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Abstract

The rapid development of single-cell DNA sequencing (scDNA-seq) technology has greatly
enhanced the resolution of tumor cell profiling, providing an unprecedented perspective in char-
acterizing intra-tumoral heterogeneity and understanding tumor progression and metastasis.
However, prominent algorithms for constructing tumor phylogeny based on scDNA-seq data
usually only take single nucleotide variations (SNVs) as markers, failing to consider the effect
caused by copy number alterations (CNAs). Here, we propose BiTSC2, Bayesian inference of
Tumor clonal Tree by joint analysis of Single-Cell SNV and CNA data. BiTSC2 takes raw
reads from scDNA-seq as input, accounts for sequencing errors, models dropout rate and as-
signs single cells into subclones. By applying Markov Chain Monte Carlo (MCMC) sampling,
BiTSC2 can simultaneously estimate the subclonal scCNA and scSNV genotype matrices, sub-
clonal assignments and tumor subclonal evolutionary tree. In comparison with existing methods
on synthetic and real tumor data, BiTSC2 shows high accuracy in genotype recovery and sub-
clonal assignment. BiTSC2 also performs robustly in dealing with scDNA-seq data with low
sequencing depth and variant dropout rate.

1 Introduction

The rapid development of single-cell DNA sequencing (scDNA-seq) technology has provided a
refined perspective for unveiling the evolutionary mechanisms underlying cancer progression and
for characterizing intra-tumor heterogeneity (1; 2). Although promising, the major single-cell
whole genome amplification methods, e.g. DOP-PCR, MDA and MALBAC, still encounter various
technical bottlenecks, which results in a high incidence of errors, such as dropout, false positive or
false negative, in the sequenced single-cell DNA, and poses additional challenges for the downstream
intra-tumor heterogeneity (ITH) inferences (3).

Early single-cell studies utilize information from single-cell SNV (scSNV) or single-cell CNA
(scCNA) to infer tumor evolution with traditional phylogenetic methods (4; 5; 6; 7). In recent
years, many computational methods proposed for inference of tumor evolutionary history from
single-cell data have emerged. CHISEL (8) and SCICoNE (9) are the few methods that perform
scCNA detection and also make inference to evolutionary histories. RobustClone(10), is a model
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free method which takes input of raw scSNV or scCNA genotype matrix to recover clone genotypes
and infer tumor clone tree. BEAM is a Bayesian evolution-aware method on scSNV data, which
improves the quality of single-cell sequences by using the intrinsic evolutionary information under a
molecular phylogenetic framework (11). Many other methods based on scSNV data build maximum
likelihood or Bayesian based models to account for sequencing noise as well as reconstruct tumor
clone/cell tree. SCITE (12), OncoNEM (13), SCIφ (14) make infinite site assumption in their
models, that is, mutation may only occur once at any locus and only binary genotypes are allowed
in scSNV sites. SiFit (15) and SiCloneFit (16) constructed their models under the finite site
assumption, which allows mutations to happen more than once at any locus.

These single-cell based methods can only take into account one source of information, either from
scSNV or scCNA. In fact, these two types of markers all play important role in tumor generation,
progression and metastasis, and they constitute crucial traits in characterizing tumor heterogeneity
(17). Evolutionary inference with only one type of marker may lead to biased estimate. For
example, suppose there is a true evolutionary process as shown in Figure 1A. The tumor tree T
has five subclones, where subclone1 is a root node comprised of normal cells, and the others are
cancerous subclones caused by point mutations and CNAs on three loci A, B and C. The SNV and
CNA genotypes are shown in Figure 1B. The two SNVs occur on locus B and A which give rise
to subclone2 and subclone4. If we infer the clone tree with only SNV data Z, we will generate a
linear evolutionary history as in Figure 1C. This is biased as the copy loss at locus A and copy gain
at locus C respectively give rise to two extra subclones (3 and 5). In this case, the full history can
only be revealed by taking into account information from both SNV Z and CNA L.

In fact, joint analysis of SNV and CNA in characterizing ITH is common with bulk sequencing.
PyClone (18) applies Bayesian clustering to identify tumor clones/subclones based on SNVs and
clonal CNAs (CNAs that are carried by all cancer cells). It provides insights to temporal ordering
of mutations and subclones, but does not make inference to the tree structure. PhyloWGS (19)
also employs a Bayesian framework with a tree structured stick breaking process as prior, which
infers subclone cluster as well as the tree relationship of the subclones. Canopy (20) is a Markov
Chain Monte Carlo (MCMC) algorithm for tumor evolution history inference, which accounts for
both point mutation and raw copy number information. Recently, Zeng et al. (21) proposed a
unified Bayesian feature allocation model on raw sequencing reads, SIFA. It provides a generating
model that incorporates SNV and CNA to infer tumor phylogenetic tree.

To the best of our knowledge, the only method for tumor tree inference from scDNA-seq data
that integrates SNV and CNA information is SCARLET (22). SCARLET optimizes for a loss-
supported phylogeny. It first constructs a copy-number tree with existing methods and then refines
such tree by resolving the multifurcations nodes using mutation profiles of the observed cells (22).

In this study, we propose Bayesian inference of Tumor clone Tree by joint analysis Single-Cell
SNV and CNA, BiTSC2. It extends the SIFA model to Single-Cell DNA data, which integrates
SNV and CNA information as well as accounts for sequencing error. BiTSC2 takes the observed
total reads and mutant reads of single cells as input, models dropout rate and sequencing errors
in scDNA-seq data and assigns single cells into subclones instead of deconvolution of mixed bulk
samples. By applying MCMC sampling, BiTSC2 can simultaneously estimate the subclonal scCNA
and scSNV genotype matrices, subclonal assignment and tumor subclonal evolutionary tree. In
comparison with existing methods on synthetic and real tumor data, BiTSC2 shows high accuracy
in genotype recovery and subclonal assignment. It is worth noting that BiTSC2 is also robust in
dealing with scDNA-seq data with low sequencing depth and variant dropout rate.
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Figure 1: ScDNA-seq data display tumor heterogeneity. (A) Joint tumor phylogeny tree by SNV
and CNA. (B) The SNV genotype matrix Z and the CNA genotype matrix L, where rows rep-
resent loci and columns are subclones. (C) The phylogeny tree generally obtained by SNV-based
algorithms.

2 Method

2.1 Overview of BiTSC2

In this section we give a brief introduction to BiTSC2, the general flowchart can be seen in Figure 2.
BiTSC2 is a nonparametric Bayesian mixture model, which takes input of raw total and mutant
read counts matrices DM×N and XM×N measured at M loci for N cells (Figure 2A). Due to
the sharing of genetic information among homogeneous cells, we assume that there are K latent
subclones in the N single cells drawn for sequencing (K � N). The latent state of cell n is denoted
by Cn = k (n = 1, · · · , N). The parameter of the Categorical distribution denoted by φ represents
the prevalence of each subclones in the sample, and is given a symmetric Dirichlet prior with
hyper-parameter γ. Each subclone consists of a group of cells with identical genotype, and distinct
subclones differ in SNV or CNA markers on at least one of the M measured loci. We employ a tree
coupled generating model to generate subclone genotypes Z and L, which are jointly modeled by
Zo and Lo, the SNV and CNA origin matrices, and the unknown clone tree T . In addition, as we
are modeling single-cell sequencing data, our model also accounts for sequencing error rate (ε) and
dropout rate (ρ) (Figure 2B).

The ultimate goal of BiTSC2 is to infer the subclone prevalence φ, the subclone assignment
of cells C, the SNV and CNA genotypes of subclones Z and L, the subclone tree T and also the
dropout rate ρ (Figure 2C). By assigning priors to Zo, Lo, T , C and ρ, and given a sequencing
error rate ε, these can be estimated from a posterior distribution p(φ,C,L, Z, T , ρ|D,X, ε), which
corresponds to p(φ,C,Lo, Zo, T , π, ρ|D,X, ε).
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Figure 2: Overview of the computational framework of BiTSC2 that identifies subclones, recover
subclonal genotypes of CNA and SNV, as well as reconstructs subclonal evolutionary trees using tu-
mor scDNA-seq read count data. (A)The input of the algorithm, total reads matrix D and mutant
reads matrix X. (B) The probabilistic graphical model shows the dependency among parameters,
where the shades nodes stands for observed or fixed values, the unshaded nodes represent the la-
tent parameters. (C) The inference output of the algorithm, containing dropout rate, subclone
assignment, subclonal phylogenetic tree and genotype matrix of CNA, L, and SNV, Z.

2.2 Tree coupled generating model of genotypes

The subclone genotypes Z and L are generated according to the SNV and CNA origin matrices Zo

and Lo as well as the clone tree T . By assuming a total of K subclones in the tree, T is represented
by a length-K vector, where Ti = k (i = 2, · · · ,K) indicates the parent of subclone i is k. We fix
subclone1 to normal cell and place it at the root of the tree (T1 = 0). We give a uniform prior to
all possible trees with K nodes.

We assume SNV and CNA mutations arise independently. Each mutation (including SNV and
CNA) originates only once in a specific subclone besides normal cell. The mutation will be inherited
by all descendant subclones of its origination. Then we represent the originations of SNV and CNA
changes at locus m with Zo

m = (k, v) and Lo
m = (k, v), where Zo

m = (k, v) indicates mutation at
locus m occurs from subclone k and gains v mutant copies, and Lo

m = (k, v) indicates the CNA
arises in subclone k and gains (or loses) v normal copies.

For SNV state, we take the prior of Zo as p(Zo
m = (k, v)) ∝ ζv (2 ≤ k ≤ K, 1 ≤ v ≤Ms), where

ζ is the somatic point mutation rate and is predetermined in (0, 1), Ms represents the maximum
number of possible mutant copies (21). We further assume that obtaining multiple copies of the
mutant alleles is a less likely event, therefore we set the probability of obtaining v copies of the
mutant alleles to ζv. The specification of the mutation probability is independent of k, which makes
it equally likely for the SNV to originate from any subclones (except for the normal).

Similarly, for CNA state, we set Mc as the maximum total alleles. Since CNA occurs on
chromosome fragments, we can use the information to better infer the status of CNA. We sort
the loci in the order of chromosomal positions, and divide the genome into S segments, that is,
{∆1,∆2, · · · ,∆S}. If the loci i and j are located on the same segment, we assume that they share
the same CNA status. There exist many other methods that can be applied to estimate the segment
information, such as, HMMcopy (23; 24). Let (0, 0) represent no CNA event. For each genome
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segment, ∆s, we assign the copy number status prior as p(Lo
m = (0, 0) for all m ∈ ∆s) = π, and

uniform on the other possible combinations of k and v. The hyper-parameter π is given a prior of
Beta(α, β).

The independent origination of SNV and CNA at M loci coupled with the K nodes clone tree
T will derive the M ×K genotype matrices Z and L. We select the optimal number of subclones
K according to a modified Bayesian Information Criterion (BIC, see Supplementary Note 4 for
details).

2.3 Zero-inflated modeling of single-cell sequencing reads

We will next introduce the likelihood of observing Dmn total reads and Xmn mutant reads at locus
m of cell n, given the genotypes of subclones.

By given the latent subclone state Cn, e.g. Cn = k, the total reads Dmn should be positively
correlated with copy number LmCn and the cell specific average coverage ψn (which should be given
a priori) of cell n (21; 25; 26). We apply Poisson distribution to model the total read as:

Dmn|ψn, L, C
ind∼ Poi(ψn

LmCn

2
).

Note that when the total copy number of a single cell is equal to 2, the mean and the variance
of the Poisson distribution are equal to ψn.

We then denote the expectation of mutant allele at locus m for cell n as pmn = ZmCn/LmCn .
The likelihood of observing Xmn reads is thus modeled by Binomial distribution as:

Xmn|Dmn, pmn
ind∼ Bin(Dmn, pmn).

Since in single cell sequencing, data are often disturbed by high noise due to events such as
dropout or sequencing error, especially at low sequencing depth. We adopt a zero-inflated distri-
bution, which adds an additional parameter ρ to the existing Poisson distribution to control the
amount of excessive zeros, named zero-inflated Poisson (ZIP) distribution (27) to model dropout
rate. In addition we account for sequencing error ε in scDNA data, which may cause false positive
reads. The ZIP likelihood of Dmn can be defined as follows:

fZIP (Dmn;ψn, L, C, ρ, ε) =


ρ+ (1− ρ)Poi(ψn

LmCn

2
), Dmn = 0;LmCn > 0,

(1− ρ)Poi(ψn
LmCn

2
), Dmn > 0;LmCn > 0,

Poi(ε), LmCn = 0.

We also account for sequencing error in modeling mutant read. To do so, we assume that if
mutation m is absent in cell n, i.e., pmn = 0, the probability of observing a variant read corresponds
to the per-nucleotide rate of sequencing error ε. If mutationm presents in cell n and 0 < pmn < 1, we
model the variant counts at locus m with a corrected Binomial distribution, where the underlying
reads frequency of pmn is corrected by sequencing errors producing any of the other two bases.
And if mutation m presents with pmn = 1, that is, ZmCn = LmCn , we give a small probability ε to
observe normal reads. We thus write the likelihood for observing xmn as:
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Pr(Xmn|Dmn, pmn, ε) =


Bin(Xmn|Dmn, ε), pmn = 0;

Bin(Xmn|Dmn, pmn −
2

3
ε), 0 < pmn < 1;

Bin(Xmn|Dmn, 1− ε), pmn = 1.

2.4 Inference

We apply the MCMC procedure to estimate the unknown parameters in BiTSC2. The posterior of
the unknowns is sampled with differed strategies.

For genotype origin matrices Zo and Lo, we apply Gibbs sampler, which updates one locus at
a time. If the CNAs are in a segmented form, then at each step we will update all loci within the
same segment instead. The hyper-parameter π of Lo is also sampled by Gibbs.

For dropout rate ρ, since it is difficult to sample from its full conditional distribution, we adopt
Metropolis sampling step with a uniform proposal of ρ in the interval [0, 1]. We apply a mixed
sampling strategy for T as in (21), where the tree is updated by randomly applies a Metropolis-
Hastings sampler or a slice sampler.

In sampling of the subclone prevalence, instead of updating the entire vector φ at once, we
sample additional Gamma parameters θk∼Gamma(γ, 1), k = 1 · · ·K, one at a time. And let φk =
θk/

∑K
i=1 θi. This move is equivalent to sampling φ with prior Symmetric−Dirichlet(K; γ), and

often leads to better mixing of the MCMC (21). Each θk is update by Metropolis-Hastings sampling
with a Gamma proposal and an adaptive step size. Each element Cn (n ∈ {1, 2, · · · , N}) of C is
taken from the Categorical distribution with parameter φ. We employ Gibbs sampling to update
each Cn one by one (the detail sampling process for all parameters can refer to Supplementary
Note 1).

In order to avoid sampled states being trapped at some local optimum in MCMC, we adopt
parallel tempering technique, which run multiple chains with different temperatures, and exchange
samples between them (21; 28). We use heuristic initialization for each parallel chain before MCMC
sampling (Supplementary Note 2). The derivation of the fully conditional distribution for all model
parameters can refer to Supplementary Note 3. And the optimal number of subclones K is selected
by performing a modified Bayesian Information Criterion (BIC) (Supplementary note 4). We use
the posterior mode for T and C, and the posterior median for Z and L, as the final estimates. The
software is available at https://github.com/ucasdp/BITSC2.

2.5 Benchmark BiTSC2

2.5.1 Simulation Data

In order to systematically evaluate the performance of BiTSC2, we simulated 150 datasets with
variant number of cells (n), sequencing depths (Ψ), dropout rate (ρ), as well as the number of loci
(m) and the number of subclones (K). The 150 datasets are divided into five groups (denoted
G1-G5), each of which contains 30 datasets. In each group we change one parameter and keep
other parameters fixed. In addition to the variable parameter, we set the default parameters in
each group as follows : number of cells (n) is 100, number of loci (m) is 100, dropout rate (ρ) is
20%, sequencing depths of all single cells (Ψ) are 3, and the number of subclones (K) is 4. The
ground truth (including Z, L, and tree structure) of G1-G3 is shown in Figure S1, and the ground
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truth of G4 and G5 is shown in Figure S2 and S3, respectively. Specific parameter settings of
G1-G5 can refer to Table S1.

We also simulated another 10 datasets, denoted as G6, to test the ability of BiTSC2 to identify
the subclones which only contain CNA allocations. Figure S4 shows the ground truth of the
datasets, which contains the phylogenetic tree and subclonal genotype matrices of CNA and SNV.

2.5.2 Real Data

We apply BiTSC2 on the scDNA-seq data from metastatic colorectal cancer patient CRC2 in (29).
This data include 141 cells from the primary colorectal tumor and 45 cells from a matched liver
metastasis by single cell DNA target sequencing of 1,000 caner genes with an average sequencing
depth of 137×.

2.6 Evaluations

We compare the performance of our algorithm to RobustClone, BEAM (10; 11), which are two
algorithms that perform very well in genotype recovery problem in systematic comparison of Ro-
bustClone, under our different simulated scenarios. The evaluations include: 1) adjusted Rand
index (ARI) (30; 31) to measure the similarity of subclone assignment between ground truth and
estimation (details can refer to Supplementary Note 5); 2) the error rate of the recovered scSNV
genotype matrix to calculate the accuracy of scSNV genotype recovery.

3 Results

3.1 BiTSC2 recovers genotype matrix and assigns cells with high accuracy on
synthetic datasets

We compare BiTSC2 to RobustClone and BEAM, two most recent methods on tumor evolutionary
inference with single-cell data, on 6 groups of synthetic data. We give BiTSC2 the real segmentation
information according to the CNA genotype matrices (Figure S1-S4). The prior settings and the
MCMC configurations of BiTSC2 for simulation data are shown in Table S2-S3. We perform
BiTSC2 with the number of subclones K in range from 3 to 7, and select the best fitted K by BIC.

Figure 3 shows the results of comparisons in G1-G5, with top rows of Figure 3A and B showing
the overall performance, and bottom rows display the detailed benchmarks at differed settings.
In general, compared with the other two algorithms, BiTSC2 has the high robustness in subclone
assignments (Figure 3A) and accuracy in recovering SNV genotypes (Figure 3B).

Specifically, for subclone assignment, BiTSC2 and RobustClone show high robustness and con-
sistency with ground truth. BEAM is slightly less consistent with ground truth in subclone assign-
ment than BiTSC2 and RobustClone, but gets improved with the increase of number of cells (n),
number of loci (m) and sequencing depths (Ψ) (second row in Figure 3A). For the accuracy of geno-
type recovery, BiTSC2 shows much higher accuracy and robustness than RobustClone and BEAM.
The accuracies of RobustClone and BEAM improve with the increase of number of loci (m) and
sequencing depths (Ψ), but reduce with the increase of number of subclones (K) and dropout rate
(ρ). The difference is that accuracy of RobustClone gets much better with the increase of number
of cells (n), while BEAM shows a large variance when the number of cell (n) is 500, and the average
error rate is higher when the number of cell (n) are 100 and 200 (second row in Figure 3B).
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Figure 3: Comparison of performs on G1-G5 for subclone assignment and scSNV genotype recovery
among BiTSC2 with real segment information input, RobustClone and BEAM. (A) The boxplot
and barplot of three algorithms for ARI of subclone assignment. (B) The boxplot and barplot of
three algorithms for error rate of recovered scSNV genotype matrix.
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Figure 4 shows the comparison result of G6, which includes 10 replicates with a CNA induced
lineage (Figure S4). BiTSC2 is able to correctly detect subclone which caused by only CNA
mutation, and can accurately assign cells into four subclones and recover SNV and CNA subclonal
genotypes. While RobustClone and BEAM can only analyze one source of data (SNV), although
their performance in recovery of SNV genotypes were acceptable, their performance in subclone
assignment were unsatisfactory (Figure 4AB).

In the above comparisons BiTSC2 was given the real segmentation information as input. How-
ever, this information may not always be reliably estimated. In that case, we could take the more
refined raw bins (the bins after binning step before segmentation and CNA calling) as segments
or use locus specific segments (each gene/SNV locus as a segment). Here we additionally evaluate
BiTSC2 on G1-G6, with a locus specific segment setting, that is, instead of updating loci in the
same segment, we update one locus in Lo at a time. The results show that BiTSC2 maintains high
accuracy robustness (Figure S5, S6). For genotype recovery, the overall performance of BiTSC2 is
higher than RobustClone and BEAM, but with sequencing depth 100 and the number of subclones
3, there is decline in inference accuracy, where the performance of BiTSC2 fall slightly behind as
compared to RobustClone and BEAM. This might due to the setting of prior distribution π (the
prior probability of a segment with a copy neutral state) is too close to 1, which aims to control
the false positives of CNA calls. When the multiple loci in a segment with CNA events are jointly
updated, the likelihood of the model will be greatly improved, where the same CNA state will be
assigned to all the locus in same segment. When a single locus does not contribute much to the
likelihood of the model, it is likely that the CNA will not be allocated. Therefore, the performance
of BiTSC2 reduced slightly for locus specific segment setting as compared to cases where correct
segment information can be provided.

3.2 BiTSC2 recovers single cell phylogeny of metastatic colorectal cancer

We apply BiTSC2 to analyze the scDNA-seq data of colorectal cancer patient CRC2 in (29) with
primary and metastatic samples. After filtering for some low-coverage data, the sequencing data
of 182 single cells and 36 SNV loci were retained for further analysis. We apply BiTSC2 directly to
the raw reads covering these loci and apply the locus specific segment setting to CNAs. The cell
specific sequencing depth of each single cells can be found in the Supplementary Table S4 in (29).
The BiTSC2 is performed with prior and MCMC settings shown in Table S4-S5.

BiTSC2 reconstructs a clone tree of 9 subclones as shown in Figure 5A (see Figure S7 for the BIC
values). Figure 5B displays the prevalence of cells in each subclone. The metastatic aneuploid cells
are mainly distributed in subclones 8 and 9, while the primary aneuploid cells are predominantly
clustered in subclone6 (Figure 5C). Although the cells occupied the other subclones were labeled
diploid by (29), we still find some CNA events at many targeted genes (Figure 5D). Extensive point
mutations were identified in primary (subclone6) and metastatic (subclones 8 and 9) tumor cells
(Figure 5E).

Interestingly, our inferred tumor clone tree and genotypes show that metastatic cells (subclones
8 and 9) majorly share the same CNA events on LINGO2:1 and MN1, which arise in the descendant
of primary sites (subclone6). Contrary to the polyclonal seeding (that is, two independent clones
with different mutations migrate from primary colon cancer to liver metastases at different time
points) conclusion based on SCITE tree in the original study (29), our result indicates that the
liver metastasis from colon was a single event, which supports the monoclonal seeding hypothesis
and is consistent with the inference based on the SCARLET tree (Figure S8) (22).
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Figure 5: BiTSC2 reconstructs tumor phylogeny of metastatic colorectal cancer. (A) The phylogeny
tree of metastatic colorectal cancer reconstructed by BiTSC2. (B) The subclone assignment. (C)
The number of overlapped cells contained in subclones identified by BiTSC2 and cells contained
in the targeted region, where PD stands for Primary Diploid, PA stands for Primary Aneuploid,
MD stands for Metastatic Diploid, and MD stands for Metastatic Aneuploid in (29). (D) The
CNA subclonal genotype matrix calculated by BiTSC2. (E) The SNV subclonal genotype matrix
calculated by BiTSC2.

Besides the metastatic lineage, we also identified two other lineages with unique mutations
respectively. One lineage leads to subclone4 which consists of a small proportion of cells that
carries SNV on CIITA. Such lineage was also identified by SCITE and SCARLET trees (Figure
S8AB). The other lineage, subclone7, descended from subclone5 and evolved in parallel to the
primary tumor lineage (Figure 5A). Subclone7 can be identified by point mutations on ALK, ATR,
EPHB6, NR3C2, and SPEN:1 and share no common mutations with major primary or metastatic
aneuploid tumor cells. This result was also supported by SCITE tree which constructed with only
scSNV data. Although a similar lineage was seen in SCARLET tree, however, it also possesses
many extra shared mutations to primary tumor cells, such as APC:2, NRAS, or TP53 (Figure
S8B).

4 Discussion

Computational method based scDNAseq data for tumor ITH and evolutionary history inference can
provide important insights to the understanding of tumor progression and metastasis mechanism,
and provide guidance to tumor treatment and response. Most of such methods only utilize one
source of information, either SNV or CNA, which may lead to biased estimation of the true evolution
history of cancer. In this study, we propose BiTSC2, a Bayesian-based method that integrates SNV
and CNA markers from scDNA-seq data to jointly infer tumor clone tree. BiTSC2 is a unified
Bayesian framework, which takes the raw total reads and mutation reads generated by sequencing
as input and takes into account sequencing errors and models dropout rate. It also optimizes
SNV and CNA subclonal genotypes matrices, assigns cells to subclones, and constructs subclonal
tree. BiTSC2 has a high accuracy for subclone assignment and SNV subclonal genotypes matrix
recovery compared to existing methods such as RobustClone and BEAM. BiTSC2 can handle low-
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depth single-cell sequencing data with high performance. BiTSC2 also provides high accurate and
robust estimation of the dropout rate in scDNA-seq data (Figure S9).

When BiTSC2 updates the CNA subclone genotype matrix L, it prefers to update all the loci
in the same segment together, because the loci in the same segment share the same CNA status.
When we have no information about the real segment information, there are many existing methods
can be applied to perform segmentation, for example, HMMcopy, copynumber, etc. (24). In cases
when segment information can not be reliably obtained, BiTSC2 can also update Lo and L locus
by locus in the same way as updating Zo and Z. In the results on synthetic data, we show that
the accuracy and robustness of updating one locus at a time are still higher than RobustClone and
BEAM in most cases (see Section 3.1, Figure S5, S6). In this way, BiTSC2 may provide a raw
estimate of CNA segments based on the inferred CNA genotype matrix L.

We have applied BiTSC2 to a real scDNA-seq of a colorectal cancer patient. This data was
originally analysed in (29) tumor clone tree constructed by SCITE (12) based on scSNVs. They
found two distinct branches lead to metastatic cells, and consider this as the evidence of polyclonal
seeding events. SiCloneFit (16) re-analyzed the same data (scSNVs) using a finite site model
and also confirmed polyclonal seeding of metastatic tumors. Our result, however, indicates a
monoclonal seeding of metastasis tumor cell. Such result was supported by SCARLET (22), which
also integrates both SNV and CNA information. In this comparison, we show the importance of
joint modeling and integrating of both SNV and CNA markers.
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