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ABSTRACT 

The PI3K/mTOR signalling network critically regulates a broad array of important biological 

processes, including cell growth, metabolism and autophagy. Dysregulation of PI3K/mTOR 

signalling is associated with a variety of human diseases, including cancer and metabolic 

disorders. The mechanistic target of rapamycin (mTOR) is a kinase that functions as a core 

catalytic subunit in two physically and functionally distinct complexes termed mTOR complex 1 

(mTORC1) and mTORC2, which also share other common components such as mLTS8 (also 

known as GβL) and DEPTOR. Despite being the subject of intensive research, a full picture of 

how mTORC1/2 assembly and activity are coordinated, and how they are functionally connected 

remain to be fully characterised. This is due primarily to the complex network wiring, featuring a 

growing number of intricate feedback loops and post-translational modifications, which require 

quantitative systems-level approaches to decipher. Here, we integrate predictive computational 

modelling, in vitro experiments and -omics data analysis to elucidate the dynamic and emergent 

features of the PI3K/mTOR network behavior. We construct new mechanistic models of the 

network that encapsulate novel critical mechanistic details, including mTORC1/2 coordination by 

mLTS8 (de)ubiquitination, and Akt-to-mTORC2 positive feedback loop. Model simulations 

subsequently confirmed by experimental validation revealed a previously unknown biphasic, 

threshold-gated dependence of mTORC1 activity on the key mTORC2 subunit Sin1, which is 

robust against cell-to-cell variation in protein expression. Furthermore, our results support the 

essential role of mLST8 in both mTORC1 and 2 activity, and suggest mLST8 could serve as a 

viable therapeutic target in breast cancer. Overall, our integrated analyses provide fresh systems-

level insights into the dynamic behavior of PI3K/mTOR signalling and shed new light on the 

complexity of this important network. 
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AUTHOR SUMMARY 

Signalling networks are the key information-processing machineries that underpin the ability of 

living cells to respond proportionately to extra- (and intra-) cellular cues. The PI3K/mTOR 

signalling network is one of the most important signalling networks in human cells that regulates 

cellular response to hormones such as insulin, yet our understanding of the network behaviour 

remains far from complete. Here, we employed a highly integrative approach that combines 

predictive mathematical modelling, biological experimentation, and data analysis to gain novel 

systems-level insights into PI3K/mTOR signalling. We constructed new mathematical models of 

this complex network incorporating important regulatory mechanisms. In contrary to commonly 

held views that mTORC2 lies upstream and is a positive regulator of mTORC1, we found that 

their relationship is highly nonlinear and dose dependent. This finding has major implications for 

mTORC2-directed anti-cancer strategies as depending on the cellular contexts, blocking mTORC2 

may reduce or even enhance mTORC1 activation, the latter could inadvertently blunt the effect of 

mTORC2 blockade. Furthermore, our results demonstrate that mLST8 is required for the assembly 

and activity of both mTOR complexes, and suggest mLST8 is a viable therapeutic target in breast 

cancer, notably breast cancer. 

 

INTRODUCTION 

The PI3K/mTOR signalling network plays an important role in the regulation of cell signal 

transduction and regulates a variety of key biological processes such as cell growth, metabolism 

and autophagy (1). The mechanistic target of rapamycin (mTOR) is a Ser/Thr kinase that lies at 

the center of this complex network, where it serves as an indispensable catalytic subunit for two 

functionally distinct complexes termed mTOR complex 1 (mTORC1) and mTOR complex 2 

(mTORC2). In addition to mTOR, mTORC1 and 2 share two common subunits, mLST8 (also 

known as GβL) and DEPTOR, whereas Raptor and PRAS40 are unique components of mTORC1 

(2), and Sin1 (3) and Rictor (4) are exclusive to mTORC2. Reflecting its importance in 

physiological regulation, the PI3K/mTOR network is frequently disrupted in human diseases, 

including cancer, metabolic and neurodegenerative diseases (2). In cancer alone, more than 40 

inhibitors directed at various components of the network have been developed or are under active 

development (5). Given the clinical relevance of PI3K/mTOR signalling, it is important to 

understand the interconnectivities within this network and emergent network behaviors.   

The PI3K/mTOR network is highly complicated and arguably one of the most extensively studied 

signalling pathways, yet its complexity continues to expand through new mechanistic discoveries. 

For example, in addition to known feedback mechanisms such as S6K-mediated negative feedback 

to PI3K/Akt via IRS, we have identified a positive feedback loop between Akt and mTORC2, 

where Akt phosphorylates Sin1 to enhance mTORC2 activity (5, 6). More recently, a molecular 

switch involving mLST8 through its (de)ubiquitination modification was identified (7). 

Mechanistically, the TRAF2 E3 ubiquitin ligase promotes mLST8 ubiquitination on Lysine 63 

(K63), which disrupts its interaction with the unique mTORC2 component Sin1 (7). By contrast, 

ubiquitinated mLST8 can be converted back to its de-ubiquitinated form by the OTUD7B 

deubiquitinase. De-ubiquitinated mLST8 binds more favourably to Sin1, which facilitates 

mTORC2 assembly but at the same time reduces mTORC1 formation (7) (Fig 1A). These findings 

add extra layers of complexity and intricacy to the wiring of the PI3K/mTOR network, yet its 

dynamic properties incorporating these new regulatory mechanisms have not been characterized. 

Moreover, although the mLST8 ubiquitination-dependent switch seems to provide tight regulation 

of mTOR complex integrity, the functional role of mLST8 in each complex remains to be fully 

characterised. While it is established that mLST8 is indispensable for mTORC2 activity (8, 9), 
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whether it is essential for mTORC1 function remains unclear. For example, ablation of mLST8 

does not affect mTORC1 activity as measured by the phosphorylation level of its major substrate 

S6K (9-11). On the other hand, mLST8 stabilizes the Raptor-mTOR interaction and promotes 

mTORC1 activity (12), and upregulation of mLST8 enhances mTORC1/2 activities in human 

colon carcinoma and prostate cancer (13).  

Here we employed an integrated approach that combines predictive network modelling and 

biological experiments to analyse the emergent network-level behavior of PI3K/mTOR signalling 

conferred by the mLST8-induced switch. For this, we constructed new mechanistic models of the 

PI3K/mTOR network that explicitly encapsulate mLST8 (de)ubiquitination, ensuing mTORC1/2 

coordination, and the novel Akt-mTORC2 positive feedback. The alternative models consider 

different competing hypotheses of network interactions, reflecting different network structures. 

To distinguish among the possible model variants, we calibrated and parameterised the models 

using dynamic quantitative time-course data, and validated them against additional independent 

datasets. We hypothesized that the most faithful model would be able to fit all the datasets used 

for training and validation. With this model, we performed specific predictive simulations with an 

emphasis on the regulation of mTORC1/2 formation and activity, and characterized the governing 

factors through in silico network perturbation analysis. Model predictions were experimentally 

validated using in vitro analysis, and integration and interrogation of public cellular and patient 

data.  

Our predictive modelling and experimental validation revealed a hitherto unknown biphasic 

dependence of mTORC1 activity on the key mTORC2 component Sin1, uncovering an emergent 

functional linkage between the two mTOR complexes. This non-linear dependence seems to be a 

robust feature among a broad array of cell types, as model simulations predict its existence despite 

the presence of heterogeneity in protein expression levels among various cell types. The Sin1-

mTORC1 biphasic response may help explain different context-specific biological observations 

in cells with low or high levels of Sin1. Furthermore, our results demonstrate that mLST8 is 

required for the assembly and activity of both mTOR complexes, and suggest mLST8 is a viable 

therapeutic target in cancer, notably breast cancer. Finally, as the specificity of cellular responses 

to perturbation is encoded by the spatial and temporal dynamics of signalling networks and 

coordinated by all network components, this study highlights the importance to embrace systems-

based approaches where computational models serve as vital tools to explore and provide insights 

into intricate relationships between cellular perturbation and response. The computational model 

developed here will provide a useful resource for future studies and modelling efforts. 

 

RESULTS 

Construction of mechanistic PI3K/mTOR network models incorporating mLST8-mediated 

switch  

To elucidate the functional role of the mLST8 (de)ubiquitination switch in coordinating 

mTORC1/2 formation and PI3K/mTORC network dynamics, we constructed new mathematical, 

mechanistic models of this network incorporating the switch regulation. A number of models have 

previously been developed for the PI3K/mTOR pathway (14). For example, Pezze et al. (2012) 

presented a model using ordinary differential equations (ODEs) to investigate potential regulators 

of mTORC2. Based on observations that amino acids can also activate mTORC2 in addition to 

mTORC1 (15), an integrated modelling-experimental approach was employed to identify novel 

downstream targets of amino acids within the mTOR pathway (16). Other models focused on 

insulin resistance and aimed to explain the PI3K/mTOR network dynamics following insulin 

stimulation in healthy and diabetic cells (17-20). We have also constructed mechanistic models 
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that revealed complex emergent dynamical properties brought about by DEPTOR, an endogenous 

inhibitor of both mTORC1 and 2 (21). However, none of the published models consider the 

coordination of mTORC1/2 formation by the mLST8 (de)ubiquitination switch (7). The 

mathematical models developed in this study are the first to explicitly incorporate this switch, in 

addition to known regulatory and feedback mechanisms. Below we outline the key experimental 

observations and model assumptions. 

mLST8-mediated switch regulates mTOR complex formation 

While mLST8 was identified as a shared component of mTORC1 and 2 more than a decade ago 

(12, 22), only recently the (de)ubiquitination of mLST8 was found to strongly dictate its binding 

to mTORC1 and 2 (7). Indicated in Fig 1A, mLST8 can be ubiquitinated by the E3 ligase TRAF2 

(TNF receptor associated factor 2) on its WD7 kinase domain, which is also the binding site for 

Sin1. Consequently, mLST8 ubiquitination prevents Sin1-mLST8 association and thus decreases 

formation of the mTORC2 complex. However, as Raptor binds mLST8 via its WD6 domain, 

mLST8 ubiquitination does not affect mLST8-Raptor binding (7). Moreover, reduced Sin1-

mLST8 association caused by mLST8 ubiquitination frees more mLST8, which becomes available 

for binding to Raptor, thereby enhancing mTORC1 formation (7). The ubiquitination of mLST8 

is reversed by the deubiquitinating enzyme OTUD7B (OUT domain-containing protein 7B), 

which catalyses deubiquitination of mLST8 (7) and by doing so, it enhances mLST8’s binding 

affinity for Sin1 and so mTORC2 formation (Fig 1A). Importantly, insulin acts as a triggering 

input for OTUD7B as insulin stimulation promotes activation of OTUD7B (7). Collectively, 

mLST8 (de)ubiquitination functions as a molecular switch, where deubiquitination promotes 

mTORC2 formation while simultaneously blocking the formation of mTORC1, and vice versa. 

However, how the mLST8-induced switch interplays with other regulatory mechanisms within the 

PI3K/mTOR network to orchestrate emergent network behaviour is not known. These mechanistic 

details are described in our new models, indicated in the model reaction scheme (Fig 1B). 

Other key signalling events and feedback loops 

The model schematic in Fig 1B further includes key signalling and feedback events induced by 

insulin stimulation. Briefly, insulin binds to the insulin receptor (IR), triggering IR dimerization, 

autophosphorylation and activation (23). Activated IR recruits and phosphorylates insulin receptor 

substrate (IRS) that leads to PI3K recruitment and activation (23). Activated PI3K in turn 

phosphorylates phosphatidylinositol (3,4,5)-bisphosphate PIP2 and generates 

phosphatidylinositol (3,4,5)-trisphosphate PIP3, which recruits the kinase PDK1 to the plasma 

membrane, which subsequently phosphorylates Akt at Threonine 308 (pAkt T308). To allow 

model simplification for better tractability without compromising dynamic accuracy, we lumped 

the IRS → PI3K → PDK1 → pAkt T308 cascade into a single step, IRS → pAkt S308 (Fig 1B).   

As an AGC family kinase, Akt requires dual phosphorylation to become fully activated (24). To 

this end, mTORC2 serves as a second Akt kinase and phosphorylates it at Serine 473 (pAkt S473). 

We assume that double phosphorylated Akt (ppAkt) can be achieved independently through either 

pAkt T308 or pAkt S473 first (Fig 1B) (25). Moreover, as pAkt S473 alone possesses relatively 

much weaker kinase activity compared to pAkt T308 and ppAkt (25), we assumed that 

phosphorylation of the downstream substrate TSC2 is primarily catalysed by the latter, which acts 

to inhibit TSC2 and releases its repression on mTORC1 activity. Activated mTORC1 

phosphorylates S6K1, which in turn phosphorylates IRS on an inhibitory site S636, forming a 

well-established negative feedback within the PI3K/mTOR pathway that downregulates the input 

signal (26). In addition, there exists another negative feedback from mTORC1 to IRS via Grb10 

(27, 28) but since this acts in a functionally similar manner as the S6K1 feedback, we included 

only the S6K1 feedback for simplicity (Fig 1B). Finally, we have previously demonstrated that 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.30.403774doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403774
http://creativecommons.org/licenses/by/4.0/


5 
 

phosphorylated Akt at T308 promotes mTORC2 activation through phosphorylation of its subunit 

Sin1, generating an important positive feedback loop between mTORC2 and Akt (5). This novel 

positive feedback is also captured by our models.  

Construction of multiple network model variants  

In addition to the more established signalling events above, there are gaps in our network structure 

understanding. First, although insulin stimulation was shown to promote OTUD7B activation, it 

is unclear if this is mediated at the level of the insulin receptor or downstream. Therefore, we 

constructed two different model variants to examine alternative scenarios: (i) in model 1, 

OTUD7B is regulated directly by IR and thus is not influenced by the S6K1-IRS1 negative 

feedback loop; and (ii) in model 2, OTUD7B is regulated by IRS and therefore under the control 

of the negative feedback (Fig 1C, left panels). Second, as previously discussed, while mLST8 is 

critical for mTORC2 kinase activity, evidence regarding whether it is required for mTORC1’s 

functional activity are conflicting (9, 10, 12, 13). This led us to construct two additional models 

in order to investigate the role of mLST8 in mTORC1 regulation. Specifically, in models 1-2, we 

assumed that mLST8 is not required for mTORC1’s function. In contrast, in models 3-4, mLST8 

binds to Raptor and forms mTORC1, thus mLST8 is required for mTORC1 formation and activity 

(Fig 1C, right panels). 

In summary, we constructed four model variants differing in specific details pertaining to the 

regulation of OTUD7B and the role of mLST8 in mTORC1 regulation, which allow us to examine 

competing hypotheses. The new models are formulated using ODEs that represent biochemical 

interactions as a series of ordinary differential equations based on established kinetic laws (29). 

Solving these equations allows us to evaluate changes in concentration (i.e. states) of network 

component proteins over time. The rates of protein-protein interactions (e.g. association and 

dissociation reactions) were described by mass-action kinetics, and the rates of enzyme-catalysed 

reactions (e.g. (de)phosphorylation and (de)ubiquitination) were given by Michaelis-Menten 

kinetics. Detailed description of the models, including ODE equations, reactions rates and model 

parameters are given in Supplementary Table S1-3.  

 

Model validation indicates OTUD7B is governed by the S6K1-IRS negative feedback loop 

To confer specificity and predictive power to our models, we performed model calibration (i.e. 

parameter estimation) using insulin-stimulated time-course experimental data obtained from 

mouse embryonic fibroblast (MEF) cells previously published in (15), which was the primary cell 

model used for the characterization of the mLST8-induced switch. The data were quantified using 

the software ImageJ (30) (Fig S1). Parameter estimation was carried out using an optimization 

procedure based on a genetic algorithm implemented in MATLAB (Materials and methods-

Mathematical modeling). To overcome possible issues with model unidentifiability, which is a 

common phenomenon in signalling network models, we repeated the parameter estimation process 

500 times for each of the four models to obtain multiple optimal parameter sets that fit the data 

equally well, and utilise all the best-fitted sets collectively for subsequent in silico analysis. This 

‘ensemble’ approach helps avoid biases associated with single best-fitted sets, and provides more 

confidence in simulation results. 

Simulation results of the four models using the corresponding optimized parameter sets 

demonstrate all of the models recapitulate the experimental data well (Fig 1D). Next, to further 

assess the accuracy of these models, we compared model simulations with experimental data that 

was not used in the calibration process. To this end, we utilized insulin-stimulated time-course 

data from Traf2-/- MEF cells where the E3 ligase TRAF2 is silenced (7) (Fig 2, right panels). In 
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addition, the temporal dynamics of mLST8 following insulin stimulation in wild-type (WT) MEF 

cells was not included in the calibration process and therefore was also used for model validation. 

To mimic TRAF2 silencing, we reduced the concentration of TRAF2 by 90% of its WT level in 

the models. Comparing model simulations for Traf2-/- against the WT condition show the models 

can qualitatively reproduce the temporal dynamics of phosphorylated Akt, TSC2 and mTORC2 

(Fig 2). However, model 1, 2 and 3 could not recapitulate the experimentally observed dynamics 

of phosphorylated S6K1, which was essentially not affected by TRAF2 knockout (Fig 2). In this 

regard, model 4 is the only model that correctly replicates the data.  

In addition, comparing simulated dynamics of mLST8 with the experimental data shows model 1 

and 3 failed to capture the transient pattern and low level of mLST8 at late time-points (Fig 2, 

bottom panels). In contrast, these features are reproduced by model 2 and 4, which differ from 

model 1/3 in terms of OTUD7B regulation (Fig 1C). In model 2/4, OTUD7B is regulated by the 

S6K1- IRS negative feedback. Collectively, these in silico results indicate OTUD7B activity is 

governed by the S6K1-IRS negative feedback, and suggest model 4 as the most likely model based 

on its superior ability to reproduce multiple sets of experimental data. 

mLST8 is required for mTORC1 and mTORC2 activities 

To understand why model 4 fits experimental data best, we examined the time-course data more 

closely. While TRAF2 silencing led to a marked upregulation of both pAkt S473 and pTSC2 (Fig 

2 for insulin stimulation, and Fig S2A, B for EGF stimulation), this did not really affect the level 

of phosphorylated S6K1 (Fig 2 and Fig S2C). This seems counterintuitive since increased pTSC2 

will release more mTORC1, resulting in increased mTORC1 activity and phosphorylated S6K1, 

a direct mTORC1 substrate (see Fig S3A for a visual illustration of this reasoning). This raises the 

questions as to why pS6K1 was buffered from TRAF2 silencing, and which mechanism underpins 

such buffering?  

We hypothesize that the stable pS6K1 level in response to TRAF2 knockout is due to a 

compensatory upregulation of mTORC1 activity. Model 4 assumes that mLST8 is required for 

mTORC1 function. Thus, while there are increased levels of mTORC2 and phosphorylated Akt 

and TSC2 in Traf2-/- cells, which together activate mTORC1 more strongly, the abundance of 

mTORC1 is reduced due to a loss of ubiquitinated mLST8. Overall, this leads to a balance in 

mTORC1’s total kinase activity potential (defined by the product of mTORC1 abundance and 

activity potential per mTORC1 molecule, equation (1)), and so no changes in phosphorylated 

S6K1 (Fig S3B). This balance breaks down in models 1-2, which assume mLST8 is not required 

for mTORC1 function, resulting in a significant change in pS6K1 when TRAF2 is silenced. 

𝑇𝑜𝑡𝑎𝑙 𝑚𝑇𝑂𝑅𝐶1 𝑘𝑖𝑛𝑎𝑠𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 =  (𝑚𝑇𝑂𝑅𝐶1 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑠) ×
 (𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑒𝑟 𝑜𝑛𝑒 𝑚𝑇𝑂𝑅𝐶1 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒)                                                   (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1)      

Taken together, through rational construction of a series of mechanistic models and contrasting 

model simulations with experimental measurements, we arrived at model 4 that could best 

reconcile multiple sets of experimental data in WT and Traf2-/- MEF cells. This model will be used 

for subsequent analyses. 

Modelling predicts biphasic mTORC1 activation dependency on mTORC2 subunit Sin1 

Given the key role of mLST8 in coordinating the assembly and activity of mTORC1/2, 

perturbation of the mLST8-induced switch is likely to disrupt mTORC1/2 signalling but how this 

occurs is poorly characterised. To address this, we performed in silico sensitivity analysis where 

the concentration of the switch-related proteins (mLST8, TRAF2, OTUD7B, Sin1 and Raptor) 
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were systematically perturbed over a wide range (100-fold up/down) of their nominal values, and 

the impact on mTORC1 and 2 signalling was quantified using the response of pS6k1 and pAkt 

S473 at steady state, respectively.  

Interestingly, model simulations predict that increasing Sin1 induces a biphasic, dose-dependent 

response in pS6K1 (Fig 3A). Time-course simulations in Fig 3B confirm that an increase of Sin1 

from a low level initially promotes pS6K1 (first phase), but further increase of Sin1 beyond a 

critical threshold suppresses pS6K1 instead (second phase). Biphasic patterns, although to a lesser 

extent, are also observed for TRAF2, Raptor and OTUD7B graded perturbations (Fig 3A and Fig 

S4). The underlying mechanism for Sin1-induced biphasic pattern can be explained based on the 

fact that mLST8 is competitively sequestered by Raptor and Sin1 for the assembly of mTORC1 

and 2, respectively. According to equation (1), the overall ability of mTORC1 to phosphorylate 

S6K1 is determined by two factors: (i) the abundance of mTORC1 as well as (ii) the kinase activity 

potential per mTORC1 molecule, the latter is proportionally dependent on the upstream kinases 

Akt and mTORC2. Thus, the pS6K1 level is dictated by the balance between these factors. During 

the first phase, an increase in Sin1 would sequester more mLST8 and increase mTORC2 

formation, leading to higher mTORC1 activity potential, but at the same time resulting in less 

mTORC1 formation. As the gain in mTORC1 activity outweighs the loss in abundance, the net 

effect is an overall enhancement of pS6K1. In contrast, the balance is tipped in an opposite way 

in the second phase, as a further increase of Sin1 reduces mTORC1 abundance dramatically, which 

overrides the upregulation in mTORC1 activity, leading to an overall reduction in pS6K1.  

To further investigate the robustness of this biphasic dependency with regard to changes in the 

expression of multiple proteins , we extended the sensitivity analysis to two dimensions by 

assessing the level of pS6K in response to simultaneous changes in abundance of pairs of state 

variables. Fig 3C shows that the Sin1-dependent pS6K1 biphasic response is present over a large 

range of TRAF2 expression levels. Similarly, the biphasic response persists over a wide range of 

OTUD7B expression levels. Together, these simulation results indicate that the biphasic mTORC1 

activation induced by Sin1 is robust to expression variation in multiple network components. 

Unlike pS6K1, model simulation predicts a consistent, monotonic increase of pAkt S473 level in 

response to overexpression of Sin1 (Fig 3A). Similarly, increasing OTUD7B and TRAF2 

concentration monotonically promotes and diminishes pAkt S473, respectively; owing to their 

opposing effects on deubiquitinated mLST8 and mTORC2 formation (Fig 3A and Fig S4). 

Interestingly, simulations show that overexpression of mLST8 enhances the level of both pAkt 

S473 and pS6K1 (Fig S4), suggesting mLST8 promotes activation of both mTOR complexes. The 

model prediction is consistent with the finding that mLST8 is upregulated in several cancer types 

(13). mLST8 knock down has beenshown to suppress tumor growth by inhibiting mTOR complex 

formation and activity (13). 

Experimental validation of Sin1-induced biphasic mTORC1 dependency  

In order to experimentally validate the predicted mTORC1 biphasic dependency on Sin1, we 

generated MEF cells that express increasing levels of Sin1. To this end, we utilized MEFs where 

Sin1 has been knocked out, and transfected these with the Sin1 construct containing EGFP as a 

sorting marker. The Sin1 low- and high-expression cells were sorted according to the expression 

level of EGFP.. To measure the effect of various Sin1 levels on phosphorylated S6K1, cells were 

stimulated with insulin after serum starvation and pS6K1 was measured using Western Blots (Fig 

3D). In cells with no Sin1, there was a low level of pS6K1, resulting primarily from pAkt T308 

activity alone since mTORC2 is not functional in these cells, evident by the lack of any pAkt S473 

signal (Fig 3D). In cells with low Sin1, there was a significant increase in the level of both pS6K1 

and pAkt S473, the latter due to the formation of functional mTORC2. However, in cells with the 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.30.403774doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403774
http://creativecommons.org/licenses/by/4.0/


8 
 

highest level of Sin1, while the level of  pAkt S473 was further increased, the level of pS6K1 was 

instead significantly reduced in comparison to cells with low Sin1 (Fig 3D). These data clearly 

confirm model predictions and demonstrate a biphasic pattern in mTORC1 activity in response to 

graded increases of Sin1 expression. Furthermore, in contrast to the results in previous studies 

indicating Sin1 knockout and mTORC2 activity have no effects on mTORC1 function (9, 10), our 

model simulations verified by experimental data here show that mTORC2 regulates both the 

activity of AKT and mTORC1 in MEF cells.  

Interrogating the Sin1-mTORC1 biphasic dependency in diverse cancer cell lines 

By integrating model-based simulation and biological validation, we have identified a previously 

unknown biphasic dependency between Sin1 and mTORC1 activity in MEF cells. To investigate 

the existence of this biphasic connection under a wide range of cellular contexts, and how it may 

be impacted by cell-to-cell variability in protein expression, we adjusted our model by 

incorporating cell-type specific expression of the model proteins from a diverse array of cell types 

and performed simulations under these different conditions.  

To this end, we first obtained relative protein expression recently reported by the Cancer Cell Line 

Encyclopedia (CCLE) for 375 human cancer cell lines (31), which allowed us to compare protein 

levels across the various cell lines. Of these, 33 cell lines have missing data, i.e. no detectable 

expression of one of the model proteins, leaving 342 for further analysis. However, tailoring our 

model to a new cell type ideally requires absolute protein levels, i.e. abundance of proteins within 

a proteome. To address this, we utilized a second dataset containing absolute protein abundances 

obtained by Geiger et al. (32) for 11 common cell lines, using mass spectrometry based label-free 

proteomics and intensity-based absolute quantification (iBAQ) algorithm (32). Since 7 cell lines 

were consistent  between these two datasets, we could use the iBAQ data of these 7 cell lines and 

the relative protein information in 342 cell lines to infer the absolute protein levels for the CCLE 

cohort. A schematic of this inference pipeline is illustrated in Fig 4A. Using MCF7 as an example, 

we combined absolute protein abundances (i.e. iBAQ data) in MCF7 and the relative expression 

data (i.e. CCLE data) between MCF7 and 341 remaining cell lines to compute the absolute protein 

abundances for these cells. We repeated this process for the 6 remaining cell lines with iBAQ data 

(Fig 4A). As a result, for each of the 342 CCLE cell lines we have 7 sets of protein abundances 

that were inferred using each of the 7 cell lines from (31). The final abundance of the model protein 

components in each cell line were then derived by taking average of the 7 corresponding values, 

which were subsequently used to modify the initial conditions in our model in order to tailor it for 

each of the 342 cancer cell lines.  

Having customized our model for different cell lines, we asked if the Sin1-mTORC1 biphasic 

dependency may still exist under these varying cellular contexts. Fig 4B displays the model 

simulation results for pS6K1 in response to increasing Sin1 expression, showing the biphasic 

dependency is still present in almost all of the cell lines. This suggests the biphasic dependency is 

robust to intercellular variations, albeit the precise shape of this biphasic curve slightly differs 

between different lines, where it peaks at a lower level of Sin1 in some compared to others (Fig 

4B). In addition, we analyzed the effect of mLST8 perturbation in various network conditions (Fig 

4C). In contrast to Sin1, increasing mLST8 consistently enhanced the level of 

phosphorylatedS6K1 and Akt in the majority of the tested cell lines. These results highlight the 

role of mLST8 overexpression in tumor formation and progression in part through promoting 

mTORC1 and 2 activities, which has been observed in human colon carcinoma and prostate cancer 

(13).  
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Molecular factors governing the Sin1-mTORC1 biphasic dependency  

A strength of a computational modelling approach is that factors controlling emergent complex 

network behaviors can be identified through systematic in silico perturbation/sensitivity analysis, 

which would otherwise be challenging experimentally. Here, we seek to decipher the molecular 

players that govern the observed Sin1-mTORC1 biphasic dependency. To evaluate a biphasic 

response quantitatively, we introduced a general ‘biphasic index’ (BI) that measures the 

biphasicness of a response curve, defined as in Fig 5A. Since the response curve is normalized to 

its peak (maximal) value, BI ranges between -1 and 1. BI = -1 or 1 indicate a strictly monotonic 

increasing and decreasing response curve, respectively; while -1< BI <1 indicates biphasic pattern 

which becomes more pronounced as BI is closer to 0 (Fig 5A). Next, we systematically perturbed 

the model kinetic parameters representing the strength of network interactions one by one within 

wide ranges (1000 folds up/down of nominal values), and assessed the impact of these 

perturbations on the BI of the Sin1-mTORC1 response curve. 

The results, displayed in Fig 5B, indicate that the parameters related to the mLST8 switch:  

(de)ubiquitination of mLST8 (kf4 and kr4), mLST8-Sin1/Raptor binding (kf6/kf5), and OTUD7B 

activation (kf3) have the strongest impact on the shape of the Sin1-pS6K response curve. Indeed, 

lowering kf3-6 converts the Sin1-pS6K curve from biphasic to monotonic increasing, while raising 

them shifts the curve to a monotonic decreasing pattern instead (the opposite is true for kr4). 

Consequently, biphasic response exists over relatively restricted ranges of these parameters (green 

regions, Fig 5B). In contrast, the biphasic response persists over much wider ranges of the lower-

ranked parameters, and their perturbations largely shifts the curve an increasing pattern only 

(green to red, Fig 5B), suggesting the biphasic response is less sensitive to changes in the switch 

non-related parameters. Of note, the lowest-ranked parameters (kf11b, kf1) do not significantly affect 

the biphasic pattern. Interestingly, the sensitivity analysis further reveals that kf12a and kf12b impact 

the BI in opposite ways, indicating the rate of TSC2 phosphorylation by pAkt T308 (kf12a) or the 

fully activated pAkt S473T308 (kf12b) have divergent influence on the Sin1-pS6K response. The 

reason for this is that pAkt S473T308 is regulated by mTORC2 activity and therefore Sin1 

concentration, whereas pAkt T308 is independent from Sin1.  

In addition, we performed similar sensitivity analysis for the model state variables (i.e. proteins’ 

concentration). Fig 5C shows that in accordance with the results above, perturbing OTUD7B and 

TRAF2, the primary regulators of the mLST8 (de)ubiquitination switch, most strongly affect the 

Sin1-pS6K response BI. Collectively, these results indicate that the mLST8 ubiquitination switch 

and its constituents critically governs the biphasic relationship between mTORC1 activity and 

Sin1 concentration. 

mLST8 represents a viable therapeutic target in breast cancer 

Our model simulation showed that mLST8 enhances the activity of both mTORC1 and 2 (Fig 4C 

and S4), suggesting it plays a tumour-promoting role. To examine this further, we interrogated the 

alteration profiles of mLST8 in patient cancers from The Cancer Genome Atlas (TCGA). In line 

with our prediction, mLST8 is primarily amplified in the top frequently altered tumour types, 

including breast cancer, uterine carcinosarcoma and adrenocortical carcinoma (Fig 6A). Further 

analysis of breast cancer, where mLST8 is most commonly amplified, shows that it is frequently 

overexpressed (~14%) in patients from both the TCGA and METABRIC cohorts (Fig 6B), two of 

the largest breast cancer cohorts publicly available. Importantly, our survival analysis 

demonstrates that high mLST8 expression is associated with worse overall survival in breast 

cancer patients (Fig 6C). Together, these results indicate mLST8 plays a tumour-enhancing role 

in breast cancer and its expression may serve as a prognosis indicator, in line with its reported role 
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in other tumour types (12). The findings also points to the exciting possibility of targeting mLST8 

as a future therapeutic intervention strategy in breast cancer. 

DISCUSSION 

Signalling networks are the key information-processing machineries that underpin the ability of 

living cells to respond proportionately to extra- (and intra-) cellular cues. More detailed analyses 

of  these networks reveals  they are complex interaction systems, often featuring multiple feedback 

mechanisms, ubiquitous post-translational modifications and intricate pathway crosstalk. In-depth 

understanding of these networks thus requires quantitative approaches that both complement and 

extend biological experimentation. We integrate computational network modelling and 

experimental studies in a systems-based framework to characterize emergent properties of the 

PI3K/mTOR signalling network, a central regulator of cellular growth, aging and metabolism.  

Dynamic modelling has been employed extensively in the study of cell signalling networks, 

uncovering valuable insights into cellular behavior (33). Here, we present new dynamic models 

of the PI3K/mTOR network that explicitly accounts for the critical coordination of mTORC1 and 

2 formation and function by their shared subunit mLST8, through its (de)ubiquitination reactions 

(7). To our knowledge, these are the first models to do so. We initially postulated four different 

network structures and corresponding model variants (models 1-4) that reflect competing 

hypotheses on OTUD7B regulation and whether mLST8 is essential for mTORC1 functional 

activity. The latter remains a contentious point among several published studies (9-13). By 

validating model simulations against multiple existing datasets, we were able to discriminate 

among the alternative network structures and arrived at model 4 as the most likely model as it 

provides the strongest fit of these data. Moreover, this model was further validated using biology 

experiments.   The results of these analyses indicated that mLST8 is required for mTORC1 

assembly and activity, and the deubiquitinase OTUD7B is stimulated through IRS rather than IR 

directly.   

Using model 4 for subsequent analysis, model simulations predicted a hitherto unknown biphasic 

dependency between mTORC1 activity and Sin1, a central subunit of mTORC2. Importantly, we 

confirmed this prediction experimentally by gradually overexpressing Sin1 in Sin1-/- MEF cells, 

and measured phosphorylated S6K1 and Akt (pS473) as indicators of mTORC1 and 2 activity, 

respectively. Indeed, increasing Sin1 concentration from a low level significantly enhanced 

mTORC1 activity, However, beyond a critical threshold, further overexpression of Sin1 inhibited 

mTORC1 activity (Fig 3A, D). This is in contrast with a monotonic increase in mTORC2 

activation in response to Sin1 overexpression observed in both model simulations and 

experimental data. To identify the molecular factors that control the Sin1-mTORC1 biphasic 

response, we performed model-based sensitivity analyses assessing possible effects of changes in 

model kinetic parameters and state variables on the biphasicness of the response curve, quantified 

by a newly derived metric. Interestingly, we found that the top-ranked, i.e. most dominant, 

parameters and state variables are primarily involved in the regulation of the mLST8 

(de)ubiquitination switch, suggesting this molecular mechanism plays an important role in 

modulating the biphasic level of the Sin1-mTORC1 curve. In line with this finding, the 

mechanistic explanation underlying the biphasic response stems from the switch-mediated protein 

competitions and the balance of such competitions that play out within the network. Increasing 

Sin1 sequesters mLST8 from Raptor to form more mTORC2 and less mTORC1 at the same time; 

however higher levels of mTORC2 promotes stronger Akt activation, which converts more 

mTORC1 molecules from an inactive to an active state. In the first phase, the gain in mTORC1 

activity dominates the loss in abundance, and the net effect is an enhancement of pS6K1, while 

the balance is flipped in the second phase, leading to an overall reduction in pS6K1.  
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While our integrative analyses demonstrated the biphasic Sin1-mTORC1 dependency using MEF 

cells as the main experimental model, we wondered whether such response is robust to cell-to-cell 

variability and if it is conserved under different cellular contexts. Given the relevance of the 

PI3K/mTORC signalling network in cancer and availability of large-scale protein expression data 

in cancer cell lines, we integrated relative and absolute protein abundances from complementary 

proteomics profiling studies and developed a pipeline to infer absolute protein abundances for 342 

cancer cell lines within the CCLE consortium. Using these data, we adjusted our model for each 

individual cell line by changing the total expression of model proteins (i.e. initial conditions) 

accordingly, and simulated the Sin1-mTORC1 response for each line. Simulation results predict 

that while the precise shape of the response curve vary between the cell lines, the biphasic pattern 

is still present in most of the considered lines, suggesting the biphasic dependency is quite robust 

to the cell-to-cell heterogeneity in protein expression and may be a common feature among many 

cell lines.  

This biphasic, rather than monotonic, pattern may underlie the diverse and inconsistent response 

of phosphorylated S6K to mTORC2 blockade reported by different experimental studies. For 

example, blocking mTORC2 reduced pS6K in MCF7 and ZR-75-1 breast cancer cells (34) as well 

as in non-transformed cells, including 3T3-L1 (25, 35) and HEK-293 cells (3); whereas it 

enhanced pS6K in lung cancer A549 and prostate cancer PC3 cells (35); and induced no significant 

changes in pS6K in other tumour cells, including HT29 (36) and U251 (37). Moreover, 

inconsistency has been observed even in the same cell line by different studies, e.g. as in the case 

of Hela (3, 15) and MEF cells (9, 10). One reason for these discrepancies may simply be due to 

the very non-linear nature of biphasic input-output curves, where depending on the starting value 

of the input (dose) and efficiency of knockdown/inhibition, this could either inhibit, promote or 

not affect the output (response) (see Fig S6). 

In addition to revealing a novel functional connection between mTORC2 and mTORC1, our 

model simulations further showed that mLST8 promotes the activity of both complexes (Fig 4C 

and S4). This result is consistent with the alteration profiles found in cancer patients analysed from 

TCGA, which show mLST8 is primarily amplified and overexpressed in the most frequently 

altered tumour types, notably breast cancer (Fig 6A, B). Model simulations further suggest that 

mLST8 may stimulate tumour development and/or progression through promoted activation of 

both mTOR complexes, a notion in line with published data in colon and prostate cancer (13) and 

our result that high mLST8 is associated with worse overall survival in breast cancer patients (Fig 

6C). Together, these findings point to the possibility of targeting mLST8 as an anti-cancer 

therapeutic strategy, which is indeed being currently investigated (38).  

In conclusion, we have integrated mechanistic modelling and experimental analysis to elucidate 

novel emergent behavior of the PI3K/mTOR signalling network. In contrast to a commonly held 

view that mTORC2 lies upstream (as often depicted in biological cartoons) and is a positive 

regulator of mTORC1, we found that their inter-relation is nonlinear and highly dose-dependent.  

Our results highlight the need to embrace network-level view and apply integrative computational-

experimental approaches to study complex signalling and regulatory networks. Our new dynamic 

model of the PI3K/mTOR network, to our knowledge, is the first that incorporates the mLST8 

ubiquitination switch and its critical coordination of the assembly and activity of different mTOR 

complexes. As such, it provides a novel quantitative framework of the network that is expected to 

serve as a useful resource for future studies and modelling efforts.  
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MATERIAL & METHODS 

Cell culture and viral transduction 

PlatE cells were cultured in DMEM with 10% FBS, 2 mM L-GlutaMAX, 1 μg/ml puromycin and 

10 μg/ml blastcidine. Sin1-/- MEFs were cultured in DMEM with 10% FBS, 2 mM L-GlutaMAX, 

non-essential amino acids, and 1 mM sodium pyrophosphate.  

For Sin1 retroviral production, PlatE cells (32) grown in 10 cm dish were transiently transfected 

using lipofectamine 2000 (Life Technologies) according to manufacturer’s instructions with 

retroviral vectors pMIG or pMIG-Sin1. Medium was replaced the next day with 6 ml medium per 

dish. Virus-containing medium was collected after 2 days, followed by filtration using a 0.45 

micron filter and used immediately for infection or stored at -80°C. 

To generate Sin1 re-expression MEFs, Sin1-/- MEFs were seeded into retroviral-containing media 

and transduced overnight with 4 μg/ml polybrene, followed by fresh media change the next 

morning.   

The Sin1 low- and high-expression cells were sorted by FACS (FACSAria II) according to the 

expression level of EGFP.    

Western Blotting 

Cells were rinsed twice with ice-cold PBS, solubilized in 2% SDS in PBS, sonicated, and spun at 

15,000 3 g for 15 min. Protein content was determined by bicinchoninic acid (BCA) assay. 

Proteins were separated by SDS–PAGE and transferred to PVDF membranes. The membranes 

were incubated in a blocking buffer containing 5% skim milk in Tris-buffered saline (TBS) and 

immunoblotted with the relevant antibodies overnight at 4°C in the blocking buffer containing 5% 

BSA–0.1% Tween in TBS buffer. After incubation, the membranes were washed and incubated 

with HRP-labeled secondary antibodies for 1 h and then detected by SuperSignal West Pico 

Chemiluminescent Substrate. In some cases, IR dye 800-conjugated secondary antibodies were 

used and then scanned at the 800-nm channels using an Odyssey IR imager. Immunoblots were 

quantified by Image studio software and statistical significance was assessed using Student’s t test.  

The following antibodies were used: Anti-Sin1 (Millipore, 07-2276); anti-S6K (CST, 2708); anti-

S6K-T389 (CST, 9234); anti-Akt (CST, 4051); anti-Akt-S473 (CST, 4058); anti-14-3-3 (Santa 

Cruz, sc-629). 

Mathematical Modelling 

We constructed four mechanistic models to interrogate different possible network structures of the 

PI3K/Akt signalling pathway. With these models we examined whether: (i) The OTUD7B activity 

is regulated by the S6K1 negative feedback in the pathway, and (ii) mLST8 is required for 

mTORC1 kinase activity. With these four models we assessed the 4 different possible 

combinations.  

The models are constructed using ordinary differential equations (ODEs). The ODEs and the best-

fitted parameter sets for each model are given in Tables S1-S3. The model formulation and 

calibration processes were implemented in MATLAB® (The MathWorks. Inc. 2019a).The IQM 

toolbox (http://www.intiquan.com/intiquan-tools/) was used to compile the IQM file for a MEX 

file which makes the simulation much faster. 

Model training is the process of estimation of the model’s parameters. As a result of model 

calibration a ‘best-fitted’ model will be produced that best recapitulates biological data used for 

model training. To calibrate the model parameters objective function 𝐽 was used that quantifies 
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the difference between the model simulation results and corresponding experimental 

measurements:  

𝐽(𝑝)  =  ∑ 𝑤𝑗

𝑀

𝑗=1

∑(𝑦𝑗,𝑖
𝐷 − 𝑦𝑗(𝑡𝑖 , 𝑝))2

𝑁

𝑖=1

 

The model parameters value were estimated to minimize the objective function value. Here, 𝑀 is 

the number of experimental data sets for fitting and 𝑁 denotes the number of time points in a 

experimental data set. 𝑦𝑗(𝑡𝑖 , 𝑝) indicates the model simulations of the component 𝑗 at the time 

point 𝑡𝑖 while parameter set 𝑝 is used for the simulation. Finally, 𝑦𝑗,𝑖
𝐷  is the experimental data of 

component 𝑗 at time point 𝑡𝑖 and 𝑤𝑗 is the weight of the component 𝑗. 

Optimizing the objective function is done by using Genetic Algorithm (GA) (Man et al., 1996; 

Reali et al., 2017; Shin et al., 2014). For this, Global Optimization Toolbox and the ga function in 

MATLAB were used. To obtain the best fitted parameter sets, GA runs are done with population 

size of 200 and the generation number set to 800. 

Sensitivity Analysis 

To investigate the molecular factors that govern the biphasic pattern between Sin1 concentration 

and mTORC1 activity we used sensitivity analysis. First, we defined a biphasic index (BI) that 

calculates the biphasicness of the pS6K1-Sin1 concentration response curve. For this, Sin1 

concentration is perturbed from 0.01 to 100 of its initial value and pS6K1 is measured to obtain 

the pS6K1-Sin1 concentration curve (Fig 5A). In the next step, this curve is normalized to 1 and 

BI index is calculated as defined in Fig 5A.  

Next, value of each model kinetic parameter is perturbed from 0.001 to 1000 of its nominal value 

and the BI is calculated for each parameter value. Finally, the parameters are ranked based on their 

impact on variation of BI index after perturbing their value.  

Patient Data Analysis 

For survival analysis, mRNA expression and associated overall survival data from 2509 breast 

cancer patients as part of the METABRIC trial (39) were downloaded from the cBioPortal for 

Cancer Genomics portal (www.cbioportal.org). Patients were classified into groups having low or 

high expression of mLST8. Analysis comparing overall survival between these groups was done 

using a Log-rank test (with p< 0.05 considered significant). The Log-rank test statistics and 

survival curves were generated using Kaplan-Meier estimate and implemented using the Logrank 

package  (https://www.github.com/dnafinder/logrank) using MATLAB 2019b. 
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FIGURE LEGEND 

Fig 1. Construction and calibration of new mathematical models of the PI3K/mTOR 

signalling network incorporating the mLST8 (de)ubiquitination switch.  (A) Schematic 

displaying a molecular switch mediated by mLST8 ubiquitination recently reported in (7), which 

dictates how mLST8 associates with mTORC1 or 2 through Raptor and Sin1, respectively (ubi: 

ubiquitination). (B) Detailed reaction diagrams of the new PI3K/mTOR network models 

incorporating the mLST8 switch. Four model variants (models 1-4) with distinguishing 

interactions as described in the text are highlighted (ubi: ubiquitination, act: activated, Tot: total). 

(C) Simplified schematics of the different network structure captured by the four model variants. 

(D) Time-course model simulations using best-fitted parameter sets as compared to the quantified 

experimental data (red curves), presented for each of the four models. Experimental data represent 

the dynamic response of various network proteins following insulin stimulation (100nM) in MEF 

cells, obtained from (7). Per model, multiple best-fitted sets obtained from model calibration (n= 

38, 26, 11, 17 for model 1, 2, 3, 4, respectively) were used for simulations: the lines represent the 

mean simulated curve and the shaded areas indicate standard deviation of all curves. 

 

Fig 2. Independent validation of the four models. Simulations of the dynamic response of 

various network components to insulin stimulation in control (WT MEF cells, blue lines) condition 

and when TRAF2 is deleted (traf2-/- MEF cells, red lines), in comparison to the corresponding 

experimental data (right panels), taken and quantified from (7). The data are presented as mean ± 

S.E.M. These validation analysis indicates models 1-3 could not recapitulate all data, and model 

4 represents the best-fit model (see text for details). 

 

Fig 3. In silico analyses and experimental validation show biphasic dependency of mTORC1 

activity on Sin1. (A) Dose-response simulations of the steady-state values of pS6K1 and pAkt473 

in response to increasing Sin1 or TRAF2, revealing a biphasic dependence of mTORC1 activity 

on Sin1. Sin1 or TRAF2 concentrations were varied within a wide range: 100 folds down/up of 

their nominal values. Each curve related to each parameter set was normalized by its maximal 

(peak) value and then average and S.E.M. were calculated at each concentration. (B) Temporal 

simulations of pS6K1 at different concentrations of Sin1. (C) Two-dimensional perturbation 

analysis showing the simulated steady-state response of pS6K1 to simultaneous change in pairs of 

proteins, which demonstrates the biphasic pattern is robust over wide ranges of TRAF2 and 

OTUD7B expression levels. (D) Experimental validation of the Sin1-mTORC1 biphasic 

dependency. Cells were deprived of serum for 2 h, followed by insulin (100 nM) stimulation for 

10 min, and samples were analyzed by Western blot. Graphs show mean and SEM of quantitative 

analyses of Western blots (*P<0.05, **P<0.01, ****P<0.0001, two-tailed student’s t test, n = 3 

biological replicates). 

 

Fig 4. The mTORC1-Sin1 biphasic dependency is robust under diverse cellular contexts. (A) 

Pipeline for inference of absolute protein levels in 342 CCLE cell lines by combining CCLE 

relative expression and Geiger iBAQ-based absolute expression data.  (B) Heatmap representing 

dose-response simulation of pS6K1 in response to increasing Sin1 expression, showing the Sin1-

mTORC1 dependency is a robust biphasic pattern across multiple cell lines. For each line, Sin1 

concentration is perturbed from 0.01 to 100 fold of its initial value and pS6K1 is measured at the 

steady state (SS). (C) Heatmaps representing dose-response simulation of pS6K1 (left) and 

pAkt473 (right) in response to increasing mLST8 expression in 342 cancer cell lines. 
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Fig 5. Deciphering the molecular players that govern the Sin1-mTORC1 biphasic 

dependency. (A) Derivation of a quantitative Biphasic Index (BI) measuring the biphasicness of 

pS6K1 response curve to Sin1 perturbation. The response curve is normalized to its peak (max) 

value. BI ranges between -1 and 1: BI = -1 or 1 indicate a strictly monotonic increasing (blue) and 

decreasing response curve (red), respectively; while -1< BI <1 indicates a biphasic pattern that is 

more pronounced as BI is closer to 0 (green). (B-C) Impact of perturbation of model kinetic 

parameters (B) or protein concentrations (C) on the BI of the Sin1-mTORC1 response curve. The 

kinetic parameters were perturbed one by one within wide ranges (1000 folds up/down of nominal 

values), and the impact on the BI were computed. The parameters/proteins are ranked as having 

minimum (left) to maximum (right) effect on variation of BI (Sin1-mTORC1).  

 

Fig 6. Interrogation of mLST8 alteration and prognostic value in cancer patients. (A) 

Alteration frequency of the mLST8 gene in cancer patients analysed from TCGA database using 

cBioPortal (www.cbioportal.org), shown for the most frequently altered tumour types (cut-off > 

1%). (B) Frequency of mLST8 alteration in breast cancer patients analysed using two breast cancer 

cohorts TCGA and METABRIC. Only patients having mLST8 alterations are displayed for 

brevity. (C) Breast cancer patients with high mLST8 expression are significantly associated with 

poorer overall survival outcome compared to those with low mLST8 (analysed using the 

METABRIC cohort data obtained through cBioPortal).  
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Figure 6 
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SUPPLEMENTARY FIGURES 

 

 

 

 

Fig S1. Quantified time-course data of various network components following insulin stimulation 

(100nM) in WT MEFs, reproduced from ref (7). Phosphorylated (p) and ubiquitinated (Ubi) levels 

of each protein were normalized to the corresponding total protein levels. Each curve was 

normalized by their maximal (peak) value. 

 

 

 

 

 

 

  

Fig S2. Quantified time-course data of the indicated proteins following EGF stimulation in WT 

and TRAF2 knocked-out MEF cells, reproduced from ref (7). Phosphorylated (p) levels of each 

protein were normalized to the corresponding total protein levels. The curves under TRAF2 

knockout condition were normalized by their corresponding maximal (peak) values, and the WT 

curves were scaled accordingly. 
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Fig S3. Visual depiction of signal flow within the PI3K/mTOR network. (A) In response to insulin 

stimulation, phosphorylated Akt increases. This leads to enhanced TSC2 phosphorylation, relief 

of inhibitory effect on mTORC1, subsequent higher mTORC1 activation and phosphorylation of 

its key substrate S6K1. (B) Compensatory mechanism following TRAF2 knockout that results in 

no change in mTORC1 activity dynamics as compared to WT cells: TRAF deletion reduces 

mTORC1 formation and abundance because of lower ubiquitinated mLST8 but at the same time 

leads to stronger mTORC1 activity (per molecule) due to higher Akt phosphorylation; and the net 

effect is no significant change in the phosphorylation of S6K1.  

 

 

 

 

Fig S4. Dose-response simulations of the steady-state values of pS6K1 and pAkt473 in response 

to increasing Raptor, OTUD7B or mLST8. Total Raptor, OTUD7B and mLST8 concentrations 

were perturbed within 100 folds up/down of their initial values. The pS6K1 and pAkt473 curves 

for each parameter set were normalized by their corresponding maximal (peak) values and then 

average and S.E.M. were calculated at each concentration.  
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Fig S5. A reaction schematic of model 4 with overlay of the kinetic parameters. Normal arrows 

indicate positive regulation, bar-headed  arrows indicate negative regulation. The red lines 

indicate the links that exert strongest impacts on the biphasicness (i.e. BI) of the Sin1-mTORC1 

dependency. 

 

 

 

 

Fig S6. Biphasic response gives rise to highly context-dependent effect of mTORC2 blockade. 

Depending on the initial state of mTORC2 (e.g. Sin1 level) and the efficiency of blockade,  

mTORC2 inhibition may result in upregulation, downregulation, or even no change in the 

phosphorylation level of the key mTORC1 substrate S6K1. This potentially explains the diverse, 

seemingly conflicting effect of mTORC2 blockade on mTORC1 activity reported in multiple 

previous studies. 
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SUPPLEMENTARY TABLES 

Table S1. Reactions and rate equations of the PI3K/AKT pathway model 

 Reactions Reaction rates 

R1 InsR ↔ pInsR 
kf1 * InsR*(Ins+InsB0)/(Km1 + InsR) - 

kr1*pInsR 

R2 IRS ↔ pIRS 
kf2*IRS*pInsR/((Km2 + IRS)*(1+ 

ki2*pS6K1)) - kr2*pIRS 

R4 Ubi.mLST8 ↔ mLST8 
kf4 * act.otud * ubi.mLST8/(km4+ 

ubi.mLST8) - kr4* mLST8 *TRAF 

R6 mLST8 + Sin1 ↔  mTORC2 Kf6* mLST8 * Sin1 – kr6*mTORC2 

R7 Akt  ↔  pAkt308 
kf7 * pIRS * Akt / (Km7 + Akt) - kr7 * 

pAkt308 

R8 Akt  ↔  pAkt473 
Kf8 * pmTORC2 *Akt/ (Km8 + Akt) – kr8 * 

pAkt473 

R9 pAkt308  ↔  pAkt308473 
Kf8 *  pmTorc2 * pAkt308 / (Km9 + pAkt308) 

– kr8 * pAkt308473 

R10 pAkt473 ↔  pAkt308473 
Kf7 * pIRS * pAkt473 / (Km10 + pAkt473) – 

kr7 * pAkt308473 

R11 mTorc2 ↔  pmTorc2 
kf11*mTorc2* pAkt308 / (Km11 + pAkt308) - 

kr11 * pmTorc2 

R12 TSC2 ↔ pTSC2 

TSC2*(kf12a*pAkt308 + 

kf12b*pmAkt308473)/(Km12 + TSC2)-

kr12*pTSC2 

R13 mTorc1 ↔ pmTorc1 
kf13 * mTorc1/(1+ki13*TSC2) - 

kr13*pmTorc1 

R14 S6K1 ↔ pS6K1 
kf14 * mTorc1* S6K1 / (Km14 + S6K1)  - 

kr14* pS6K1 

 

Models  Reactions Reaction rates 

Model 1 R3 
OTUD7B ↔ 

act.OTUD7B 

kf3 * pInsR * OTUD7B /(km3+ OTUD7B) - 

kr3*act.OTUD7B 

Model 2 R3 
OTUD7B ↔ 

act.OTUD7B 

kf3 * pInsR * OTUD7B /(km3+ OTUD7B) - 

kr3*act.OTUD7B 

Model 3 

R3 
OTUD7B ↔ 

act.OTUD7B 

kf3 * pInsR * OTUD7B /(km3+ OTUD7B) - 

kr3*act.OTUD7B 

R5 
Ubi.mLST8 + 

Raptor ↔  mTORC1 
kf5* Ubi.mLST8 *Raptor - kr5*mTORC1 

Model 4 

R3 
OTUD7B ↔ 

act.OTUD7B 

kf3 * pInsR * OTUD7B /(km3+ OTUD7B) - 

kr3*act.OTUD7B 

R5 
Ubi.mLST8 + 

Raptor ↔  mTORC1 
kf5* Ubi.mLST8 *Raptor - kr5*mTORC1 
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Table S2. Ordinary differential equations of the PI3K/Akt pathway model. The reaction 

rates are given in Table S1. The initial conditions are representative values. 

 

Left hand 

Sides 

Right hand 

Sides 

Initial Conditions (nM) 

Model 1 Model 2 Model 3  Model 4 

d[InsR]/dt -R1 4.64202 55.39126 93.71527 27.23045 

d[pInsR]/dt +R1 95.35798 44.60874 6.284733 72.76955 

d[IRS]/dt -R2 21.11798 99.07924 98.72274 83.15635 

d[pIRS]/dt +R2 78.88202 0.92076 1.277256 16.84365 

d[OTUD7B]/d

t 

-R3 
27.35535 99.13060 

1.069323 14.5823 

d[act.OTUD7

B]/dt 

+R3 
72.64465 0.86940 

98.93068 85.4177 

d[mLST8]/dt R4 - R6 1.29090 0.12150 1.788563 0.017049 

d[Ubi.mLST8]

/dt 

-R4-R5 
69.73137 99.79011 

0.05619 6.53205 

d[Raptor]/dt -R5 _ _ 15.07126 16.978 

d[Sin1]/dt -R6 71.02227 99.91160 86.77349 89.5711 

d[mTORC2]/d

t 

-R11 
9.06330 0.02680 

13.05844 4.215747 

d[pmTORC2]/

dt 

R11 
19.91443 0.06159 

0.168063 6.213149 

d[mTorc1]/dt +R5-R13 86.74390 86.11926 84.88032 82.782 

d[pmTorc1]/dt +R13 13.25601 13.88074 0.048424 0.240002 

d[Akt]/dt -R7-R8 63.47147 99.89068 98.82913 27.09027 

d[pAkt473]/dt +R8-R10 15.73922 0.00153 1.90E-05 0.828181 

d[pAkt308]/dt +R7-R9 20.75070 0.07543 1.170799 71.97231 

d[pAkt308473

]/dt 

R9+R10 
0.03861 0.03237 

5.08E-05 0.109242 

d[S6K1]/dt -R14 81.51088 79.32881 91.89075 97.75106 

d[pS6K1]/dt R14 18.48912 20.67119 8.109249 2.248936 

d[TSC2]/dt -R12 35.05656 98.55693 94.43558 21.0847 

d[pTSC2]/dt R12 64.94344 1.44307 5.564417 78.9153 
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Table S3. Representative best-fitted parameter sets used for simulations for each of the 

four models. All the best-fitted parameters are provided in a separated Supplementary 

Table. 

  

Parameter Model 1 Model 2 Model 3 Model 4 Unit 

Kf1 170.2159 10000 1333.521 756.8329 sec-1 

Km1 3.68129 0.000931 335.7376 0.003155 nM 

Kr1 0.016181 1.482518 0.028379 0.103992 sec-1 

Kf2 90.57326 984.0111 1025.652 31.76874 sec-1 

Km2 4931.738 157.3983 5794.287 0.000369 nM 

Ki2 2.884032 2296.149 275.4229 42.3643 nM-1 

Kr2 0.075858 0.447713 0.070469 1.425608 sec-1 

Kf3 0.77983 4073.803 0.952796 0.564937 sec-1 

Km3 36.98282 2202.927 0.010116 1.513561 nM 

Kr3 0.098628 255.2701 0.535797 0.100925 sec-1 

Kf4 47.75293 20.18366 7.533556 4.819478 sec-1 

Km4 54.95409 0.389942 17.37801 0.242661 nM 

Kr4 138.6756 2.218196 0.717794 232.8091 sec-1 

Kf5 _ _ 0.572796 3548.134 nM-1 sec-1 

Kr5 _ _ 56.36377 4753.352 sec-1 

Kf6 11.27198 4.753352 1.428894 4295.364 nM-1 sec-1 

Kr6 6683.439 3.243396 428.5485 1555.966 sec-1 

Kf7 58.07644 0.001714 1169.499 5.420009 sec-1 

Km7 215.2782 5069.907 0.103514 8649.679 nM 

Kr7 6.426877 0.037844 9015.711 0.019634 sec-1 

Kf8 0.474242 112.9796 1.425608 523.6004 sec-1 

Km8 0.299226 0.012531 0.062806 0.002228 nM 

Kr8 2.697739 2.951209 0.33266 3926.449 sec-1 

Km9 143.2188 0.063241 1267.652 66.06935 nM 

Km10 0.005129 1345.86 6280.584 475.3352 nM 
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Kf11a 0.118577 18.96706 4.943107 46.2381 sec-1 

Kf11b 1.883649 8912.509 0.000935 2233.572 sec-1 

Km11 0.003926 922.5714 5.164164 0.103992 nM 

Kr11 0.271644 0.160694 0.268534 561.048 sec-1 

Kf12a 0.003793 0.340408 2.055891 6501.297 sec-1 

Kf12b 325.8367 4385.307 8669.619 16.36817 sec-1 

Km12 0.039994 255.8586 7481.695 0.000287 nM 

Kr12 17.33804 0.044875 0.007145 5929.253 sec-1 

kf13 1054.387 0.328095 0.366438 0.000948 sec-1 

ki13 8016.781 16.29296 139.9587 0.537032 nM-1 

Kr13 0.013428 0.025293 0.9977 0.026546 sec-1 

kf14 0.286418 3.614099 2904.023 35.15604 sec-1 

km14 0.221309 0.002009 4130.475 65.31306 nM 

Kr14 0.148936 1.534617 0.058884 2.249055 sec-1 

Ins0 1 1 1 1 nM 
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