
Integrating thermodynamic and enzymatic constraints into genome-scale 1 

metabolic models 2 

 3 

Xue Yanga,b,1, Zhitao Maoa,1, Xin Zhaoa,b, Ruoyu Wanga, Peiji Zhanga, Jingyi Caia, 4 

Hongwu Maa,* 5 

 6 

a Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin 7 

Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, 8 

China. 9 

b University of Chinese Academy of Sciences, Beijing, 100049, China. 10 

 11 

1 These authors contributed equally to this work. 12 

* ma_hw@tib.cas.cn 13 

 14 

Abstract 15 

Stoichiometric genome-scale metabolic network models (GEMs) have been widely 16 

used to predict metabolic phenotypes. In addition to stoichiometric ratios, other 17 

constraints such as enzyme availability and thermodynamic feasibility can also limit 18 

the phenotype solution space. Extended GEM models considering either enzymatic or 19 

thermodynamic constraints have been shown to improve prediction accuracy. In this 20 

paper, we propose a novel method that integrates both enzymatic and thermodynamic 21 

constraints in a single Pyomo modeling framework (ETGEMs). We applied this 22 

method to construct the EcoETM, the E. coli metabolic model iML1515 with 23 

enzymatic and thermodynamic constraints. Using this model, we calculated the 24 

optimal pathways for cellular growth and the production of 22 metabolites. When 25 

comparing the results with those of iML1515 and models with one of the two 26 

constraints, we observed that many thermodynamically unfavorable and/or high 27 

enzyme cost pathways were excluded from EcoETM. For example, the synthesis 28 

pathway of carbamoyl-phosphate (Cbp) from iML1515 is both thermodynamically 29 

unfavorable and enzymatically costly. After introducing the new constraints, the 30 

production pathways and yields of several Cbp-derived products (e.g. L-arginine, 31 

orotate) calculated using EcoETM were more realistic. The results of this study 32 

demonstrate the great application potential of metabolic models with multiple 33 

constraints for pathway analysis and phenotype predication. 34 
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1. Introduction 40 

Constraint-based metabolic network modeling is a mathematical framework used to 41 

analyze the feasible metabolic flux solution space through constrained optimization 42 

methods (Bordbar et al., 2014). It has been widely used in genome-scale metabolic 43 

network analysis to calculate the optimal synthesis pathways, as well as predict 44 

growth phenotypes and modification targets for metabolic engineering or disease 45 

treatment (Kim et al., 2012). Initially, only stoichiometric constraints and reaction 46 

reversibility constraints were considered in a classical method called flux balance 47 

analysis (FBA) (Orth et al., 2010). With the accumulation of enzyme kinetics data and 48 

the availability of high-throughput omics data, it has become possible to incorporate 49 

these data into the models to add boundary constraints for individual reactions or a 50 

summarized constraint of enzyme resources (Liu et al., 2014). In 2007, the FBAwMC 51 

model was constructed by introducing constraints of enzyme resources based on a 52 

fixed cell volume (Beg et al., 2007). Subsequently, other integration methods of 53 

protein resources were developed (Yang et al., 2018). There are two major trends in 54 

the development of resource allocation models. One is the MOMENT (Adadi et al., 55 

2012) type models with only enzymatic constraints on the basis of GEMs, while the 56 

other is ME (Lloyd et al., 2018) type models with more detailed description of cellular 57 

processes, such as transcription and translation. In 2017, Sanchez et al. reported 58 

GECKO (GEMs with Enzymatic Constraints using Kinetic and Omics data) method 59 

and applied it in the construction of an enzymatic constraints model of 60 

Saccharomyces cerevisiae (Sanchez et al., 2017). This method was soon extended and 61 

applied in the construction of enzymatic constraints GEMs (ECGEMs) of other 62 

species (Bekiaris and Klamt, 2020; Massaiu et al., 2019). By integrating kcat 63 

parameters for individual enzymes and total enzyme amount constraints, these models 64 

can improve the simulation and prediction of biological phenomena, such as overflow 65 
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metabolism (Molenaar et al., 2009) and pathways switching (Chen and Nielsen, 66 

2019). 67 

In FBA models, certain reactions are set as irreversible by considering the 68 

thermodynamic feasibility by introducing a zero-value constraint on upper/lower 69 

bounds of a reaction. However, there are no clear criteria to determine whether a 70 

reaction should be reversible or not, and reactions that are thermodynamically feasible 71 

by themselves can form thermodynamically unfavorable pathways such as unlimited 72 

ATP generation loops (Yuan et al., 2017). To address this problem, methods 73 

combining thermodynamic constraints with GEMs have been developed to improve 74 

the prediction accuracy (Soh and Hatzimanikatis, 2010). In 2007, Henry et al. 75 

integrated thermodynamic constraints into the FBA calculation process and proposed 76 

the TFMA method (Henry et al., 2007). Recently, Salvy et al. developed this method 77 

into the pyTFA and matTFA toolkits (Salvy et al., 2019) and applied it to phenotypic 78 

analysis in combination with the ME model (Salvy and Hatzimanikatis, 2020). 79 

Reliable data on thermodynamic parameters of reactions is particularly important for 80 

models with thermodynamic constraints (Du et al., 2018; Noor et al., 2012). In 2011, 81 

Flamholz et al. developed the eQuilibrator, a biological thermodynamics calculator 82 

that enables users to easily obtain thermodynamic parameters (Flamholz et al., 2012). 83 

In 2014, Noor et al. introduced the concept of Max-min Driving Force (MDF) to 84 

predict and optimize the thermodynamic bottleneck reactions in a pathway, and 85 

integrated this function into the eQuilibrator website as a free tool (Noor et al., 2014). 86 

Based on these studies, Hadicke et al. proposed the optMDFpathway method, which 87 

can directly identify the optimal MDF (and hence the most thermodynamically 88 

feasible) pathways in GEMs (Hadicke et al., 2018). Different from some workflows 89 

such as Poppy (Asplund-Samuelsson et al., 2018), which requires defining the 90 

pathway in advance and then evaluating its thermodynamic driving force, the 91 

optMDFpathway method integrates the objects of MDF into the FBA solution process 92 

and can therefore be directly applied to GEMs. 93 

In this paper, we propose a novel method that integrates both enzymatic and 94 

thermodynamic constraints into a single modeling framework, named ETGEMs. The 95 
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Python-based Pyomo modeling package (Hart et al., 2017; Hart et al., 2011) was used 96 

to integrate multiple objects and constraints to satisfy the different expectations of the 97 

optimal pathways, such as maximal yield, minimal enzyme cost and optimal 98 

thermodynamic driving force. We applied this method to construct EcoETM, an E. 99 

coli metabolic model with enzymatic and thermodynamic constraints based on the 100 

iML1515 model (Monk et al., 2017). The simulation results indicated that the new 101 

model can effectively reduce the solution space by excluding pathways that are 102 

thermodynamically unfavorable or have high enzyme costs exceeding the available 103 

resources. The integration of both thermodynamic and enzymatic constraints into a 104 

genome-scale metabolic network model, the ETGEMs modeling framework, can be 105 

applied to other organisms with available enzyme kinetics and reaction 106 

thermodynamics data. The code for the construction and analysis of the model is 107 

available at https://github.com/tibbdc/ETGEMs. 108 

 109 

2. Methods 110 

2.1. Pretreatment of the initial model and data collection 111 

The E.coli iML1515 (Monk et al., 2017) model was selected as the initial model for 112 

the integration of constraints and the range of reactions set for the collection of kinetic 113 

parameters. All model construction and analysis was conducted using Python (version 114 

3.6.5). The “convert_to_irreversible” function in the Cobrapy toolkit (version 0.13.1) 115 

was used to split the reversible reactions, and an irre_iML1515 model was formed. 116 

The newly divided reactions were named “original reaction ID_reverse”. The final 117 

model contained 3375 one-way reactions, 663 of which were designated as 118 

“_reverse”. 119 

Collection of enzymatic parameters: The kcat parameters are based on machine 120 

learning predictions from databases performed by Heckmann et al. (Heckmann et al., 121 

2018). Among them, a small number of parameters were corrected in previous work 122 

according to biomass and product synthesis. The protein subunit composition and 123 

molecular weight data were downloaded from the EcoCyc database 124 

(https://ecocyc.org/) (Karp et al., 2018). The value of total enzyme amount (e_pool), 125 
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0.228 g/gDW, was calculated based on protein abundance data in the PAXdb database 126 

(https://pax-db.org/) (Wang et al., 2012) and intracellular protein content of g 127 

protein/gDW (Bremer H and P, 1996). An average enzyme saturation value (�) of 0.5 128 

was used based on previous studies (Bennett et al., 2009; Sanchez et al., 2017). The 129 

calculation of the enzymatic parameters was reported in a separate paper in detail 130 

(https://github.com/tibbdc/ECMpy). 131 

Collection of thermodynamic parameters: the biomass synthesis reactions (2) and 132 

transport reactions (Hadicke et al., 2018) (1420) and exchange reactions (361) were 133 

excluded first. Among the remaining 1592 reactions, we temporarily removed the 253 134 

“_reverse” reactions. Therefore, the collection range of thermodynamic parameters 135 

was reduced to 1339 reactions. The Gibbs energies of reactions were downloaded 136 

from the eQuilibrator website (http://equilibrator.weizmann.ac.il/download). After 137 

matching KEGG (used in eQuilibrator) and BIGG (used in iML1515) reaction IDs 138 

and reaction directions, 586 ∆���
�° parameters were determined. Then, by referring to 139 

Table S5 in previous research (Hadicke et al., 2018), another 145 ∆���
�° parameters 140 

were added. In addition, 71 ∆���
�° parameters were calculated using the eQuilibrator 141 

calculator after manually matching KEGG reaction IDs by unifying reaction equations 142 

(e.g. GLCS1: replacing “ADPglucose <=> ADP + Glycogen” with “ADPglucose + 143 

0.25 H2O <=> ADP + 0.25 Glycogen”) and metabolite names (e.g. MLTP1: replacing 144 

“Maltopentaose” with “Cellopentaose”). Besides, 123 ∆���
�°  parameters were 145 

estimated by referring to similar reactions that can be identified by the eQuilibrator 146 

calculator. Among the resulting 925 reactions, 232 reactions had corresponding 147 

“_inverse” reactions, and we assigned the -∆���
�° values to their “_inverse” reactions. 148 

Finally, a total of 1157 ∆���
�° values were obtained, and 435 reactions still lacked 149 

∆���
�° parameters. All ∆���

�° parameters are listed in Tables A-C (in Supplementary 150 

file2), and supplementary methods (in Supplementary file1). For the ∆���
�° 151 

calculated using eQuilibrator, the ionic strength was set to 0.1 M and the pH was set 152 

to 7.5. The gas constant � was 8.31446 J mol-1K-1 (Flamholz et al., 2012) and the 153 

temperature T was 310.15 K (37 �), giving an RT value of 2.579 kJ/mol. 154 

 155 
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2.2. Setting the concentration range of metabolites 156 

The concentration limits for all metabolites were set to 0.5 μM as lower bound and 157 

20 mM as upper bound (Bennett et al., 2009). The concentrations of CO2 and O2 were 158 

more strictly bounded to be in the ranges from 0.1 - 100 μM (Hadicke et al., 2018) 159 

and 0.5 - 200 μM (Baltazar Reynafarje et al., 1985; Murphy, 2009), respectively. The 160 

concentration ratios for ATP:ADP, ADP:AMP, NAD:NADH, NADPH:NADP and 161 

HCO3:CO2, were respectively fixed to 10:1, 1:1, 10:1, 10:1 and 2:1, based on the 162 

literature (Hadicke et al., 2018). 163 

 164 

2.3. The principle of introducing constraints 165 

Method for stoichiometric and flux balance constraint addition: 166 

� � � � 	                            �1 

��� � �� � ���                          �2 

where � is the reaction flux, and � represents the stoichiometric matrix 167 

(Orth et al., 2010). 168 

A concise method for enzymatic constraint addition (Bekiaris and Klamt, 2020): 169 

�� � �� · ���

� · ��	
,�

                         �3 

� �� · ���

� · ��	
,�

�

��

� �����                      �4 

  where ��  is the enzyme cost of a reaction flux ��, ��� is the molecular weight of 170 

enzyme i, and � represents the average saturation of all enzymes. 171 

Method for thermodynamic constraint introduction: 172 

ln���,��� � !� � ln ��� � ln ���,�	�             �5 

!� # !� � ln �$                       �6 

�� � &� · ���                          �7 

()� * �1 # &� · + , ()���                   �8 
()� � #∆���

� � #�∆���
�° * �. · ��

� · /              �9 
()� , ()���                        �10 

()��� , 0                         �11 
2 � 34! �()���                    �12 

 173 
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where $ is the concentration ratio of metabolites ��  and �� , ��
� is the transposed 174 

i-th reaction of the full stoichiometric matrix �. In order to realize the thermodynamic 175 

constraints only for the reactions involved in the pathway (�� 5 0), a binary variable 176 

&�  and a sufficiently large value + (Henry et al., 2007) must be introduced. In this 177 

work, the value of + was defined as max�()�,�	� # min�()�,��� . Due to the 178 

second law of thermodynamics, a pathway can only work if formula (11) is valid, 179 

When calculating the maximal thermodynamic driving force for implementing the 180 

MDF or optMDFpathway methods, it is necessary to set the lower bound of the 181 

driving force ()� as 2 and turn it into an objective function.  182 

 183 

2.4. Objective functions used in this work 184 

Multiple objective functions were adopted in this work to calculate the optimal 185 

pathways satisfying different constraints, as listed in Table 1. In addition, other 186 

objective functions were also used for other analyses based on the constrained model, 187 

such as calculating the variability of metabolite and enzyme concentrations to identify 188 

the bottlenecks in the network. These objective functions are listed in Table 1 and 189 

Table S1 (in Supplementary file1). 190 

 191 

Table 1 Major objective functions used in the modeling framework. 192 

Objects Types Constraints Purposes 

rbiomass or rproduct Maximize rsubstrate, ub, epool, xi, lb, xi, 

ub, hi, Dfmin 

To solve the maximum synthesis rate ri 

of biomass or product. 

xi Maximize 

and Minimize 

rsubstrate, ub, rproduct, lb, 

epool, xi, lb, xi, ub, hi, Dfmin 

To calculate the variability of Ci to find 

the limiting metabolite. 

Dfi Maximize 

and Minimize 

rsubstrate, ub, rproduct, lb, 

epool, xi, lb, xi, ub, hi, Dfmin 

To calculate the variability of Dfi to 

find the bottleneck reaction. 

(ri·MWi)/(σ·kcat,i) Maximize 

and Minimize 

rsubstrate, ub, rproduct, lb, 

epool, xi, lb, xi, ub, hi, Dfmin 

To calculate the variability of enzyme 

usage to detect key enzymes. 

sum 

[(ri·MWi)/(σ·kcat,i)] 

Minimize rsubstrate, ub, rproduct, lb, 

epool, xi, lb, xi, ub, hi, Dfmin 

To calculate the minimum enzyme cost 

of pathways 
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B Maximize rsubstrate, ub, rproduct, lb, 

epool, xi, lb, xi, ub, hi 

To calculate the MDF of pathways 

 193 

2.5. Tools for model construction and problem solving 194 

The Concrete model framework in the python-based Pyomo package (version 5.6.8) 195 

was adopted to solve the constrained optimization problem. Gurobi solver (version 196 

9.0.2) was used for the calculation of all the linear program (LP) and mixed integer 197 

linear program (MILP) problems formulated in this work (Gurobi Optimization and 198 

LLC, 2020). 199 

 200 

3. Results 201 

3.1. The influence of different constraints on predicted growth rates 202 

In order to determine a proper + value for thermodynamic constraints according 203 

to equation (8), we analyzed the Dfi variability for all the 1157 reactions with ∆���
�° 204 

parameters in the irre_iML1515 model, and determined that a + value of 1249 205 

kJ/mol is appropriate. At the same time, 24 thermodynamically unfavorable reactions 206 

were obtained (Table D, maxDfi＜0). Therefore, the 24 reactions cannot form feasible 207 

pathways (Dfi≥0) predicted by EcoTCM and EcoETM. However, the results of flux 208 

variability analysis (FVA) for the pathways with the maximum growth rate predicted 209 

by the iML1515 model showed that the two thermodynamically unfavorable reactions 210 

E4PD_reverse (catalyzed by erythrose 4-phosphate dehydrogenase) and CBMKr 211 

(catalyzed by carbamate kinase) are involved in optimal pathways. Similarly, the two 212 

thermodynamically unfavorable reactions DXYLTD_reverse (catalyzed by 213 

D-xylonate dehydratase) and CBMKr, are necessary for pathways leading to the 214 

maximum growth rate predicted by EcoECM. According to these results, the solution 215 

space of iML1515 and EcoECM can be reduced by adding thermodynamic constraints 216 

by only excluding individual thermodynamically unfavorable reactions. 217 

 218 
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 219 

Fig. 1. The maximum growth rates predicted by different models. iML1515 model 220 

(black dotted line); EcoTCM (blue line); EcoECM (red line) and EcoETM (orange 221 

line). 222 

 223 

Metabolic network models are often used to predict growth phenotypes and to 224 

detect product synthesis pathways (Trudeau et al., 2018; Yang et al., 2019). The 225 

integration of enzymatic and thermodynamic constraints into the GEMs is expected to 226 

produce more biologically feasible results by reducing the process of subsequent 227 

evaluation, screening and verification. Therefore, we further compared the optimal 228 

growth calculated based on the iML1515 model and the models integrating these two 229 

kinds of constraints separately and simultaneously. As shown in Fig. 1, integrating 230 

thermodynamic constraints alone (EcoTCM) does not have any apparent effect on the 231 

predicted growth rates, while enzymatic constraints had a more dramatic impact on 232 

the predicted growth rates. Furthermore, they also amplify the effect of the 233 

thermodynamic constraints as shown by the apparent differences between the results 234 

of EcoETM and EcoECM. This indicates that more thermodynamically unfavorable 235 

and enzyme costly pathways were excluded from the solution space by integrating 236 
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both constraints, resulting in more realistic pathway prediction. It should also be noted 237 

that the growth rates are mainly constrained by substrate availability at low substrate 238 

consumption rates. Therefore, the new constraints mainly affected the calculated 239 

optimal growth rates at higher substrate consumption rates. 240 

To verify the thermodynamic feasibility of the pathways from the models, we 241 

calculated the MDF of pathways using the optMDFpathway method (Hadicke et al., 242 

2018), which required preset growth rates. We gradually increase the expected rate of 243 

growth (by adjusting the lower bound of biomass synthesis reaction fluxes), and then 244 

solved the MDF of the pathways before and after adding constraints. In Fig. 2, the 245 

black dotted line indicates the maximum growth rate predicted by the iML1515 model 246 

when the glucose uptake rate is set at 10 mmol/gDW/h. On this basis, the 247 

optMDFpathway method was used to calculate the MDF distribution of biomass 248 

synthesis pathways. The results revealed that in the whole feasible space of growth 249 

rates (left side of the black dotted line), there is at least one thermodynamically 250 

feasible pathway (MDF≥0) that can achieve the optimal thermodynamics (MDF = 251 

maxDfi = 2.667 kJ/mol). After introducing enzymatic constraints, the result showed a 252 

similar trend that the MDF of pathways decreased gradually with the growth rate, and 253 

the feasible space was reduced significantly, indicating that at high growth rates (such 254 

as ≥0.63 /h), a certain number of pathways satisfying the enzymatic constraints are 255 

not thermodynamically feasible. 256 

 257 
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 258 

Fig. 2. The optimal thermodynamic driving force (MDF) of biomass synthesis 259 

pathways under different constraints. The maximum yields predicted by the 260 

iML1515 (black dotted line), EcoTCM (blue line), EcoECM (red dotted line) and 261 

EcoETM (orange line) models are shown. The points where the MDF suddenly 262 

changes are circled in red. 263 

 264 

3.2. Analysis of bottleneck reactions, limiting metabolites and key enzymes 265 

One application of MDF is to identify the bottleneck reactions and limiting 266 

metabolites, which in turn can help propose specific targets for pathway control and 267 

optimization (Dash et al., 2019; Yang et al., 2019). On the other hand, ECGEM can 268 

predict the optimal enzyme distribution, and thus discover the key enzymes in a 269 

pathway as engineering targets (Zheng et al., 2017). As both the bottleneck reactions 270 

and key enzymes depend on specific conditions (Trondle et al., 2020), we selected ten 271 

turning points (Fig. 2, circled in red) to illustrate the analysis method of bottleneck 272 

reactions, limiting metabolites and key enzymes in the ETGEMs framework and to 273 

explore the possible reasons for the reduction of solution space by different 274 

constraints in detail. 275 

Specifically, we fixed the growth rate at the maximum value that can meet a MDF 276 

(B value), and then performed Dfi variability analysis for the reactions constrained by 277 

thermodynamics. Hence, we calculated the maxDfi and minDfi of every reaction. 278 

When both the growth rate and MDF are preset at maximum values, if the Dfi of a 279 
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reaction does not have variability (∆Dfi = maxDfi – minDfi = 0) and is equal to the  280 

B value, it is a bottleneck reaction (Hadicke et al., 2018). Then, the variability of xi, 281 

which characterizes the metabolite concentration and the variability of enzyme costs, 282 

was analyzed in the same way. 283 

In the research of Hadicke et al., the reaction of CBMKr is thermodynamically 284 

unfavorable and its stoichiometric relationship is controversial, so the reaction CBPS 285 

catalyzed by carbamoyl-phosphate synthase was used to replace the CBMKr as the 286 

only way to synthesize Cbp. It should be noted that when CBMKr is allowed to 287 

participate in a pathway, the MDF of the pathway should be reduced to below -9.49 288 

kJ/mol (Table D), as mentioned above. Because the enzyme efficiency of CBPS is not 289 

considered in EcoTCM, the replacement will not have a particularly significant 290 

impact on the growth rate. Similarly, the fact that CBMKr is thermodynamically 291 

unfavorable is ignored in EcoECM, so it is allowed to participate in the biomass 292 

synthesis process. However, when considering both the thermodynamic and 293 

enzymatic constraints in EcoETM, CBMKr was excluded because of its poor 294 

thermodynamics, and the problem of low efficiency of CBPS (Guillou et al., 1992) 
295 

was highlighted simultaneously. As shown in Table E (in Supplementary file2) and 296 

Table 2, the CBPS reaction had the highest enzyme cost due to poor kinetic 297 

parameters (accounting for 6.9% of the total enzyme cost of the whole pathway), 298 

indicating that the replacement of the two reactions actually has a significant impact 299 

on growth. It can be seen that the thermodynamic and enzymatic constraints offer two 300 

different perspectives on the control steps of a pathway, so the key reactions 301 

determined by the two approaches may be very different. Therefore, EcoETM can 302 

anchor the thermodynamic bottlenecks and enzymatic key steps of a pathway more 303 

effectively, which is conducive to the accurate and comprehensive optimization of a 304 

pathway. 305 

In addition, the reaction TPI is also a crucial reaction from both the thermodynamic 306 

and enzymatic perspectives (Tables S2 and S4, in Supplementary file1). The higher 307 

enzyme usage caused by high flux indicates its importance in the biomass synthesis 308 

process. At the same time, it is a reversible reaction that is prone to reaching an 309 
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equilibrium state, and its product glyceraldehyde 3-phosphate (g3p) is also the 310 

substrate of another bottleneck reaction, GAPD (Table F, in Supplementary file2). 311 

Therefore, the concentration of g3p is strictly trapped. There is a close relationship 312 

between bottleneck reactions and limiting metabolites, and the sharing of metabolites 313 

among reactions is an important reason for the phenomenon of distributed bottleneck 314 

reactions (Hadicke et al., 2018; Mavrovouniotis, 1993), which suggests that we need 315 

to weigh the potential and comprehensive impact of bottleneck reactions when 316 

developing an optimization strategy according to an optimal distribution of metabolite 317 

concentrations.  318 

 319 

Table 2 Comparison of parameters for the two Cbp synthesis reactions 320 

Reaction Reaction kcat/MW (reverse) drG’0 Dfi range 

ID Equation h-1 
· kDa-1 kJ/mol kJ/mol 

CBPS 2.0 atp_c + gln__L_c + h2o_c + 

hco3_c --> 2.0 adp_c + cbp_c + 

glu__L_c + 2.0 h_c + pi_c 

54.13 -13.4 ±  

5.2 

-21.65 ~ 

105.48 

CBMKr atp_c + co2_c + nh4_c <=>  

adp_c + cbp_c + 2.0 h_c 

4179.36 

(1221.59) 

19 ±  

7.8 

-81.96 ~ 

-9.49 

 321 

Pathway evaluation performed in previous studies (Trudeau et al., 2018; Yang et al., 322 

2019) indicated that although the theoretical maximum yield remains unchanged, 323 

many pathways should still be excluded due to criteria related to enzyme kinetics and 324 

thermodynamics. In section 3.1, the effect of thermodynamic constraints on reducing 325 

the yield space was not always apparent in Fig. 1. Because the number of solutions is 326 

more representative of the size of solution space than the maximum yield, the results 327 

do not necessarily indicate that thermodynamic constraints play a dispensable role in 328 

reducing the solution space. Based on this analysis, we can see that thermodynamic 329 

constraints can screen feasible pathways by either 1) determining the 330 

thermodynamically unfavorable reactions, thereby excluding all the pathways in 331 

which they are necessary, such as CBMKr, DXYLTD_reverse and E4PD_reverse, or 2) 332 

by eliminating reactions that are thermodynamically feasible in principle, but no 333 

longer meet the criteria due to shared limiting metabolites, which lead to distributed 334 
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bottleneck reactions. For example, the simultaneous occurrence of PGCD, GAPD, 335 

FBA, PGK and TPI precludes the feasibility of biomass synthesis (Tables E-G in 336 

Supplementary file2). 337 

 338 

3.3. Analysis of products synthesis pathways using the four models 339 

To further investigate the phenotypic prediction differences between models with 340 

different constraints, we reanalyzed the pathways for the synthesis of 20 products 341 

with the highest yield from glucose used in another study (Hadicke et al., 2018). The 342 

prediction results of the iML1515 model show that Cbp is the product with the highest 343 

yield. Since Cbp is an essential precursor of L-arginine (L-Arg), we also calculated 344 

the yield of L-Arg and its other precursor, ornithine (Orn). As shown in Fig. 3A, the 345 

calculated optimal product synthesis rates from iML1515 for the 22 products all had 346 

linear relationships with the glucose uptake rate, and the synthesis rate of Cbp was 347 

much higher than those of other products. As shown in Fig. 3B, with the addition of 348 

thermodynamic constraints, the rate still increased linearly, but the synthesis rates for 349 

Cbp, Orot, Dhor_S, Cbasp, Orot5p and L-Arg were lower than in iML1515 at the 350 

same glucose uptake rates (also shown for individual products in Fig. 4). By 351 

analyzing the MDF change curves of these products, we found that all the MDF 352 

values of the maximum yield pathways predicted by iML1515 were -9.49 kJ/mol 353 

(Figure B, in Supplementary file2) due to the participation of the bottleneck reaction 354 

CBMKr. This very low value indicated that CBMKr is thermodynamically 355 

unfavorable, and it was automatically excluded from the model with thermodynamic 356 

constraints, generating more realistic pathway predictions than the iML1515 model 357 

for Cbp-derived products such as Orot, Dhor_S, Cbasp, Orot5p and L-Arg. 358 

 359 
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 360 

Fig. 3. The simulation results of 22 product synthesis rates based on various 361 

models. (A) iML1515; (B) EcoTCM; (C) EcoECM; (D) EcoETM. The order of 362 

names in the legend is the same as the order of the final values of the production 363 

curves (from top to bottom). The molar amount of products was normalized based on 364 

glucose (6 C-atoms). 365 

 366 

 367 

Fig. 4. The predicted synthesis rates for various products by various models. (A) 368 

(S)-Dihydroorotate (Dhor_S); (B) N-Carb-L-aspartate (Cbasp); (C) Carbamoyl 369 

phosphate (Cbp); (D) Orotidine-5-P (Orot5p); (E) Orotate (Orot); (F) L-Arginine 370 

(L-Arg). The molar amount of products was normalized based on glucose (6 371 

C-atoms). 372 

 373 

In addition to these Cbp-derived products, the calculated maximum rate of 374 

oxaloacetate (Oaa) also decreased slightly (Figure A and Table H, in Supplementary 375 
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file2) in the models with thermodynamic constraints. After setting the Oaa synthesis 376 

rate at the maximum value predicted by iML1515 and solving the MDF of the Oaa 377 

synthesis pathway(s), an MDF of -0.632 kJ/mol was obtained (Figure B, in 378 

Supplementary file2). Then, by analyzing the Dfi variability, the three reactions 379 

FLDR2 (catalyzed by flavodoxin reductase), PFL (catalyzed by pyruvate formate 380 

lyase) and POR5_reverse (catalyzed by pyruvate synthase) were identified as 381 

distributed bottlenecks (Mavrovouniotis, 1993). Due to the shared metabolites 382 

between the bottleneck reactions, the simultaneous participation of the three reactions 383 

would preclude the thermodynamic feasibility of Oaa biosynthesis (Dfi<0). 384 

At low substrate uptake rates, the predicted synthesis rates are limited by substrate 385 

availability and there is no difference in the rates from iML1515 (Fig. 3A) and those 386 

from the enzyme constrained model (Fig. 3C). When the substrate uptake rate was 387 

increased, the rate curves in Fig. 3C began to turn, indicating that the enzyme 388 

availability starts to be a limiting factor, and the pathways with lower enzyme costs 389 

need to be enabled to satisfy the enzymatic constraints. The minimum enzyme cost of 390 

the optimal Cbp synthesis pathway calculated based on iML1515 was 65.63 mg 391 

/(mmol glucose/h). With a total enzyme constraint of 0.228 g enzyme/gDW, the 392 

maximum rate of glucose uptake of this pathway was calculated to be 3.47 393 

mmol/gDW/h. Therefore, at glucose uptake rates above this value, this high enzyme 394 

cost pathway is gradually switched to new pathways with lower enzyme costs and 395 

lower yields (Fig. 3C). When the glucose uptake rate was set to 1 mmol/gDW/h, the 396 

Cbp synthesis flux was set to 15.67 mmol/gDW/h, and the total enzyme amount was 397 

set to 133.25 mg/gDW, the minimum enzyme cost of reactions in the pathway showed 398 

that AKGDH (catalyzed by 2-oxogluterate dehydrogenase), GLCptspp (realized by 399 

the PTS system) and CBMKr were the three reactions with the highest enzyme cost, 400 

at 8.10, 5.50 and 3.75 mg/gDW, respectively. The main reasons for the high enzyme 401 

cost were the high protein molecular weight (AKGDH, 2418.39 kDa), low kcat value 402 

(GLCptspp, 10.6 /s) and high flux demand (CBMKr, 15.67 mmol/mmol glucose), 403 

respectively. 404 

As shown in Fig. 3D, due to the integration of both thermodynamic and enzymatic 405 
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constraints, the synthesis rate of some products decreased significantly. Cbp decreased 406 

from the highest rate predicted by the iML1515 model to the lowest one predicted by 407 

EcoETM, showing the combined effect of the two constraints on the feasibility of 408 

pathways and the great reduction of the solution space. By comparing Figs. 3A-D, it 409 

can be seen that the integration of thermodynamic constraints (Fig. 3B) and enzymatic 410 

constraints (Fig. 3C) did affect the prediction results of iML1515 (Fig. 3A) from 411 

different perspectives. At the initial stage of glucose uptake, thermodynamic 412 

constraints can change the yield and ranking order of product synthesis. When the 413 

glucose uptake rate reaches a specific level, the enzyme amount becomes the limiting 414 

factor, and the rate curves from EcoECM begin to show differences with those form 415 

the iML1515 model. After integrating the two constraints in one model, many 416 

unfavorable pathways were excluded from EcoETM, which led to a much smaller 417 

solution space and more precise prediction of pathways. For example, the maximal 418 

arginine synthesis rate of the thermodynamically feasible and low enzyme cost 419 

pathways is actually quite low (is 4.36 mmol/gDW/h at the maximum glucose uptake 420 

rate of 6 mmol/gDW/h) and significantly different from the results predicted by 421 

iML1515 (the carbon yield reduced by 43.1%, Fig. 4F). 422 

The MDF change in Fig. 5 clearly shows the switching of pathways under 423 

thermodynamic constraints. Due to the participation of CBMKr, the MDF suddenly 424 

drops in the synthesis process of Cbp (Fig. 5A), as well as its derivatives, such as 425 

L-arginine (Fig. 5B). As can be seen in Fig. 5C, although there is no 426 

thermodynamically unfavorable reaction in the Oaa synthesis pathway, the 427 

simultaneous occurrence of 3 distributed bottleneck reactions, FLDR2, PFL and 428 

POR5_reverse, nevertheless precludes the thermodynamic feasibility of the pathway. 429 

It should be noted that by adjusting the threshold of MDF, i.e. by introducing a strong 430 

thermodynamic constraint such as increasing the MDF threshold from 0 to 1 kJ/mol 431 

(Trudeau et al., 2018), more pathways can be excluded from the solution space, 432 

allowing the prediction of more thermodynamically feasible pathways(Fig. S1, in 433 

Supplementary file1). In addition, by comparing Figs. 5D and E, it can be seen that 434 

iML1515 and EcoTCM cannot distinguish the synthesis curves of citrate (Cit) and 435 
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isocitrate (Icit), while EcoECM (including EcoETM) can distinguish them. The 436 

synthesis of Icit from Cit requires an additional reaction catalyzed by aconitase 437 

(consisting of the two half-reactions ACONTa and ACONTb in the model), so more 438 

enzyme is needed for the Icit synthesis process, leading to earlier pathway switching 439 

than for Cit. However, the two reactions are not thermodynamic barriers and there is 440 

no carbon and energy loss, so their production curves in EcoTCM and iML1515 are 441 

identical.  442 

443 

Fig. 5. The MDF of product synthesis pathways under different constraints. (A) 444 

Carbamoyl phosphate; (B) L-Arginine; (C) Oxaloacetate; (D) Citrate; (E) Isocitrate; 445 

(F) Glyoxylate. 446 

 447 

To further investigate the differences of the predicted optimal pathways from 448 

iML1515 and EcoETM, we plotted the calculated L-Arg synthesis pathways from the 449 

two models with a glucose uptake rate of 3.64 mmol/gDW/h (the turning point at 450 

which the enzyme constraint becomes the limiting factor), as shown in Fig. 6. The 451 

L-Arg production rates at this point were 3.12 mmol/gDW/h based on iML1515 and 452 

2.90 mmol/gDW/h based on EcoETM. As can be seen in Fig. 6, the key difference is 453 

in the Cbp production part. In the pathway obtained from iML1515, the CBMKr 454 

reaction with high enzyme efficiency is used (Fig. 6A). By contrast, this reaction is 455 

not in the pathway from EcoETM because it is thermodynamically unfavorable, and 456 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.403519doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403519
http://creativecommons.org/licenses/by-nc-nd/4.0/


the CBPS reaction with low carbon yield and low enzyme efficiency is used instead 457 

(Fig. 6B). This inevitably leads to high enzyme cost of the pathway and a small 458 

maximal production rate, which was significantly lower than that predicted by 459 

iML1515. This enzyme was therefore identified as an engineering target for 460 

improving arginine production. In addition, through the Dfi variability analysis, we 461 

also found a thermodynamic bottleneck reaction in the L-Arg synthesis pathway, 462 

catalyzed by acetylglutamate kinase (ACGK, its maxDfi is only 2.667 kJ/mol). 463 

Furthermore, ACGK is also the thermodynamic bottleneck for biomass synthesis, as 464 

described in 3.2 and 3.3. Its thermodynamic feasibility is likely to be highly 465 

dependent on ADP depletion reactions, such as pyruvate kinase (Vogel and McLellan, 466 

1970). Coupling between reactions is an important means to overcome the 467 

thermodynamic bottleneck for the engineering practice (Zhang et al., 2017). 468 

 469 

 470 

Fig. 6. Prediction of the L-arginine synthesis pathway by iML1515 (A) and 471 

EcoETM (B). Shown are: the structural change of the pathway (light blue region); the 472 

reaction with the highest enzyme cost (red thick arrow); the thermodynamic 473 

bottleneck reaction (blue arrow); the limiting metabolite (yellow background); and the 474 

simplified pathways of EMP and PP (navy-blue background). The unit of the flux 475 

value is mmol/gDW/h (blue, on the top); the unit of the enzyme cost is mg/(mmol 476 
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glucose /h) (purple, in the middle); and the unit of the maximum thermodynamic 477 

driving force is in kJ/mol (orange, at the bottom). 478 

 479 

4. Discussion 480 

The development of ETGEMs benefits from the excellent biological basis and 481 

mathematical modeling foundation of ECGEMs (Adadi et al., 2012; Sanchez et al., 482 

2017) and thermodynamic constraint models (Hadicke et al., 2018; Henry et al., 2007; 483 

Salvy et al., 2019). In ETGEMs, enzyme restriction leads to a decrease of the 484 

predicted maximum yield by excluding pathways with high enzyme costs. 485 

Accordingly, the cells have to switch to new pathways to satisfy the enzymatic 486 

constraint (Chen and Nielsen, 2019). The addition of thermodynamic constraints can 487 

not only limit the feasibility of pathways, but also optimize the thermodynamic 488 

feasibility of bottleneck reactions in the pathway by adjusting the concentration of 489 

metabolites, and predict the MDF for a pathway. With the addition of thermodynamic 490 

and enzyme constraints, ETGEMs strengthen the restriction of the feasibility of a 491 

pathway to allow more realistic pathway prediction. It can also be used to identify 492 

thermodynamic bottleneck reactions and low efficiency enzymes, and thus provide 493 

guidance for pathway engineering. 494 

Computational methods have been used to systematically design novel pathways in 495 

recent studies. It is often necessary to screen pathways based on certain criteria to 496 

choose the most promising pathways for experimental verification (Trudeau et al., 497 

2018; Yang et al., 2019). Pathway evaluation needs to integrate thermodynamic and 498 

kinetic standards directly in the GEMs. Therefore, by integrating the dual constraints 499 

into the GEMs, the thermodynamic and enzymatic cost of the pathway can be 500 

calculated. Taking the L-Arg synthesis pathway as an example, in addition to flux 501 

distribution, thermodynamic bottleneck reactions, limiting metabolites, enzyme cost 502 

distribution and key enzyme information are also given. Therefore, the ETGEMs, if 503 

combined with certain algorithms, are expected to be an effective tool for systematic 504 

pathway design. In addition, the integration of thermodynamic constraints in the 505 

reaction sets of a specified model can avoid the repetitive preparation of pathway 506 

information.  507 
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The values of parameters such as ∆���

�° and kcat can greatly affect the prediction 508 

results of a constrained model. In the construction of EcoETM, some standard 509 

thermodynamic parameters were not successfully estimated due to the inconsistent 510 

names of metabolites or the lack of KEGG reaction IDs in the iML1515 model. 511 

Besides, in order to improve the coverage of the ∆���

�°  parameters, some 512 

approximate ∆���

�° values were obtained by neglecting the groups in the metabolites 513 

that have not changed and do not have the evident role of thermodynamic promotion 514 

(e.g. GPDDA2: replacing “Glycero-3-phosphoethanolamine + H2O <=> 515 

Ethanolamine + Glycerol 3-phosphate” with “Ethanolamine phosphate + H2O <=> 516 

Ethanolamine + Orthophosphate”), by referring to similar reactions with the same 517 

group changes (e.g. GP4GH: replacing “GppppG + H2O <=> 2 GDP” with “AppppA 518 

+ H2O <=> 2 ADP”), or by replacing the metabolites that cannot be evaluated with 519 

structural similarly metabolites (e.g. L_LACD3: replacing “Menaquinone 8” with 520 

“Menaquinone”). This is a preliminary exploration of the possibility of parameter 521 

reference between the reactions due to the similarity of the involved compounds and 522 

changed groups. In fact, more accurate larger-scale enhancement of ∆���

�° parameter 523 

coverage will still depend on the resources of reactions and parameters available in 524 

databases such as eQuilibrator, TECRDB (Goldberg et al., 2004) and KEGG, as well 525 

as the combination of efficient methods, such as machine learning (Heckmann et al., 526 

2018). Researchers have made efforts to calibrate parameters by referring to the yield 527 

and flux distribution of the biomass and product synthesis processes (Bekiaris and 528 

Klamt, 2020), or reasonably narrowing metabolite concentration ranges according to 529 

metabolomic data (He et al., 2020). The improvement of parameter accuracy and 530 

coverage will increase the prediction efficiency, reduce the cost of result evaluation, 531 

and contribute to the construction of powerful metabolic models of E. coli and other 532 

species. 533 

 534 

5. Conclusions 535 

In this work, we developed a novel functional modeling framework for 536 

genome-scale metabolic models with integrated enzymatic and thermodynamic 537 
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constraints, named ETGEMs. The pathway calculation results indicated that many 538 

thermodynamically unfavorable and enzymatically costly pathways were excluded by 539 

the new constraints, leading to more realistic pathway prediction. By comparing the 540 

pathways from different models, the thermodynamic and enzymatic bottlenecks in the 541 

pathways can be identified, providing new targets for directed evolution and 542 

metabolic engineering.  543 
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