keita Ashida,1 Kazuhiro Aoki,2, 3, 4 and Sosuke Ito1, 5, 6

1Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0031, Japan
2Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS),

National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
3Division of Quantitative Biolny, National Institute for Basic Biology,

National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
4Department of Basic Biology, School of Life Science,

SOKENDAI (The Graduate University for Advanced Studies),
5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan

5Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0031, Japan
6JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan

Chemical reactions are responsible for information pro-
cessing in living cells, and their accuracy and speed have
been discussed from a thermodynamic viewpoint [1–5].
The recent development in stochastic thermodynamics en-
ables evaluating the thermodynamic cost of information
processing [6–8]. However, because experimental estima-
tion of the thermodynamic cost based on stochastic ther-
modynamics requires a sufficient number of samples [9],
it is only estimated in simple living systems such as RNA
folding [10] and F1-ATPase [11] . Therefore, it is chal-
lenging to estimate the thermodynamic cost of informa-
tion processing by chemical reactions in living cells. Here,
we evaluated the thermodynamic cost and its efficiency
of information processing in living systems at the single-
cell level for the first time by establishing an information-
geometric method to estimate them with a relatively small
number of samples. We evaluated the thermodynamic cost
of the extracellular signal-regulated kinase (ERK) phos-
phorylation from the time series of the fluorescence imag-
ing data by calculating the intrinsic speed in information
geometry. We also evaluated a thermodynamic efficiency
based on the thermodynamic speed limit [8, 12, 13], and
thus this paper reports the first experimental test of ther-
modynamic uncertainty relations in living systems. Our
evaluation revealed the change of the efficiency under the
conditions of different cell densities and its robustness to
the upstream pathway perturbation. Because our ap-
proach is widely applicable to other signal transduction
pathways such as the G-protein coupled receptor path-
ways for sensation [14], it would clarify efficient mecha-
nisms of information processing in such a living system.

The Gibbs free energy change mainly drives information
transmission in living cells, and its mechanism follows ther-
modynamic laws. For example, systems biology reveals a
deep connection between information transmission accuracy
and the Gibbs free energy change in a cell [1, 2]. In recent
developments of stochastic thermodynamics [15] and chem-
ical thermodynamics [16, 17], a similar connection occurs
more deeply. The trade-off relations among speed, thermo-
dynamic cost, and accuracy in a living cell have been pro-
posed [3, 4], and its general thermodynamic bound of infor-
mation processing in signal transduction has been discussed

in terms of Maxwell’s demon [5, 18–20]. Moreover, as ther-
modynamic generalizations of uncertainty relations, thermo-
dynamic trade-off relations have been intensively studied in
terms of thermodynamic uncertainty relations [21, 22] and
thermodynamic speed limits [8, 23–29]. These trade-off re-
lations are mainly based on mathematical properties of the
Fisher information [8, 12, 30], which gives a metric of in-
formation geometry [31]. Historically, information geometry
has been considered as a possible choice of differential geom-
etry for equilibrium thermodynamics [7, 32]. In recent years,
information geometry meets nonequilibrium thermodynamics
such as stochastic thermodynamics [8, 12, 33] and chemical
thermodynamics [13], and it provides a unified framework to
derive these trade-off relations in living systems [8, 12, 13].
While theoretical progress of thermodynamic trade-off rela-
tions has been intensively made for biological applications,
the thermodynamic uncertainty relation has been experimen-
tally tested only in artificial systems [34, 35]. An experimen-
tal test of thermodynamic trade-off relations in living systems
has not been reported, and the thermodynamic speed limit has
not been tested even in artificial systems.

This paper experimentally evaluated the thermodynamic
cost by quantifying the Fisher information of time from the
fluorescence imaging of the ERK phosphorylation in normal
rat kidney epithelial (NRK-52E) cells. In information geom-
etry, the Fisher information of time is regarded as the square
of the intrinsic speed. This Fisher information is calculated
from the time evolution of the phosphorylated ERK frac-
tion, which can be experimentally measured by the Förster
resonance energy transfer (FRET) signal. We also eval-
uated other information-geometric quantities for activation
and inactivation processes from this Fisher information, and
these information-geometric quantities illustrate the thermo-
dynamic cost of the ERK phosphorylation, which is related
to the Gibbs free energy change and the fluctuation-response
ratio. We focused on the thermodynamic speed limit based on
these information-geometric quantities and found that the ef-
ficiency ranges from 0.4 to 0.9 for the ERK phosphorylation
in living NRK-52E cells. We quantified the thermodynamic
variability for cell density changes and the perturbation of the
upstream Raf pathway. While the cell density increases the
thermodynamic cost and reduces efficiency, the Raf inhibitor
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addition reduces the thermodynamic cost, but the efficiency is
robust to the Raf inhibitor addition.

The information-geometric method proposed in this paper
is generally applicable to switching dynamics between the ac-
tive state and the inactive state. We consider the following
chemical reaction

Aoff

kon(s
′)

⇄
koff

Aon, (1)

where Aon is an active state, Aoff is an inactive state, s′ is
stimulus, and kon(s

′) and koff are rate constants. Because
kon(s

′) can depend on stimulus s′, it causes a pulsatile re-
sponse of Aon if this stimulus s′ is excitable. This paper
focuses on the ERK phosphorylation in the Ras-Raf-MEK-
ERK pathway that shows a pulsatile response [36–38]. In
Fig. 1a, we show the Ras-Raf-MEK-ERK pathway that relays
extracellular stimuli such as growth factors from the plasma
membrane to targets in the cytoplasm and nucleus. This
three-tiered Raf-MEK-ERK mitogen-activated protein kinase
(MAPK) cascade plays an essential role in various cellular
processes, including cell proliferation, differentiation, and tu-
morigenesis [39]. Upon growth factor stimulation, the re-
ceptor tyrosine kinase (RTK) activates the Ras small GTPase
at the plasma membrane, which recruits and activates the
Raf. The activated Raf induces activation and phosphoryla-
tion of the MEK. The upstream kinase MEK phosphorylates
the ERK to increase kinase activation of the ERK. The phos-
phorylated ERK is finally dephosphorylated by phosphatases,
thereby shutting down the ERK activation. The phosphory-
lated MEK catalyzes a phosphate transfer from the adenosine
triphosphate (ATP) to the ERK, and the Gibbs free energy
difference of ATP hydrolysis thermodynamically drives this
phosphorylation of the ERK [39, 40]. Here, Aon corresponds
to a phosphorylated state of the ERK, Aoff corresponds to a
nonphosphorylated state of the ERK, and s′ corresponds to
the stimulus by upstream proteins in the Ras-Raf-MEK-ERK
pathway, respectively. We try to estimate the thermodynamic
cost of the ERK phosphorylation in living cells using the time
series of the phosphorylated ERK fraction, which can be ex-
perimentally measured by the FRET technique at the single-
cell level [37].

We discuss the thermodynamic cost estimation from the
time series of the phosphorylated ERK fraction P1 =
[Aon]/([Aon] + [Aoff ]), where [Aon] and [Aoff ] are concen-
trations corresponding to Aon and Aoff , respectively (see also
Supplementary Note). In general, it is hard to estimate the
Gibbs free energy change in living cells because it needs
prior knowledge about the equilibrium concentration [16].
However, this equilibrium concentration is not estimated well
from the time series of P1. We propose a novel information-
geometric method to estimate the thermodynamic cost from
P1, which does not require prior knowledge about the equilib-
rium concentration. Because the total concentration [Atot] =
[Aoff ] + [Aon] is conserved, the nonphosphorylated and phos-
phorylated ERK fractions P0 = 1 − P1 = [Aoff ]/[Atot] and
P1 = [Aon]/[Atot] can be regarded as the probability distri-
bution, and a Riemannian manifold can be introduced as the
set of probability distributions in information geometry [31].

This method focuses on an intrinsic speed ds/dt =
√
ds2/dt2

on this manifold related to the thermodynamic cost, such as
the Gibbs free energy change and the fluctuation-response ra-
tio of the ERK phosphorylation [8, 12, 13]. The square of the
intrinsic speed is given by the Fisher information of time

ds2

dt2
=

1∑
i=0

Pi

(
d lnPi

dt

)2

=
1∑

i=0

1

Pi

(
dPi

dt

)2

. (2)

Because ds2/dt2 only consists of the concentration fraction
Pi and its change speed dPi/dt, we can estimate it from the
time series of P1.

The square of the intrinsic speed can quantify the ther-
modynamic cost of ERK phosphorylation (see also Supple-
mentary Note). Under near-equilibrium condition, we obtain
ds2/dt2 ≃ −(dσ/dt)/(2R[Atot]), where R is the gas con-
stant, and σ is the entropy production that is the minus sign
of the Gibbs free energy change over the temperature [13].
Then, the Fisher information of time is proportional to the
entropy production rate change under near-equilibrium condi-
tion. Even for a system far from equilibrium, the square of the
intrinsic speed gives the fluctuation-response ratio of the ERK
phosphorylation. Let fi be an observable of the ERK states,
where i = 0(i = 1) means the nonphosphorylated (phospho-
rylated) state. The square of the intrinsic speed ds2/dt2 is
equal to the fluctuation-response ratio

ds2

dt2
=

|dt⟨f⟩t|2

Var[f ]t
, (3)

where ⟨f⟩t =
∑

i Pi(t)fi is the mean value, |dt⟨f⟩t| =
|d⟨f⟩t/dt| implies the time-response of the observable, and
Var[f ]t = ⟨f2⟩t − ⟨f⟩2t implies the observable fluctuation.
This relation is a consequence of the Cramér-Rao inequality
for an efficient estimator, where any observable of a binary
state can be regarded as an efficient estimator.

As shown in Fig. 1b, a pulsatile response consists of activa-
tion and inactivation processes, and we introduce information-
geometric quantities of these processes as measures of the
thermodynamic cost and the speed limit’s efficiency (see also
Supplementary Note). During the activation (inactivation)
process, the phosphorylated ERK fraction P1 is monotoni-
cally increasing (decreasing) in time. The activation (inac-
tivation) starts at time t0 = tini (t0 = tpeak) and ends at time
t1 = tpeak (t1 = tfin). We here introduce three information-
geometric quantities [7, 8], the action

C =
1

2

∫ t1

t0

dt
ds2

dt2
, (4)

the length

L =

∫ t1

t0

√
ds2

dt2
dt = 2arccos

[
1∑

i=0

√
Pi|t=t0

Pi|t=t1

]
,

(5)

and the mean velocity

V =
L

t1 − t0
, (6)
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Fig. 1: Schematic of the ERK phosphorylation, the time series of the phosphorylated ERK fraction P1, and the square of the
intrinsic speed ds2/dt2. a The Raf-MEK-ERK MAP pathway as an example of switching dynamics between the active state
Aon and the inactive state Aoff . The phosphorylated and nonphosphorylated ERKs correspond to Aon and Aoff , respectively.
The upstream proteins correspond to the stimulus s′, and the Raf on the upstream pathway affects the phosphorylated ERK. b

Typical behavior of the phosphorylated ERK fraction P1 in the activation and inactivation processes. The time tini (tpeak)
indicates the beginning of the activation (inactivation), and the time tpeak (tfin) indicates the end of the activation (inactivation).

c Schematic of the manifold in information geometry and the intrinsic speed ds/dt on this manifold. The activation and
inactivation processes give at least two peaks in the time series of ds2/dt2, because ds2/dt2 = 0 at times tini, tpeak, and tfin.

during the process from time t0 to t1. The action C quan-
tifies the thermodynamic cost of the process because the ac-
tion C ≃ σ|t=t0

/(4R[Atot]) is approximately proportional to
the entropy production rate at time t0 under near-equilibrium
condition. Even for a system far from equilibrium, the action
C can be interpreted as the thermodynamic cost in terms of
the fluctuation-response ratio in Eq. (3) and becomes large if
the observable change speed |dt⟨f⟩t| is relatively larger than
its fluctuation

√
Var[f ]t during the process. The length L is

given by twice the Bhattacharyya angle, which is a measure
of a difference between two concentration fractions at time t0
and time t1. The mean velocity V quantifies the speed of the
concentration fraction change during the process. In informa-
tion geometry, L is regarded as the arc length of a circle in
2
√
Pi coordinate, and ds/dt is the intrinsic speed on this cir-

cle (see also Fig. 1c). From the Cauchy-Schwarz inequality,
we obtain the thermodynamic speed limit [8]

L2 ≤ 2C(t1 − t0), (7)

which is a trade-off relation between the thermodynamic cost
C and the transition time t1 − t0 during the process. To quan-
tify how much the thermodynamic cost converts into the con-
centration fraction change speed, we can consider the speed
limit’s efficiency [8]

η =
L2

2(t1 − t0)C
=

VL
2C

. (8)

The efficiency η satisfies 0 ≤ η ≤ 1, and η = 1 (η = 0)
implies that this conversion is most efficient (inefficient). The
efficiency becomes higher if the intrinsic speed is close to con-
stant because η = 1 if and only if the intrinsic speed ds/dt is
constant regardless of time, (d/dt)|ds2/dt2| = 0.

We experimentally measured the phosphorylated ERK frac-
tion in living NRK-52E cells with the FRET-based ERK
biosensor, the EKAREV-NLS (Fig. 2a) [41]. By compar-
ing the fluorescence ratio of cells with the phosphorylated
ERK fraction obtained from the western blotting (Fig. 2b),
we quantified P1 and the square of the intrinsic speed ds2/dt2

for the ERK activation (p = a) and inactivation (p = i) pro-
cesses under the condition of different cell densities: 2.0×103

cells/cm2 (low, d = L), 2.0×104 cells/cm2 (medium, d = M),
and 2.0 × 105 cells/cm2 (high, d = H), where the indices
p ∈ {a, i} and d ∈ {L,M,H} regard the process and cell
density, respectively. The pulses of the ERK activation were
observed under these conditions (Fig. 2c and Supplementary
Video 1), and the behavior of ds2/dt2 characterizes these con-
ditions p and d (Fig. 2d). It reveals thermodynamic differ-
ences of the intracellular ERK activation under these condi-
tions.

The information-geometric quantities {C,L,V}pd also dif-
ferentiate these conditions (Fig. 3 and Extended Data Table 2).
Firstly, we discuss the histogram of the action. The mean
value of the action Cp

d becomes larger as cell density increases
Cp
H > Cp

M > Cp
L for both p = a and p = i. It reflects the
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curve of the Hill equation. c Representative images of the phosphorylated ERK under the conditions of low, medium, and high
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Fig. 3: The histograms of the action C, length L, mean velocity V , and efficiency η under the conditions of different cell
densities. The sample size, mean values, variances, and results of statistical tests are listed in Extended Data Table 1, 2.

fact that the speed under the condition of the high density ap-
peared faster than the low density. The difference of Cp

d be-
tween the high (medium) and low densities is at least twice
(Ca

H/Ca
L ≃ 2.7, Ci

H/Ci
L ≃ 2.4). In comparison with the activa-

tion and inactivation processes, Ca
d is approximately twice as

much as Ci
d, and the distributions for the activation have longer

tails than the inactivation. Because the action is a measure of
the thermodynamic cost, these results suggest that the activa-
tion’s thermodynamic cost is larger than the inactivation’s one
and becomes larger as cell density increases. Secondly, we
discuss the histogram of the length. While the length does not

distinguish the activation process from the inactivation pro-
cess, the mean value of the length Lp

d differentiates the cell
densities. It reflects the fact that the peak of the spike be-
comes higher as the cell density increases. Finally, we discuss
the histogram of the mean velocity. The mean value of the
mean velocity for the activation Va

d is larger than the inactiva-
tion V i

d. It shows that the speed of the activation is faster than
the inactivation.

From these information-geometric quantities {C,L,V}pd,
we obtained the speed limit’s efficiency ηpd = Vp

dL
p
d/(2C

p
d)

(Fig. 3 right column). The mean value of the speed limit’s
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efficiency is almost ηpd ≃ 0.7 under these conditions, and the
distribution of ηpH shifted to lower than those of ηpL and ηpM
(see also Extended Data Table 2). The efficiencies range be-
tween ηpd = 0.4 and ηpd = 0.9, and the distributions’ shapes
are biased to the higher efficiency. We can detect that the ac-
tivation process is less efficient than the inactivation process
ηad < ηid. We also find that the efficiency becomes worse in
the higher cell density ηpH < ηpL. These results indicate that
the process is accelerated under the higher cell density, and
the activation process is also more accelerated than the inac-
tivation process by the thermodynamic cost. This idea is sup-
ported by the histogram of |d/dt(ds2/dt2)| (Extended Data
Fig. 1), which becomes zero when η = 1. The mean values
of |d/dt(ds2/dt2)| for the activation and the high cell density
are larger than that for the inactivation and the low cell den-
sity, respectively (Extended Data Table. 2). The scatter plot
(Extended Data Fig. 2, see also Extended Data Table 4) sug-
gests no correlation between ηpd and {C,V}pd, while V and C
seem to have a correlation. Because cell density modulates the
ERK activation’s excitability through both changes in basal
and peak levels of the ERK phosphorylation [37], the cellular
density could affect the efficiency of the pulsatile phosphory-
lation and the thermodynamic cost.

We confirm that these information-geometric quantities
show the thermodynamic properties of the ERK phospho-
rylation by comparing the Raf inhibitor addition situation.
The pulsatile dynamics of the ERK activation is generated by
stochastic noise from the Raf and feedback loops [37, 39], and
the Gibbs free energy difference of the ERK phosphorylation
is induced by stimulus s′ from the upstream pathway, includ-
ing the Raf [39, 40]. Thus, the Raf inhibitor addition reduces
the Gibbs free energy change of the ERK phosphorylation and
these information-geometric quantities. To ensure these rela-
tionships, we measured the ERK phosphorylation dynamics
under the Raf inhibitor (SB590885) addition and compared
its dynamics with the original dynamics before adding the Raf
inhibitor (Fig. 4). Of note, it is well-known that a low dose of
the Raf inhibitor could paradoxically activate the ERK signal-
ing through the Raf dimerization [42–44]. The condition of
the cell density is medium in this experiment. The applica-
tion of a low dose (100 nM) of the Raf inhibitor immediately
activated the ERK, and the ERK activity demonstrated slower
dynamics than that before the Raf inhibitor treatment and after
the activation [37] (Fig. 4a and Supplementary Video 2). This
result implies that the thermodynamic cost of the ERK phos-
phorylation is immediately increased when adding the Raf in-
hibitor. After the dynamics of the relaxation on the upstream
pathways, the Raf inhibitor addition generally decreases the
thermodynamic cost of the ERK phosphorylation.

In Fig. 4b, we show the histograms of these information-
geometric quantities and the efficiency {C,L,V, η}pd′ before
(d′ = pre) and after (d′ = post) the Raf inhibitor addition,
where the subscript d′ ∈ {pre, post} regards the Raf inhibitor
addition. The mean value of the action Cp

d′ decreases when the
Raf is inhibited Cp

pre > Cp
post, and the mean values differ by

one order of magnitude (see also Extended Data Table 3). This
result shows the Raf inhibitor addition reduces the thermody-
namic cost of the ERK phosphorylation. The mean veloc-
ity and length also decrease when the Raf inhibitor is added,
Vp
pre > Vp

post, and Lp
pre > Lp

post, while the transition time
t1−t0 becomes longer by the Raf inhibitor addition (Extended
Data Fig. 3 and see also Extended Data Table 3). Surprisingly,
the mean value of the efficiency is robust to the Raf inhibitor
addition ηppre ≃ ηppost, while the peak of the histogram can
be decreased after adding the Raf inhibitor. Moreover, the
efficiency ηpd′ seems to have no correlation with Cp

d′ nor Vp
d′

(Extended Data Fig. 4 and see also Extended Data Table 4),
and this robustness would not come from an artifact correla-
tion between information-geometric quantities. The efficiency
compensation of the ERK phosphorylation might exist when
the upstream pathways are perturbed by the inhibitor.

In summary, we introduced information-geometric quan-
tities as thermodynamic measures, and evaluated the speed
limit’s efficiency for the ERK phosphorylation dynamics in
living cells at the single-cell level. Our method quantitatively
clarifies the amount of information transferred in living sys-
tems based on information geometry and the conversion ef-
ficiency from the thermodynamic cost to the intrinsic speed,
which complements other studies about measurements of in-
formational quantities in biological systems such as the mu-
tual information in signal transduction [46–48] and the Fisher
information matrix on molecular networks [49, 50]. Our
method is generally applicable to the activation process, and
it widely exists in signaling pathways such as the G-protein
coupled receptor pathways for sensation [14] and the receptor
tyrosine kinase signaling pathways for cell proliferation [45].
For example, the state change from the active state Aon to the
inactive state Aoff in the G-protein coupled receptor corre-
sponds to its conformational change by small rearrangements
accompanying the ligand-binding. It is interesting to evalu-
ate the speed limit’s efficiency for other activation processes
on an equal footing with this ERK phosphorylation in living
NRK-52E cells. Our approach has great potential for other bi-
ological applications, which might clarify an efficient signal
transduction mechanism and lead to novel insight into living
systems as an information processing unit driven by the ther-
modynamic cost.
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METHODS

Measurement of the phosphorylated ERK fraction

We measured the ERK phosphorylation, as previously de-
scribed [51]. The EKAREV-NLS stable-expression NRK-52E
cell lines (NRK-52E/ERKAREV-NLS cells) [37], were used,
and the EKAREV-NLS is the genetically encoded ERK sensor
used in Komatsu et al., 2011 [41].

The NRK-52E/EKAREV-NLS cells were maintained with
the Dulbecco’s Modified Eagle Medium (DMEM; Ther-
moFisher), 10 % Fetal bovine serum (FBS; Sigma), and 10
µg/mL Blasticidin S (Invitrogen). The cells were seeded at a
specific concentration (Low: 2.0 × 103 cells/cm2, Medium:
2.0 × 104 cells/cm2, High: 2.0 × 105 cells/cm2) on glass-
bottom dishes (IWAKI). One day after the seeding, the
time-lapse imaging was performed. The culture media was
replaced with the FluoroBrite (ThermoFisher), 5 % FBS
(Sigma), and 1× Glutamax (ThermoFisher) 3–6 hours before
starting the time-lapse imaging. We used an inverted micro-
scope (IX81; Olympus) equipped with a CCD camera (Cool-
SNAP K4; Roper Scientific) and an excitation light source
(Spectra-X light engine; Lumenncor). Optical filters were
as follows: an FF01-438/24 excitation filter (Semrock), an
XF2034 (455DRLP) dichroic mirror (Omega Optical), and
two emission filters (FF01-483/32 for CFP and FF01-542/27
for YFP (Semrock)). Images were acquired every 20 sec (the
exposure time was 100 ms) with binning 8×8 on MetaMorph
software (Universal Imaging) with an IX2-ZDC laser-based
autofocusing system (Olympus). A ×20 lens (UPLSAPO
20X; Olympus, numerical aperture: 0.75) was used. The tem-
perature and CO2 concentration were maintained at 37◦C and
5 % during the imaging with a stage top incubator (Tokai
hit). For the Raf inhibitor experiment, the experiment was
performed under the same condition as the medium cell den-
sity condition. We applied SB590885 (Selleck Chemicals) (a
final concentration is 100 nM) 2 hours after the imaging initi-
ation. The numbers of trials for each experimental condition
are two.

We used the same relation between the FRET/CFP ratios
of the EKAREV-NLS and the phosphorylated ERK fraction
(pTpY-ERK2) from the western blotting in Fig. 2b as de-
scribed previously [37]. In brief, the phosphorylated ERK
fraction was quantified by the Phos-tag western blotting [52]
in HeLa cells stimulated with different concentrations of 12-
O-Tetradecanoylphorbol 13-acetate (TPA; Sigma) for 30 min
to induce the ERK phosphorylation. Under the same condi-
tion, HeLa cells stably expressing EKAREV-NLS were im-
aged, followed by the quantification of the average FRET/CFP
ratios. Finally, the FRET/CFP ratios were plotted as a func-
tion of the phosphorylated ERK fraction with the fitted curve
of the Hill equation shown in Fig. 2b by the Solver Add-in in
Excel (Microsoft).

Data analysis

For the imaging analysis, Fiji was used. The background
was subtracted by the Subtract Background Tool, and after
that, the nuclei were tracked with a custom-made tracking
program. Only the cells which were tracked over the entire
images were used for calculation of information-geometric
quantities. The phosphorylated ERK fraction was calculated
based on the FRET/CFP ratios with the Hill equation shown
in Fig. 2b.

For analysis of the time-series phosphorylated ERK frac-
tions, MATLAB 2019b (MathWorks) was used. The low-pass
filter, whose cutoff frequency is 0.005 Hz, was used for the
cell density experiment data with the designfilt function in the
Signal Processing Toolbox to reduce the noise. The low-pass
filter, whose cutoff frequency is 1/1200 Hz, was used for the
Raf inhibitor addition experiment data to detect the slower dy-
namics after the Raf inhibitor addition. We identified the ac-
tivation and inactivation processes from the signs of the first
and second derivatives. The first derivatives were numerically
calculated using two data points of the phosphorylated frac-
tion, and the second derivatives were numerically calculated
using two data points of the first derivatives. We only calcu-
lated information-geometric quantities when the phosphory-
lated ERK fractions between maximum and minimum of the
process over 0.01 for the density-experiment data and 0.001
for the Raf inhibitor addition experiment data. The square
of an intrinsic speed ds2/dt2 was numerically calculated us-
ing two-points of the phosphorylated ERK fraction time se-
ries. The action C, length L, mean velocity V , and efficiency
η were calculated using ds2/dt2 according to the definitions.
We used the set of time series for each cell in two trials for
each experimental condition to make histograms.

For the statistical analysis, R (version 3.6.3; R project) was
used. The Brunner-Munzel test was performed with the brun-
nermunzel.test function in the brunnermunzel library (version
1.4.1). The two-sample Kolmogorov–Smirnov test was per-
formed with the ks.test function in the stats library (version
3.6.3). The Pearson correlation coefficients were calculated
and tested by the cor.test function in the stats library (version
3.6.3). The Holm method was used to control the family-wise
error rates with the p.adjust function in the stats library (ver-
sion 3.6.3). The sample numbers are shown in Extended Data
Table 1.
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SUPPLEMENTARY INFORMATION

Supplementary Note: Chemical thermodynamics and information geometry for switching dynamics between the active and inactive
states

This supplementary note briefly discusses a relationship between chemical thermodynamics and information geometry for
switching dynamics between the active state Aon and the inactive state Aoff . Let us consider the chemical reaction for the active
and inactive states with stimulus s′,

Aoff

kon(s
′)

⇄
koff

Aon, (9)

where kon(s
′) and koff are rate constants. Let [Aoff ] and [Aon] be concentrations of chemical states Aoff and Aon, respectively.

These concentrations are nonnegative, i.e., [Aoff ] ≥ 0 and [Aon] ≥ 0. In our study, Aon corresponds to the phosphorylated
ERK state, Aoff corresponds to the nonphosphorylated ERK state, and s′ corresponds to upstream proteins’ stimulus in the
Ras-Raf-MEK-ERK pathway.

At first, we consider switching dynamics between the active and inactive states. The following rate equation describes the
time evolution of concentrations [Aoff ] and [Aon],

d

dt
[A] = SJ , (10)

[A] =

(
[Aoff ]
[Aon]

)
, (11)

J =

(
J+
J−

)
=

(
kon(s

′)[Aoff ]
koff [Aon]

)
, (12)

S =

(
−1 1
1 −1

)
, (13)

where t is time, the vector J implies the reaction rate, and S is called the stoichiometric matrix. Because the vector

l =

(
1
1

)
, (14)

is in the left null space of S such that

lTS = 0T, (15)

the sum of concentrations [Atot] = [Aon] + [Aoff ] is conserved

d[Atot]

dt
=

d

dt
(lT[A]) = lTSJ = 0TJ = 0, (16)

where 0 be the zero vector in two dimensions, and the symbol T implies the transpose of a vector. This conservation law
d[Atot]/dt = 0 corresponds to the conservation of the total mass. If we introduce the concentration fractions

P =

(
P0

P1

)
=

1

[Atot]
[A], (17)

we have P0 ≥ 0, P1 ≥ 0 and P0 + P1 = 1. Then, (P0,P1) can be regarded as the probability distribution, and its dynamics are
described by the master equation, which is equivalent to the rate equation (10),

d

dt
P = WP , (18)

W =

(
−kon(s

′) koff
kon(s

′) −koff

)
, (19)

where W is called the rate matrix. The equilibrium distribution is given by

P eq =

(
P eq
0

P eq
1

)
=

1

kon(s′) + koff

(
koff

kon(s
′)

)
, (20)
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which satisfies the detailed balance condition

kon(s
′)P eq

0 = koffP
eq
1 . (21)

This equilibrium distribution P eq generally depends on stimulus s′. Concentrations at equilibrium corresponding to P eq are
given by

[A]eq =

(
[Aoff ]

eq

[Aon]
eq

)
= [Atot]P

eq. (22)

The ratio of two rate constants kon(s
′)/koff implies a thermodynamic property of the system. This fact is known as the local

detailed balance condition such that

kon(s
′)

koff
= exp

[
µ◦
off − µ◦

on

RT

]
, (23)

where R is the gas constant, T is the temperature of the solvent, and µ◦
on and µ◦

off are standard chemical potentials corresponding
to the active and inactive states. We now define the chemical potentials µon([Aon]) and µoff([Aoff ]) as

µon([Aon]) = µ◦
on +RT ln[Aon], (24)

µoff([Aoff ]) = µ◦
off +RT ln[Aoff ]. (25)

The local detailed balance condition (23) can be regarded as the equivalence of the chemical potential at equilibrium

µon([Aon]
eq) = µoff([Aoff ]

eq). (26)

If we define the vector of the chemical potential at equilibrium as

µeq =

(
µon([Aon]

eq)
µoff([Aoff ]

eq)

)
= µon([Aon]

eq)l, (27)

this vector is in the left null space of S, i.e., µeqTS = 0T. Then, the quantity µeqT[A] is conserved,

d

dt

(
µeqT[A]

)
= µeqTSJ = 0. (28)

Next, we discuss the chemical thermodynamics of a dilute solution with the temperature T kept constant. The Gibbs free
energy per unit volume G([A]) is defined as

G([A]) = µon([Aon])[Aon] + µoff([Aoff ])[Aoff ]−RT [Atot] +G0, (29)

where G0 is a constant. This Gibbs free energy G([A]) satisfies the relations in chemical thermodynamics,

∂G([A])

∂[Aon]
= µon([Aon]), (30)

∂G([A])

∂[Aoff ]
= µoff([Aoff ]). (31)

From Eq. (28), we obtain

µeqT[A] = µeqT[A]eq, (32)

and therefore the Gibbs free energy at equilibrium G([A]eq) is expressed as

G([A]eq) = µon([Aon]
eq)[Aon]

eq + µoff([Aoff ]
eq)[Aoff ]

eq −RT [Atot]
eq +G0 (33)

= µon([Aon]
eq)[Aon] + µoff([Aoff ]

eq)[Aoff ]−RT [Atot]
eq +G0. (34)

The Gibbs free energy difference G([A])−G([A]eq) is given by

G([A])−G([A]eq) = RT

(
[Aon] ln

[Aon]

[Aon]eq
+ [Aoff ] ln

[Aoff ]

[Aoff ]eq
+ [Aon]

eq + [Aoff ]
eq − [Aon]− [Aoff ]

)
. (35)
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If we use the definition of the f -divergence

Df ([A]||[A]eq) =

(
[Aon] ln

[Aon]

[Aon]eq
+ [Aoff ] ln

[Aoff ]

[Aoff ]eq
+ [Aon]

eq + [Aoff ]
eq − [Aon]− [Aoff ]

)
, (36)

which is the generalization of the Kullback-Leibler divergence for the positive measure space, the Gibbs free energy difference
is given by

G([A])−G([A]eq)

RT
= Df ([A]||[A]eq). (37)

From the nonnegativity of the f -divergence Df ([A]||[A]eq) ≥ 0, we obtain

G([A]) ≥ G([A]eq), (38)

which implies that the Gibbs free energy at equilibrium takes the smallest value. If we consider the conservation of the total
mass [Aon]

eq + [Aon]
eq = [Aon] + [Aon] and introduce the probability distributions P and P eq, the f -divergence is rewritten as

the Kullback-Leibler divergence,

DKL(P ||P eq) =
1∑

i=0

Pi ln
Pi

P eq
i

=
1

[Atot]
Df ([A]||[A]eq). (39)

The time derivative of the Gibbs free energy is also given by the f -divergences

dG([A])

dt
= µon([Aon])

d[Aon]

dt
+ µoff([Aoff ])

d[Aoff ]

dt
(40)

= (J+ − J−) [µon([Aon])− µoff([Aoff ])] (41)

= −RT

[
J+ ln

J+
J−

+ J− ln
J−
J+

]
(42)

= −RT [Df (J+||J−) +Df (J−||J+)], (43)

Df (J+||J−) = J+ ln
J+
J−

+ J− − J+, (44)

Df (J−||J+) = J− ln
J−
J+

+ J+ − J−, (45)

where we used the local detailed balance condition (23), which is equivalent to µon([Aon]) − µoff([Aoff ]) = RT ln(J−/J+).
From the nonnegativity of the f -divergence, we obtain

dG([A])

dt
≤ 0. (46)

The entropy production σ([A]) is defined as

σ([A]) = − 1

T

dG

dt
. (47)

Therefore, dG([A])/dt ≤ 0 can be regarded as the second law of thermodynamics

σ([A]) ≥ 0. (48)

We here introduce information geometry. In information geometry, the square of line element ds2 is given by the 2nd order
Taylor expansion of the Kullback-Leibler divergence

ds2 = 2DKL(P + dP ||P ) +O(dP 3) (49)

=
1∑

i=0

(dPi)
2

Pi
(50)

=
1∑

i=0

Pi(d lnPi)
2, (51)
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where dP is an infinitesimal difference of two probabilities, which satisfies
∑

i dPi = 0. The Fisher information of time is also
defined as

ds2

dt2
=

1∑
i=0

Pi

(
d lnPi

dt

)2

, (52)

and its square root implies the intrinsic speed ds/dt =
√
ds2/dt2 in information geometry. We can also introduce information

geometry for chemical reaction networks. The square of line element for chemical reaction networks ds2chem is given by the 2nd
order Taylor expansion of the f -divergence

ds2chem = 2Df ([A]+ d[A]||[A]) +O(d[A]3) (53)

=
(d[Aon])

2

[Aon]
+

(d[Aoff ])
2

[Aoff ]
(54)

We obtain the relation between two geometries ds2 and ds2chem as

ds2 =
1

[Atot]
ds2chem (55)

ds2

dt2
=

1

[Atot]

ds2chem
dt2

(56)

(57)

Because the f -divergence is related to the Gibbs free energy, we can consider a thermodynamic interpretation of information
geometry. Under near-equilibrium condition [A] = [A]eq + d[A], we have

ds2 ≃ 2

[Atot]
Df ([A]eq + d[A]||[A]eq) (58)

= 2
G([A])−G([A]eq)

RT [Atot]
. (59)

Therefore, ds2 can be interpreted as the Gibbs free energy difference under near-equilibrium condition. We also show that the
Fisher information of time ds2/dt2 is given by

ds2

dt2
=

1

[Atot]

[
d ln[Aon]

dt

d[Aon]

dt
+

d ln[Aoff ]

dt

d[Aoff ]

dt

]
(60)

=
1

RT [Atot]

d (µon([Aon])− µoff([Aoff ]))

dt
(J+ − J−) (61)

= − 1

RT [Atot]

dF
dt

J , (62)

where the flow is defined as J = J+ − J− and the force is defined as F = µoff([Aoff ])− µon([Aon]) = RT ln(J+/J−). In this
notation, the entropy production rate is given by σ = FJ /T . In terms of the entropy production rate, the Fisher information of
time is given by

ds2

dt2
= − 1

2R[Atot]

dσ

dt
+

1

2RT [Atot]

(
dJ
dt

F − dF
dt

J
)
. (63)

Under near-equilibrium condition J+ ≃ J−, we have J ≃ LF with the Onsager’s coefficient L = RT/(koff [Aon]
eq) and

dJ
dt

F − dF
dt

J ≃ 0. (64)

Thus, the Fisher information of time gives the time derivative of the entropy production rate under near-equilibrium condition

ds2

dt2
≃ − 1

2R[Atot]

dσ

dt
. (65)
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We also discuss a thermodynamic meaning of the action for a transition from time t = t0 to t = t1, defined as

C =
1

2

∫ t1

t0

dt
ds2

dt2
. (66)

Under near-equilibrium condition, we obtain

C ≃
σ|t=t0

− σ|t=t1

4R[Atot]
. (67)

In a relaxation process, the system can be in equilibrium at the final time t = t1, and the entropy production rate vanishes at the
final time σ|t=t1

≃ 0. Therefore, the action can be proportional to the entropy production rate at the initial time t = t0,

C ≃
σ|t=t0

4R[Atot]
, (68)

if the system is under near-equilibrium condition, and reach equilibrium at the final time t = t1. That is why we regard the action
C as a thermodynamic cost. In an experiment of the FRET measurement, we can easily estimate the Fisher information of time
ds2/dt2 because it only consists of measurable quantities, i.e., the nonphosphorylated and phosphorylated ERK fractions P0 and
P1 and its change speed dP0/dt and dP1/dt. On the other hand, it is hard to measure the Gibbs free energy G itself because
we need prior knowledge about concentrations at equilibrium [Aon]

eq and [Aoff ]
eq to estimate G. It is also hard to measure the

entropy production rate σ because we need prior knowledge about the rate constants kon(s′) and koff to estimate σ via J+ and
J−.

Information theoretically, we can discuss the meaning of ds2/dt2 even for a system far from equilibrium. We here introduce
the observable (f0, f1) corresponding to (P0,P1), and its ensemble average is defined as ⟨f⟩t = P0(t)f0 +P1(t)f1. The square
of the time derivative of ⟨f⟩t is given by (

d

dt
⟨f⟩t

)2

=

(
f0

dP0

dt
+ f1

dP1

dt

)2

(69)

= (f0 − f1)
2

(
dP0

dt

)2

, (70)

which implies the time-response of the observable. The variance of the observable is given by

Var[f ]t = ⟨f2⟩t − ⟨f⟩2t (71)

= f2
0P0 + f2

1 (1− P0)− (f0P0 + f1(1− P0))
2 (72)

= (f0 − f1)
2P0(1− P0), (73)

which is the fluctuation of the observable. Thus, the fluctuation-response ratio is calculated as(
d
dt ⟨f⟩t

)2
Var[f ]t

=
1

P0(1− P0)

(
dP0

dt

)2

(74)

=

(
1

P0
+

1

P1

)(
dP0

dt

)2

(75)

=
1

P0

(
dP0

dt

)2

+
1

P1

(
dP1

dt

)2

(76)

=
ds2

dt2
. (77)

Therefore, the Fisher information of time implies the fluctuation-response ratio even for a system far from equilibrium.
We finally discuss the length L defined as

L =

∫ t1

t0

dt

√
ds2

dt2
. (78)
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We here introduce the change of variables
√
P0(t) = cos θ(t) and

√
P1(t) = sin θ(t) which satisfies the normalization of the

probability P0(t) + P1(t) = 1. Then, the Fisher information of time is given by

ds2

dt2
=

1

[cos θ(t)]2

(
d

dt
[cos θ(t)]2

)2

+
1

[sin θ(t)]2

(
d

dt
[sin θ(t)]2

)2

(79)

= 4

(
dθ

dt

)2

, (80)

which implies that ds2 gives a differential geometry of the circle of radius 2. Thus, the length is calculated as

L = 2

∫ t1

t0

dt

∣∣∣∣dθdt
∣∣∣∣ ≥ 2|θ(t1)− θ(t0)| = D. (81)

The lower bound D is the geodesic length on the circle of radius 2. If we assume that the time evolution of P1 from time t0 to
t1 is monotonic, the equality holds L = D. In the main text, we consider L = D for the activation and inactivation processes
because P1 in the activation (inactivation) process is monotonically increasing (decreasing) in time. From the identity

cos |θ(t1)− θ(t0)| = cos θ(t0) cos θ(t1) + sin θ(t0) sin θ(t1), (82)

the length can be calculated as

D = 2arccos
[√

P0(t0)
√
P0(t1) +

√
P1(t0)

√
P1(t1)

]
, (83)

where the angle |θ(t1)− θ(t0)| = arccos
[√

P0(t0)
√

P0(t1) +
√
P1(t0)

√
P1(t1)

]
is known as the Bhattacharyya angle.
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Extended Data Figure 1: The histograms of the square of the intrinsic speed and related quantities at the low, medium, and high
cell densities. a The histograms of ds2/dt2, d/dt(ds2/dt2), and

∣∣d/dt(ds2/dt2)∣∣ at each cell density. b The histograms of the
duration (t1 − t0) of the activation and inactivation processes under each cell density. The mean values, variances, and results

of statistical tests are listed in Extended Data Table 2.
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Extended Data Figure 2: The correlation between two information-geometric quantities at each cell density. a The scatter plots
of the action C, the length L, the mean velocity V , and the efficiency η. b The scatter plots of the duration t1 − t0 versus
information-geometric quantity (C,V, η). The Pearson correlation coefficients and results of statistical tests are listed in

Extended Data Table 4.
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Extended Data Figure 3: The histograms of the square of the intrinsic speed and related quantities before and after the Raf
inhibitor addition. a The histograms of ds2/dt2, d/dt(ds2/dt2), and

∣∣d/dt(ds2/dt2)∣∣ of the activation and inactivation
processes before (pre-addition) and after (post-addition) the Raf inhibitor addition. b The histograms of the duration t1 − t0 of

the activation and inactivation process before (pre-addition) and after (post-addition) the Raf inhibitor addition. The mean
values, variances, and results of statistical tests are listed in Extended Data Table 3.
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Extended Data Figure 4: The correlation between two information-geometric quantities before and after the Raf inhibitor
addition. a The scatter plots of the action C, the length L, the mean velocity V , the efficiency η before (pre-addition) and after

(post-addition) the Raf inhibitor addition. b The scatter plots of the duration t1 − t0 versus the action C, the length L, the mean
velocity V , the efficiency η before (pre-addition) and after (post-addition) the Raf inhibitor addition. The Pearson correlation

coefficients and results of statistical tests are listed in Extended Data Table 4.
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Extended Data Table 1: The sample size used in the analysis of each experiment. We listed the sample size for the experiments
under the conditions of different cell densities and the experiments of the periods before and after the Raf inhibitor addition.

Condition Number of cells Number of activation Number of inactivation
Low density (L) 31 507 513

Medium density (M) 306 3,130 3,131
High density (H) 755 4,425 4,029

Before the Raf inhibitor addition (Pre) 209 1,085 978
After the Raf inhibitor addition (Post) 209 2,716 2,628
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Extended Data Table 2: The statistics for the experiment at each cell density (related to Fig. 3 and Extended Data Fig. 1). a The
mean values (Mean) and variances (Variance) of the action C, the length L, the mean velocity V , the efficiency η, and the

duration t1 − t0 in the activation and inactivation processes at the low (L), medium (M) and high (H) cell densities. b The mean
values (Mean) and variances (Variance) of ds2/dt2, d/dt(ds2/dt2), and

∣∣d/dt(ds2/dt2)∣∣ in the activation and inactivation
processes at the low (L), medium (M) and high (H) cell densities. c The p-values comparing between two cases. We used

Brunner-Munzel (BM) method and the Kolmogorov–Smirnov (KS) method. We compare two cell densities and two processes,
where ‘vs’ denotes the comparison of two cases, and L, M and H denotes the low, medium and high cell densities. The p-values

below 0.001 represent as < 0.001.

a

C L V η t1 − t0

Activation Inactivation Activation Inactivation Activation Inactivation Activation Inactivation Activation Inactivation

L 0.00580 0.00339 0.201 0.192 0.0319 0.0221 0.751 0.760 7.17 8.58

Mean M 0.0105 0.00642 0.243 0.236 0.0453 0.0313 0.740 0.770 6.30 8.03

H 0.0156 0.00828 0.327 0.344 0.0493 0.0272 0.690 0.714 7.93 12.6

L 0.0000957 0.0000159 0.0219 0.0216 0.000847 0.0000848 0.00808 0.00694 17.1 26.2

Variance M 0.000224 0.000116 0.0320 0.0328 0.00152 0.000598 0.00869 0.00662 14.0 28.2

H 0.000364 0.0000572 0.0431 0.0461 0.00145 0.000158 0.0129 0.0109 16.8 33.3

b

ds2

dt2
d
dt

ds2

dt2

∣∣∣ d
dt

ds2

dt2

∣∣∣
Activation Inactivation Activation Inactivation Activation Inactivation

L 0.00162 0.000789 -0.000409 -0.00000359 0.00161 0.000671

Mean M 0.00332 0.00160 -0.000791 0.0000228 0.00356 0.00136

H 0.00394 0.00132 -0.000480 -0.00000405 0.00375 0.000807

L 0.0000300 0.00000155 0.0000492 0.00000146 0.0000467 0.00000101

Variance M 0.0000852 0.0000263 0.000139 0.0000356 0.000127 0.0000337

H 0.0000965 0.00000464 0.000109 0.00000293 0.0000952 0.00000228

c

Activation Inactivation Activation vs Inactivation

L vs M L vs H M vs H L vs M L vs H M vs H L M H

C BM < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

KS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

L BM < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.261 0.0877 0.00455

KS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.253 0.0120 0.00134

V BM < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

KS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

η BM 0.0573 < 0.001 < 0.001 0.0463 < 0.001 < 0.001 0.356 < 0.001 < 0.001

KS 0.0573 < 0.001 < 0.001 0.0178 < 0.001 < 0.001 0.356 < 0.001 < 0.001

t1 − t0 BM < 0.001 < 0.001 < 0.001 0.00480 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

KS < 0.001 < 0.001 < 0.001 0.00480 < 0.001 < 0.001 0.00480 < 0.001 < 0.001

ds2

dt2
KS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

d
dt

ds2

dt2
KS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001∣∣∣ d

dt
ds2

dt2

∣∣∣ KS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
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Extended Data Table 3: The statistics for the experiment of the Raf inhibitor addition (related to Fig. 3 and Extended Data Fig.
1). a The mean values (Mean) and variances (Variance) of the action C, the length L, the mean velocity V , the efficiency η, and
the duration t1 − t0 in the activation and inactivation processes before (Pre) and after (Post) the Raf inhibitor addition. b The

mean values (Mean) and variances (Variance) of ds2/dt2, d/dt(ds2/dt2), and
∣∣d/dt(ds2/dt2)∣∣ in the activation and

inactivation processes before (Pre) and after (Post) the Raf inhibitor addition. c The p-values comparing between two cases,
before (Pre) and after (Post) the Raf inhibitor addition. We used Brunner-Munzel (BM) method and the Kolmogorov–Smirnov

(KS) method. We calculated the p-values for the action C, the length L, the mean velocity V , the efficiency η, the duration
t1 − t0, ds2/dt2, d/dt(ds2/dt2), and

∣∣d/dt(ds2/dt2)∣∣. The p-values below 0.001 represent as < 0.001.

a

C L V η t1 − t0

Activation Inactivation Activation Inactivation Activation Inactivation Activation Inactivation Activation Inactivation

Mean Pre 0.00279 0.00207 0.159 0.169 0.0181 0.0138 0.775 0.792 9.42 11.5

Post 0.000713 0.000345 0.0954 0.0882 0.00494 0.00311 0.756 0.781 20.1 22.7

Variance Pre 0.0000131 0.00000656 0.0147 0.0185 0.000204 0.0000696 0.00394 0.00298 23.6 39.0

Post 0.00000269 0.000000872 0.0129 0.0119 0.0000505 0.0000064 0.00861 0.00439 229 320

b

ds2

dt2
d
dt

ds2

dt2

∣∣∣ d
dt

ds2

dt2

∣∣∣
Activation Inactivation Activation Inactivation Activation Inactivation

Mean Pre 0.000593 0.000362 -0.000143 -3.88×10−8 0.000269 0.000131

Post 0.0000710 0.0000303 -0.0000174 -2.50×10−9 0.0000257 0.00000640

Variances Pre 0.00000166 0.000000300 0.000000321 4.59×10−8 0.000000269 2.88×10−8

post 0.000000133 1.06×10−8 2.37×10−8 4.86×10−10 2.34×10−8 4.45×10−10

c

Activation Inactivation

Pre vs Post Pre vs Post

C BM < 0.001 < 0.001

KS < 0.001 < 0.001

L BM < 0.001 < 0.001

KS < 0.001 < 0.001

V BM < 0.001 < 0.001

KS < 0.001 < 0.001

η BM < 0.001 < 0.001

KS < 0.001 < 0.001

t1 − t0 BM < 0.001 < 0.001

KS < 0.001 < 0.001

ds2

dt2
KS < 0.001 < 0.001

d
dt

ds2

dt2
KS < 0.001 < 0.001∣∣∣ d

dt
ds2

dt2

∣∣∣ KS < 0.001 < 0.001
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Extended Data Table 4: The Pearson correlation coefficients and the p-values (related to Extended Data Figs. 2, 4). a The
Pearson correlation coefficients for the logarithm of information-geometric quantities, the action C, the length L, the mean

velocity V , the logarithm of the duration t1 − t0 and the efficiency η in the activation and inactivation processes at the low (L),
medium (M) and high (H) cell densities. b The Pearson correlation coefficients for the logarithm of information-geometric

quantities, the action C, the length L, the mean velocity V , the logarithm of the duration t1 − t0 and the efficiency η before (Pre)
and after (Post) the Raf inhibitor addition. c The p-values of no correlation test based on the Pearson correlation coefficients for

the conditions, i.e., the low (L), medium (M) and high (H) cell densities, and before (Pre) and after (Post) the Raf inhibitor
addition. We calculated the p-values for the logarithm of information-geometric quantities, the action C, the length L, the mean

velocity V , the logarithm of the duration t1 − t0 and the efficiency η. The p-values below 0.001 represent as < 0.001.

a

ln C vs lnL lnL vs lnV lnV vs η ln(t1 − t0) vs ln C ln C vs lnV lnL vs η lnV vs ln(t1 − t0) η vs ln C lnL vs ln(t1 − t0) ln C vs ln(t1 − t0)

L Activation 0.925 0.612 -0.0618 0.286 0.857 -0.280 -0.240 -0.297 0.621 0.286

Inactivation 0.951 0.561 0.156 0.637 0.776 -0.132 0.0196 -0.141 0.838 0.637

M Activation 0.934 0.679 -0.154 0.195 0.889 -0.403 -0.269 -0.395 0.525 0.195

Inactivation 0.944 0.616 0.0310 0.508 0.833 -0.237 -0.0474 -0.230 0.758 0.508

H Activation 0.921 0.622 -0.0758 0.109 0.865 -0.441 -0.395 -0.407 0.474 0.109

Inactivation 0.962 0.684 -0.0802 0.594 0.841 -0.456 0.0772 -0.445 0.780 0.594

b

ln C vs lnL lnL vs lnV lnV vs η ln(t1 − t0) vs ln C ln C vs lnV lnL vs η lnV vs ln(t1 − t0) η vs ln C lnL vs ln(t1 − t0) ln C vs ln(t1 − t0)

Pre Activation 0.978 0.894 -0.334 0.315 0.966 -0.402 0.0642 -0.422 0.504 0.315

Inactivation 0.987 0.907 -0.0813 0.68 0.961 -0.282 0.454 -0.245 0.787 0.680

Post Activation 0.973 0.851 -0.441 0.570 0.945 -0.455 0.277 -0.516 0.740 0.570

Inactivation 0.986 0.888 -0.158 0.818 0.949 -0.223 0.600 -0.247 0.901 0.818

c

ln C vs lnL lnL vs lnV lnV vs η ln(t1 − t0) vs ln C ln C vs lnV lnL vs η lnV vs ln(t1 − t0) η vs ln C lnL vs ln(t1 − t0) ln C vs ln(t1 − t0)

L Activation < 0.001 < 0.001 0.165 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Inactivation < 0.001 < 0.001 0.00155 < 0.001 < 0.001 0.00558 0.658 0.00420 < 0.001 < 0.001

M Activation < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Inactivation < 0.001 < 0.001 0.0831 < 0.001 < 0.001 < 0.001 0.0160 < 0.001 < 0.001 < 0.001

H Activation < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Inactivation < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Pre Activation < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.0346 < 0.001 < 0.001 < 0.001

Inactivation < 0.001 < 0.001 0.0110 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Post Activation < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Inactivation < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
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Supplementary Video 1: The fluorescence imaging of the phosphorylated ERK in NRK-52E cells at different cell densities.
The movies of the low (left), medium (middle), and high (right) densities are arranged in order from the left. The pseudo-color
indicates the FRET/CFP ratio, where the green (red) color indicates that the FRET/CFP ratio is 1.0 (2.0) (see also Fig. 2c). The

timestamps indicate the time from imaging initiation in minutes.

Supplementary Video 2: The fluorescence imaging of the phosphorylated ERK in NRK-52E cells with the Raf inhibitor
addition. The Raf inhibitor was added at time 120 min. The pseudo-color indicates the FRET/CFP ratio, where the green (red)
color indicates that the FRET/CFP ratio is 1.0 (2.0) (see also Fig. 2c). The timestamp indicates the time from imaging initiation

in minutes.
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