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Abstract

Monitoring social insects’ activity is critical for biologists researching their group
mechanism. Manually labelling individual insects in a video is labour-intensive.
Automated tracking social insects is particularly challenging: (1) individuals are small
and similar in appearance; (2) frequent interactions with each other cause severe and
long-term occlusion. We propose a detection and tracking framework for ants by: (1)
adopting a two-stage object detection framework using ResNet-50 as backbone and
coding the position of regions of interest to locate ants accurately; (2) using the ResNet
model to develop the appearance descriptors of ants; (3) constructing long-term
appearance sequences and combining them with motion information to achieve online
tracking. To validate our method, we build a video database of ant colony captured in
both indoor and outdoor scenes. We achieve a state-of-the-art performance of 95.7%
mMOTA and 81.1% mMOTP in indoor videos, 81.8% mMOTA and 81.9% mMOTP in
outdoor videos. Our method runs 6-10 times faster than existing methods for insect
tracking. The datasets and code are made publicly available, we aim to contribute to an
automated tracking tool for biologists in relevant domains.

Author summary

The research on the group behavior of social insects is in great favor with biologists. 1

But before analysis, each insect needs to be tracked separately in a video. Obviously, 2

that is a time-consuming and labor-intensive work. In this manuscript, we introduce a 3

detection and tracking framework that can automatically track the movement of ants in 4

a video scene. The software first uses a residual network to detect the positions of ants, 5

then learns the appearance descriptor of each ant as appearance information via another 6

residual network. Furthermore, we obtain motion information of each ant by using the 7

Kalman filter. Combining with appearance and motion information, we can accurately 8

track every ant in the ant colony. We validate the performance of our framework using 4 9

indoor and 5 outdoor videos, including multiple ants. We invite interested readers to 10

apply these methods using our freely available software. 11

Introduction 12

Insects can have both adverse and positive impacts on crop plants, affecting the 13

agricultural production and ecological environment. This work is focused on a typical 14

example of social insects - ants. They are reportedly to increase wheat yield by 36% 15
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because ants can enhance soil water infiltration due to their tunnels and improved soil 16

nitrogen [1]. Activity monitoring of insects, particularly social insects (such as ants in 17

our case), proves to be remarkably challenging. Individuals in a colony of social insects 18

are similar in appearance, and involve intensive interactions with each other, causing 19

severe or long-term occlusion. 20

Manually following every ant in a colony is extremely tedious and time-consuming. 21

Vision-based automatic detection and tracking methods can alleviate the process of 22

manual labeling, allowing biologists to focus on behavior analysis. Traditional methods 23

for multi-insect tracking methods are categorized as particle filtering (PF) and 24

data-association-based tracking (DAT) ones. For tracking tasks in dense scenes, the PF 25

method is computationally intensive [2]. Even with GPU acceleration, the processing 26

speed is below the real-time frame rate [3]. Although the DAT method measures object 27

similarity by modeling appearance, motion, and even other cues, it is difficult to 28

maintain correct tracking during a long period of occlusion. Once trajectory drift 29

occurs, the accumulated errors will result in tracking failure [4–6]. 30

In recent years, with the popularity of computer vision, many advanced object 31

detection and tracking methods have emerged. 32

Object detection 33

Existing methods in object detection are categorized as one-stage or two-stage, 34

according to whether there is a separate stage of region proposal. One-stage frameworks 35

(e.g., YOLO [7]) are fast, but their accuracy is typically slightly inferior compared with 36

that of two-stage detection. The popularity of two-stage detection frameworks is 37

enhanced by R-CNN [8], which proposes candidate regions via a selective search (SS) 38

algorithm [9], thereby the detector focuses on these RoIs. However, using the SS 39

algorithm [9] to generate region proposals is the main reason causing slow inference. 40

Fast R-CNN [10] reduces the computational complexity of region proposals by 41

downsampling the original image, while Faster R-CNN [11] proposes an RPN, which 42

further improves the speed of training and inference. 43

Given the success of deep learning in general tasks of object detection, researchers 44

also applied to detect specific groups of animals, such as a single mouse [12], fruit 45

flies [13]. These methods are either limited to track a single object, or a fixed number of 46

objects. General tools [14,15] also offer the functionality to detect and track unmarked 47

animals in the image. However, most of existing methods focus on the condition of ideal 48

lab set-up and none of existing works reported the detection of ants in outdoor 49

environments which contain diverse backgrounds and arbitrary terrains. 50

Our goal is to develop a framework for robust ant colony detection and tracking. 51

Our work focuses on accurate detection and tracking ants in both indoor and outdoors 52

scenes, and thus follows a two-stage detection framework as RPN-FCN [16]. Based on 53

ResNet-50, we use position-sensitive score maps to encode the position information of 54

the candidate bounding box proposed by RPN and then perform classification and 55

regression, respectively. 56

Multi-object tracking (MOT) 57

In the last two decades, vision-based detection and tracking models have been widely 58

used to study social insects [17,18]. Appearance (particularly color) and motion 59

information are the main metrics used in this category of method. Due to high 60

similarity of ants’ appearance, researchers either use the technique of pigmenting to 61

create more distinct appearance features [19], or limit the observation to a laboratory 62

setup [20, 21]. State-of-the-art methods, such as Ctrax [20] and idTracker [21], for insect 63

tracking are tested in a laboratory setup and use background subtraction for foreground 64
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segmentation. Notably, the operations of background modeling and foreground 65

extraction are time-consuming. 66

The tracking-by-detection (TBD) paradigm is to match trajectories and detections 67

in two consecutive frames, a process that requires metrics. The global nearest neighbor 68

model measures motion state to achieve Drosophila tracking [22]. The global nearest 69

neighbor model assumes that the motion state obeys the linear observation model, 70

which commonly uses a constant velocity model - the Kalman filter (KF). However, 71

changes in ants’ speed and direction are difficult to predict, thus appearance 72

information is integrated as a metric. 73

The DAT method is a mainstream method for ant colony tracking [4]. It allows a 74

combination of multiple metrics, and uses Hungarian algorithm [23] to assign detections 75

for trajectories. The PF method is suitable for solving nonlinear problems [2], but the 76

growth in the number of particles leads to an exponential increase in the computational 77

cost, preventing the effective multi-object tracking. Using Markov Chain Monte Carlo 78

sampling can reduce computational complexity [24]. A GPU-accelerated 79

semi-supervised framework can further improve tracking accuracy and performance [3]. 80

When applying the methods above for tracking ant colonies, they are greatly 81

disturbed by background noise and difficult to overcome the serious occlusion problem 82

in dense scenes. Long short-term memory [25] and spatial-temporal attention 83

mechanisms [26] have been developed to tackle the problem of long-term occlusion. A 84

bilinear Long short-term memory structure that couples a linear predictor with input 85

detection features, thereby modeling long-term appearance features [25]. The 86

spatial-temporal attention mechanism is also suitable for the MOT task. The spatial 87

attention module makes the network focus on the pattern of matching. Meanwhile the 88

temporal attention module assigns different levels of attention to the sample sequence of 89

the trajectory [26]. The TBD paradigm-based framework is dependent on detection 90

results. Therefore, severe occlusion is likely to cause tracking failures. To prevent this 91

situation, a detector with automatic bounding box repairing and adjustment is 92

introduced by a cyclic structure classifier [27]. 93

We propose a complete detection and tracking framework based on the TBD 94

paradigm. We construct a gallery for each trajectory to store the sequence of historical 95

appearance descriptors, which is used to online association metric. This strategy 96

significantly mitigates the effects of long-term occlusion. 97

In this paper, we use a deep learning method to build a detection and tracking 98

framework. Our method is based on the TBD paradigm and accomplishes the goal of 99

online multi-ant tracking. To the best of authors’ knowledge, this is the first work to 100

achieve robust detection and tracking of ant colony in both indoor and outdoor 101

environments (Fig 1). Our method is robust in tackling the challenge of visual similarity 102

among colony individuals, handling diverse terrain backgrounds and achieving 103

long-period of tracking. Our main contributions are as follows: 104

• We adopt a two-stage object detection framework, using ResNet-50 as the 105

backbone and position sensitive score maps to encode regions of interest (RoIs). 106

During the tracking stage, we use a ResNet network to obtain the appearance 107

descriptors of ants and then combine them with motion information to achieve 108

online association. 109

• Our method proves to be robust in both indoor and outdoor scenes. Furthermore, 110

only a small amount of training data are required to achieve the goal in our 111

pipeline, which are 50 images chosen for each scene in the detection framework 112

and 50 labels randomly chosen for the tracking framework respectively. 113

• We construct an ant database with labeled image sequences, including five indoor 114

videos (laboratory setup) and five outdoor videos, with 4983 frames and 115,433 115
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labels in total. The labeled dataset are organized into the formats of PASCAL 116

VOC and MOT Challenge for tasks of detection and tracking, respectively. The 117

database will be made public for future research in this area. 118

Fig 1. Tracking results by our method in both indoor and outdoor environments.

Results & Discussions 119

Ant colony database 120

We establish an video database of ant colony, which contains a total of 10 videos. Five 121

videos are from an existing published work [28] and captured in the indoor (laboratory) 122

environment. The remaining five outdoor videos are captured in different backgrounds 123

and are obtained from the online website DepositPhotos 124

(http://www.depositphotos.com). Table 1 shows detailed video information, where I 125

represents an indoor video, O represents an outdoor video. The resolutions of indoor 126

and outdoor videos are 1920*1080 and 1280*720, respectively.

Sequence Frames Objects Sequence Frames Objects
I1 351 10 O1 600 18
I2 351 10 O2 677 37
I3 351 10 O3 557 19
I4 1001 10 O4 526 53
I5 351 10 O5 569 38

Table 1. Statistics of indoor I and outdoor O videos.

127

The videos in our database have a total of 4983 frames. There are 10 ants per frame 128

in the indoor videos. The number of ants in each frame is 18-53 in the outdoor videos. 129

The number of objects in this scenario is significant, considering the fact that the 130

popular COCO benchmark dataset contains only on average 7.7 instances per image. 131
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Some video characteristics present challenges for detection and tracking algorithms, for 132

example over-exposure for indoor videos and diverse background for outdoor ones. 133

There are caves or rugged terrains in outdoor scenes, and ants may enter or leave the 134

scene. Different from multi-human tracking, ants are visually similar and this causes 135

significant challenges for tracking. We manually mark the video frame by frame. To 136

facilitate training and reduce labeling cost, the aspect ratio of each bounding box is 1:1. 137

Considering the posture and scale of ants, we set the size of the bounding box to 96*96 138

for indoor videos and 64*64 for outdoor videos. The database and code will be made 139

publicly available. 140

Evaluation index 141

In this paper, the evaluation indicators of detection and tracking performance are as 142

follows: 143

• Mean Average Precision (MAP): the weighted sum of the average precision of all 144

videos. The weight value is the proportion of frames. 145

• False Positive (FP): the total number of false alarms. 146

• False Negative (FN): the total number of objects that do not match successfully. 147

• Identity Switch (IDS): the total number of identity switches during the tracking 148

process. 149

• Fragments (FM): the total number of incidents where the tracking result 150

interrupts the real trajectory. 151

• mean Multi-object Tracking Accuracy (mMOTA): the weighted sum of the 152

average tracking accuracy of all videos. The equation to compute mMOTA is: 153

mMOTA = 1 - (FP + FN + IDS)/NUM LABELED SAMPLES, where 154

NUM LABELED SAMPLES is the total number of labeled samples. 155

• mean Multi-object Tracking Precision (mMOTP): the weighted sum of the 156

average tracking precision of all videos. Tracking precision measures the 157

intersection over union (IOU) between labeled and predicted bounding boxes. 158

• Frame Rate (FR): the number of frames being tracked per second. 159

Results of multi-ant detection 160

In our ant database, we set up five groups of training sets (Table 2) and compare their 161

performance with that of the remaining datasets. The naming conventions are: 162

• I5+O4 represents a union of the 5th indoor video and the 4th outdoor video. 163

• I1−4 represents a union of indoor videos with their IDs of [1,2,3,4]. 164

• I5 (50) represents the last 50 frames selected from the 5th indoor video. This 165

partition strategy ensures the frame continuity for the subsequent tracking task. 166

• O1−5 (−50) represent the union of 5 subsets, the last 50 frames de-selected from 167

the outdoor videos with their IDs of [1,2,3,4,5]. 168

In all scenarios, the detection accuracy of indoor videos is higher than that of 169

outdoor videos, and MAP reaches over 90%. We also noticed that the test result for 170

outdoor videos was only 49.7% on I5+O4. This is because we used only O4 as the 171

November 22, 2020 5/17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.30.403816doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403816
http://creativecommons.org/licenses/by/4.0/


Training Data Testing Data Objects MAP↑ FR↑

I5+O4
I1−4 10 90.4 12.5
O1−3,5 28 49.7 16.0

I5 (50)+O1−5 (50)
I1−4 10 90.4 12.2
O1−5 (−50) 33 81.9 17.1

I5+O1−5 (100)
I1−4 10 90.4 12.3
O1−5 (−100) 33 82.4 16.6

I5+O1−5 (200)
I1−4 10 90.5 12.3
O1−5 (−200) 33 85.1 16.6

I5+O1−5 (300)
I1−4 10 90.5 11.8
O1−5 (−300) 33 85.8 16.2

Table 2. Detection results of different training sets.
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Fig 2. Detection accuracy of different training sets.

outdoor training set, which is insufficient to cover the wide range of diversity in terms of 172

environmental backgrounds and ant appearances. 173

In the subsequent experiments, we integrate the images of all outdoor scenes into the 174

outdoor training set and dramatically improve the accuracy of outdoor testing. Fig 2 175

clearly shows the effects of using different training sets. By further increasing in the 176

number of images in outdoor videos, the detection accuracy of outdoor scenes improves 177

slightly. For indoor environments, the detection accuracy is impervious to different 178

training sets. Moreover, reducing the number of images to 50 (I5 has a total of 351 179

frames) does not reduce the detection accuracy. This shows that we need only a small 180

number of training samples to achieve satisfactory results when the training and testing 181

scenarios are the same. 182

The frame rate is around 12 FR for indoor videos and 16 FR for outdoor ones. The 183

factor of different image resolution should be accountable for this performance gap. In 184

practical applications, if accuracy is guaranteed, we tend to use smaller training sets to 185

reduce labeling costs. Therefore, we use the model trained in “I5 (50)+O1−5 (50)” for 186

comparison with the other methods in the comparative experiments. 187
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Results of multi-ant tracking 188

Based on the TBD paradigm, we use detection results as the input to the tracking 189

framework. For offline training, we randomly select 50 labeled samples from I5 as the 190

training set. We visualized the tracking results in Fig 3. 191

(g) (h) (i)

(d) (f) (e)

(a) (b) (c)

4

1 2 3

1 2

3 4 5

Fig 3. Tracking trajectories in test videos. Horizontal axes indicate the pixel
coordinates in an image. (a-d) indoor scenes. (e-i) outdoor scenes.

Table 3 shows the performance of online tracking. After integrating the images of 192

each outdoor video in the detection training set, our method gets 95% mMOTA for 193

indoor videos and over 80% for outdoor videos. Additionally, mMOTP is around 80% 194

for both indoor and outdoor videos. Notably, since the tracking performance depends 195

on the detection result, the tracking task in O1−3,5 fails due to the low-quality detection 196

(the second row in Table 3). Except for this failure case, the tracking performance is 197

generally satisfactory considering that we only use 50 labeled samples from one indoor 198

video. 199

The time cost of the tracking model is mainly incurred by generating 128-d feature 200

vectors for each detection box. The average number of objects in outdoor videos is more 201

than three times that in indoor videos. As for runtime time, FR reaches over 35 in 202

indoor videos and more than 24 in outdoor videos. 203
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Testing Data FP↓ FN↓ IDS↓ mMOTA↑ mMOTP↑ FR↑
I1−4 236 621 21 89.9 79.9 36.5
O1−3,5 detection failure

I1−4 239 628 22 95.7 81 38.9
O1−5 (−50) 6078 7122 625 81.8 81.9 26.2

I1−4 260 617 14 95.7 81 38.7
O1−5 (−100) 4867 6018 526 83.3 82.7 28.0

I1−4 228 709 17 95.4 81 36.3
O1−5 (−200) 4289 3421 394 85.3 83 24.9

I1−4 224 820 24 94.8 81.7 35.4
O1−5 (−300) 2644 3007 266 85.8 83.3 26.4

I1−4/GT 22 23 8 99.6 92.4 35.2
O1−5 (−50)/GT 1697 458 1064 96.2 92.4 25.9

Table 3. Tracking performance evaluation. The last two rows indicate that we use the
ground truth of detection for tracking, which leads to a boost in tracking performance.

We add a set of comparative experiments in the last two rows of Table 3. We 204

directly use manually-labeled detection boxes for tracking and compare the detection 205

results on the I1−4 and O1−3,5. Both mMOTA and mMOTP have been dramatically 206

improved. This implies that an increase in detection accuracy could further boost the 207

tracking performance of our framework. 208

Comparative experiments 209

There are two widely used insect tracking software: idTracker [21] and Ctrax [22]. 210

idTracker needs to specify the number of objects before tracking, to create a reference 211

image set for each object. Meanwhile, Ctrax assumes that objects will rarely enter and 212

leave the arena. Thus, they are both not capable of tracking in outdoor scenes because 213

of the variable number of ants. Therefore, we compare these two methods only in videos 214

depicting indoor scenes. idTracker needs to specify the number of objects before 215

tracking, in order to create a reference image set for each object. To compare them with 216

our method, we convert their representations into square boxes as our ground truth. 217

Table 4 shows the tracking results. In addition to a significant improvement of tracking 218

accuracy, our method is 6 and 10 times faster than idTracker and Ctrax (see the column 219

of FR). 220

Method FP↓ FN↓ IDs↓ FM↓ mMOTA↑ mMOTP↑ FR↑
idTracker 881 8479 83 432 54 77.4 1.3

Ctrax 2832 5646 110 349 58.2 79.7 0.8
Ours 239 628 22 189 95.7 81.1 8.7

Table 4. Comparison of tracking results on videos I1−4.

idTracker uses the intensity and contrast of the foreground segmented area to extract 221

appearance features and construct a reference image set for each individual. However, it 222

can not track motionless individuals. Fig 4(a) shows that only a minority group of ants 223

are successfully tracked over the period of video. Further, there are some trajectory 224

fragments due to the limitations of the foreground segmentation model for multiple 225

objects. 226

Compared to our results, the trajectories of Ctrax are incomplete. This indicates 227

that there are more FN, as Fig 4(b) shows. Ctrax requires a sharp contrast between 228
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(b) Ctrax (c) Ours(a) idTracker
Fig 4. Comparison of tracking performance in spatial-temporal dimension (I1).
Horizontal axes indicate the pixel coordinates in an image.

object and background. The ants passing through the overexposed areas in the scene 229

will be ignored. Additionally, Ctrax assumes that the motion of the object obeys the 230

linear distribution. However, the ants’ movement is nonlinear, and their speed and 231

direction might change abruptly, causing IDS in Ctrax. 232

Our method classifies and regresses twice to locate ants accurately. During the 233

tracking stage, we use the historical appearance sequence as a reference and update it 234

frame by frame. Compared with idTracker, our method effectively solves the long-term 235

and short-term dependence of motion states, thereby reducing FM. Despite that we also 236

assume the linear distribution of motion states, they are used only to filter impossible 237

associations, and have nothing to do with association cost. We take the appearance 238

distance between trajectories and detection boxes as association cost, thus the model is 239

robust even when the ant movement is complicated. We take the appearance measure 240

between trajectories and detection boxes as the association cost, thus the model is 241

robust even when the ant movement is complicated. 242

We further compare the tracking accuracy of idTracker and Ctrax across different 243

indoor videos, as Fig 5 shows. The large variance of idTracker’s performance is affected 244

by the number of static ants, which this method fails to track. Ctrax proves to be 245

robust but with a lower accuracy compared with our method. 246

σ1=17.34

σ2=18.14
σ3=3.05

σ1=3.05 σ2=0.75
σ3=1.51

Fig 5. Comparison of tracking results for indoor scenes.

November 22, 2020 9/17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.30.403816doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403816
http://creativecommons.org/licenses/by/4.0/


Failure cases 247

Limitations of detection framework 248

The number of ants in outdoor scenes is on average 33 per frame. It is also typical for 249

ants to involve close body contact with each other for the purpose of information 250

sharing. Naturally, their extremely-close interactions are highly likely to cause 251

mis-detection (Fig 6(a)). Additionally, entrances and exits of ants in outdoor scenes are 252

more prone to mis-detection (Fig 6(b)). Moreover, the dramatically non-rigid 253

deformation of ants is also a factor causing the detection failure (Fig 6(c)). These three 254

scenarios are all challenging cases that deserve our future efforts.

(a) Interaction (b) Enter the scene (c) Non-rigid warp
Fig 6. Examples of failed detection in outdoor scenes.

255

Limitations of tracking framework 256

According to Fig 7, Ant No.41 entered the scene at Frame No.88. Coincidentally Ant 257

No.32 left the scene at an adjacent region, but its trajectory was not deleted. At Frame 258

No.93, Ant No.41 drifted to Trajectory No.32. This defect is caused by insufficient 259

appearance descriptors stored in the gallery of Ant No.41, and it moved near the exit 260

location of another ant. This kind of mis-association occurs at the image boundary and 261

accounts for the majority of IDS and FM in our experiments. However, when ants move 262

inside the scope of both indoor and outdoor scenes, our method can accurately track 263

multiple ants simultaneously for a long time, as Fig 1 shows. 264

Outdoor5 Outdoor5 Outdoor5#88 #91 #93

Fig 7. Drift at the scene boundary. A newly-entered Ant No.41 is mis-associated with
an existing Trajectory No.32.

Materials and methods 265

Overview 266

Following the TBD paradigm, we propose a uniform framework for detection and 267

tracking to efficiently and accurately track the ant colony in both indoor and outdoor 268

scenes (Fig 8). In the detection phase, we adopt a two-stage object detection framework, 269

using ResNet-50 as the backbone, and encoding RoIs proposed by RPN via 270
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position-sensitive score maps. Then we implement classification and regression through 271

downsampling and voting mechanisms. (see details in Section Two-stage object 272

detection). In the tracking stage, we first use ResNet to train the appearance 273

descriptors of ants and measure the appearance similarity between two objects. Next, 274

the tracking is accomplished by combining appearance and motion information for 275

online association metric. (Section MOT framework). 276

Conv

1×1 

Conv

RPN

Vote

PSRoI 

Pooling

Backbone 2k2 channels

Frame t-1

Frame t

Motion
Kalman

Filter

…Detector

Appearance 

Descriptors

Appearance

Convolution

MaxPooling

Residual Block

Dense

Detector

Pipeline

Conv

Appearance Descriptor

Appearance 

Descriptor

Frame t
Original Input

Frame t
With Detections

With Tracking

Track

Update

Fig 8. Architecture for detection and tracking.

Two-stage object detection 277

RPN 278

RPN is proposed in Faster R-CNN [11] to generate RoIs. Compared to SS [9], RPN is 279

based on the CNN network structure and can connect the backbone with shared weight, 280

significantly improving detection speed. We use ResNet-50 as the backbone and replace 281

the fully connected layer with a 1*1 convolution to reduce the dimensions of feature 282

maps. Considering that ResNet-50 conducts downsampling 32 times, we get 256-d 283

feature maps via a 3*3 Atrous convolution to maintain translation variability. For each 284

sliding position, we predict k region proposal boxes of different sizes and ratios; these 285

boxes are called anchors. After the 256-d vector, we connect classification and 286

regression branches through two parallel 1*1 convolution layers. The classification 287

branch uses softmax to determine whether there is an object in anchor so that this 288

branch has 2*k outputs. The regression branch will perform a regression on the 4D 289

position parameters of anchors (i.e., center coordinates, width and height) so that there 290

are 4*k outputs. RPN will propose k*w*h anchors with a w*h feature map, called RoIs. 291

We use the Non-maximum suppression algorithm [29] to filter duplicate anchors and set 292

the IOU threshold to 0.7. 293
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PSRoI-based detection 294

On the basis of RoIs, the two-stage detection framework classifies and fine-tunes the 295

location of bounding boxes. In Faster R-CNN, RoIs are scaled to the last feature maps 296

and focusing on these areas through ROIPooling. Next, each RoI is classified and 297

regressed through two fully connected layers, causing high computational complexity. 298

In order to reduce the number of parameters, we use RPN-FCN [16] to generate 299

position-sensitive score maps via a convolutional layer, which is connected to the 300

backbone. Both classification and regression tasks have independent position-sensitive 301

score maps, forming three parallel branches with RPN. 302

For the classification task, since we only need to classify ants and background, we 303

use k*k*2 convolution kernels to generate score maps. k*k indicates that each RoI is 304

divided into k*k regions to encode position information. Each region is encoded by a 305

specific feature map with two dimensions. Similarly, we use k*k*4 convolution kernels 306

for fine-tuning the position of RoIs in the regression task. 307

To focus on RoIs, we perform average pooling on each region to get feature maps, 308

called position sensitive region of interest (PSRoI) pooling, as the following formula 309

shows: 310

rc(i, j|Θ) =
∑

(x,y)∈region(i,j)

zi,j,c (x+ x0, y + y0|Θ) /n. (1)

rc(i, j|Θ) is the result of downsampling in (i, j)th for cth category, and zi,j,c is one score 311

map in the k*k*2 position-sensitive score maps. (x0, y0) represents the left-top corner of 312

RoI. Θ is the set of parameters of the network, and n is the number of pixels in the 313

region. 314

For the feature maps, we vote on k*k regions, getting the overall score of RoI on the 315

classification or regression task, as the following formula shows: 316

rc(Θ) =
∑
i,j

rc(i, j|Θ). (2)

In the formula, rc(Θ) represents the overall scores of all regions. 317

Next, we use softmax to implement binary classification, as the following formula 318

shows: 319

sc(Θ) = erc(Θ)/
C∑

c=0

erc(Θ). (3)

Here, sc(Θ) is the probability of cth category. Finally, we use the Non-maximum 320

suppression algorithm to filter the bounding box. 321

Since object detection includes classification and regression, we require a multitask 322

loss function. In this paper, we weight the loss functions of the two tasks. Because 323

softmax is used for the binary classification task, it is natural to adopt cross-entropy 324

loss for the classification task. For the regression task, we calculate the matching degree 325

between the four position parameters and ground truth: 326

L (s, tx,y,w,h) = Lcls (sc∗) + λ [c∗ = 1]Lreg (t, t∗) . (4)

where c∗ is the ground truth category label of RoI, and c∗ = 1 represents ants. Lcls (sc∗) 327

represents cross-entropy loss: 328

Lcls (sc) = − log (sc) . (5)

Lreg (t, t∗) represents the loss of the regression task, including 4 dimensions: 329

Lreg (t, t∗) = Σ4
i=1g (t∗i − ti) . (6)
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In the formula, t∗ is the predicted position, and t is ground truth after translation and 330

scaling. 331

MOT framework 332

Offline ResNet network architecture 333

We adopt a 15-layer ResNet network architecture to extract the appearance descriptors 334

of objects, as Fig 8 shows. After downsampling eight times, the network will eventually 335

obtain a 128-dimensional feature vector through a fully connected layer. The specific 336

parameters are consistent with [28]. 337

Cosine similarity metric classifier 338

We modify the parameters of softmax to get a cosine similarity measurement classifier, 339

which can measure the similarity of the same category or different categories. First, the 340

output of a fully connected layer is normalized by batch normalization, ensuring that it 341

is expressed as a unit length ‖fΘ(x)‖2 = 1, ∀x ∈ RD. Second, we normalize the weights, 342

that is, $k = ω/ ‖ωk‖2, ∀k = 1, . . . C. Cosine similarity metric classifier is 343

constructed as follows: 344

p (yi = k|ri) =
exp

(
κ ·$T

k ri
)∑C

n=1 exp (κ ·$T
n )
. (7)

Here, κ is the free scaling parameter. 345

Because the cosine similarity classifier follows the structure of softmax, we use the 346

cross-entropy loss for training: 347

L(D) = −
N∑
i=1

C∑
k=1

gtyi−k · log p (yi = k|ri) . (8)

Here, L(D) represents the sum of the cross-entropy loss of N images, p (yi = k|ri) is the 348

prediction result of ith image in kth label, and gtyi−k is ground truth. 349

Motion matching 350

We use the KF model to predict the position of trajectories in the current frame. Then, 351

we calculate the square of the Mahalanobis distance between the predicted position and 352

the detected bounding box position by measuring the degree of motion matching [30] as 353

follows: 354

d(1)(i, j) = (dj − yi)T S−1
i (dj − yi) . (9)

Here, dj is the position of the jth detection box, yi is the position of the ith trajectory 355

predicted by the KF, and Si is the covariance matrix between the ith trajectory and the 356

detected bounding box. 357

We use a 0-1 variable to indicate whether trajectory and detection meet the 358

association conditions. If the Mahalanobis distance meets t(1), (i, j) will be added to 359

the association set. The formula can be expressed as: 360

b
(1)
ij =

{
1, d(1)(i, j) < t(1)

0, otherwise
. (10)

Here, b
(1)
ij is the motion association signal. 361
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Appearance matching 362

We use the appearance descriptors to measure the appearance similarity between ants. 363

Furthermore, we create a gallery for each trajectory, and each gallery stores the latest 364

100 appearance descriptors. Then, we calculate the cosine distance of appearance 365

descriptors between gallery and candidate bounding boxes. The smallest distance is 366

used as an appearance matching degree as follows: 367

d(2)(i, j) = min
{

1− rTj r
(i)
k |r

(i)
k ∈ Ki

}
. (11)

where rj is the appearance descriptor of the jth detection box, r
(i)
k is the kth 368

appearance descriptor of the ith trajectory, d(2)(i, j) represents the appearance 369

matching degree between the ith trajectory and the jth bounding box. 370

Similarly, we introduce a 0-1 variable as an association signal. If the appearance 371

matching degree from a pair of trajectory and detection boxes meets the threshold, we 372

add it to the association set: 373

b
(2)
ij =

{
1, d(2)(i, j) < t(2)

0, otherwise
. (12)

where b
(2)
ij represents the appearance association signal. In this paper, t(2) is set to 0.2. 374

Comprehensive matching 375

To combine motion and appearance information, we set a comprehensive association 376

signal bij . Only when both motion and appearance matching degree meet the threshold, 377

the (i, j) pair will be considered for matching. The formula expression is denoted as 378

follows: 379

bij =
2∏

m=1

b
(m)
i,j . (13)

However, the KF is scarcely possible to track accurately for long periods, because of 380

the motion of ants is complicated. Therefore, we use the appearance matching degree 381

(Section Appearance matching) as the association cost. 382

Track update 383

First, we use matching cascade to match in priority for the most recently associated 384

trajectories, avoiding the trajectory drift caused by long-term occlusion [30]. During the 385

matching, we use the Hungarian algorithm to find the minimum cost matches in the 386

association cost matrix. For unmatched trajectories and detection boxes, we calculate 387

the IOU. If they meet the threshold, they are associated. 388

After that, trajectories need to be updated. They have three states: unconfirmed, 389

confirmed, and deleted. We assign a new trajectory for each unmatched detection box. 390

Furthermore, if the duration of trajectory is less than three, it will be set to an 391

unconfirmed state. The unconfirmed trajectories need to be successfully associated for 392

three consecutive frames before being converted into confirmed state; otherwise, they 393

will be deleted. 394

For the unmatched confirmed trajectories, if they are successfully matched in the 395

previous frame, we will use the KF to estimate and update their motion state in the 396

current frame; otherwise, we will suspend tracking. Moreover, if the number of 397

consecutively lost frames of confirmed trajectories exceeds the threshold (Amax=30), 398

they will be deleted. 399
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Conclusion 400

We proposed a complete detection and tracking framework based on deep learning for 401

ant colony tracking. In the detection stage, we adopted a two-stage object detection 402

framework for the detection task. We also use a ResNet model to obtain ant appearance 403

descriptors for online associations. Next, we combined appearance and motion 404

information for the tracking task. The experimental results demonstrated that our 405

method outperformed two mainstream insect tracking models in terms of accuracy, 406

precision, and speed. Particularly, our work shows its advantage in robustly detecting 407

and tracking ant colonies in outdoor scenes, which is rarely reported in existing 408

literature. We believe our method could serve as an effective tool for high-throughput 409

quantitative behavior analysis of ant colony for biologists. 410

In future research, we aim to achieve more robust detection. For example, by 411

exploring additional information of ants’ skeletal structure, we can potentially solve the 412

aforementioned failure case of close interaction and nonrigid deformation problem. We 413

also plan to improve the generalization ability of our detection and tracking frameworks 414

so that it is applicable to a wide range of outdoor environments. 415
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22. Chiron G, Gomez-Krämer P, Ménard M. Detecting and tracking honeybees in 3D
at the beehive entrance using stereo vision. EURASIP Journal on Image and
Video Processing. 2013;2013(1):59.

23. Li Y, Huang C, Nevatia R. Learning to associate: Hybridboosted multi-target
tracker for crowded scene. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE; 2009. p. 2953–2960.

November 22, 2020 16/17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.30.403816doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403816
http://creativecommons.org/licenses/by/4.0/


24. Khan Z, Balch T, Dellaert F. MCMC data association and sparse factorization
updating for real time multitarget tracking with merged and multiple
measurements. IEEE transactions on pattern analysis and machine intelligence.
2006;28(12):1960–1972.

25. Kim C, Li F, Rehg JM. Multi-object tracking with neural gating using bilinear
lstm. In: Proceedings of the European Conference on Computer Vision (ECCV);
2018. p. 200–215.

26. Zhu J, Yang H, Liu N, Kim M, Zhang W, Yang MH. Online multi-object tracking
with dual matching attention networks. In: Proceedings of the European
Conference on Computer Vision (ECCV); 2018. p. 366–382.

27. Dong X, Shen J, Yu D, Wang W, Liu J, Huang H. Occlusion-aware real-time
object tracking. IEEE Transactions on Multimedia. 2016;19(4):763–771.

28. Cao X, Guo S, Lin J, Zhang W, Liao M. Online Tracking of Ants Based on Deep
Association Metrics: Method, Dataset and Evaluation. Pattern Recognition.
2020;.

29. Neubeck A, Van Gool L. Efficient non-maximum suppression. In: 18th
International Conference on Pattern Recognition (ICPR’06). vol. 3. IEEE; 2006.
p. 850–855.

30. Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep
association metric. In: 2017 IEEE International Conference on Image Processing
(ICIP). IEEE; 2017. p. 3645–3649.

November 22, 2020 17/17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.30.403816doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403816
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.30.403816doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403816
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.30.403816doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403816
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.30.403816doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403816
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.30.403816doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403816
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.30.403816doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403816
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.30.403816doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403816
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.30.403816doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403816
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.30.403816doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403816
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.30.403816doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403816
http://creativecommons.org/licenses/by/4.0/

