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Abstract

A recent paper (Castro M, de Boer RJ, “Testing structural identifiability by a
simple scaling method”, PLOS Computational Biology, 2020, 16(11):e1008248)
introduces the Scaling Invariance Method (SIM) for analysing structural local
identifiability and observability. These two properties define mathematically the
possibility of determining the values of the parameters (identifiability) and states
(observability) of a dynamic model by observing its output. In this note we warn
that SIM considers scaling symmetries as the only possible cause of
non-identifiability and non-observability. We show that other types of symmetries
can cause the same problems without being detected by SIM, and that in those
cases the method may yield a wrong result. Finally, we demonstrate how to
analyse structural local identifiability and observability with symbolic computation
tools that do not exhibit those issues.

The existence of symmetries in the equations of a dynamic model is a source of lack of
structural identifiability and observability. Such symmetries [1, 2] allow for similarity
transformations [3], that is, transformations of parameters and state variables that leave
the model output invariant [4]. Since the parameters and states involved in such
symmetries cannot be distinguished by observing the output, they are unidentifiable
and unobservable. The SIM test proposed in [5] adopts this approach. It starts by
decomposing the dynamic equations of a model as a sum of functionally independent
functions. Next, unknown parameters and unobserved states are multiplied by unknown
scaling factors, and each functionally independent function is equated to its scaled
version. Finally, combinations of the scaling factors that leave the equations invariant
are sought. The SIM classifies the parameters (respectively, state variables) with a
scaling factor equal to one as identifiable (respectively, observable).

Thus, the SIM approach to analysing structural identifiability and observability is to
search for a particular type of symmetry, namely scaling symmetries. However, other
types of symmetries can also be present in ordinary differential equation (ODE) models.
A number of examples from biology have been discussed in the recent literature, see
e.g. [6–8]. If the equations of a model only have symmetries that are not of the scaling
type, the SIM test does not detect them and wrongly classifies the related parameters as
structurally identifiable and the related state variables as observable.

SIM’s limitation to scaling symmetries is mentioned in [5] (“our identifiability test
(...) provides a simple way to find a type of symmetry that is related to scale
invariance”). However, that paper does not mention that due to this limitation the SIM
test can yield wrong results; instead, it claims that “scaling invariance of the model
equations can be used to determine whether the parameters are unidentifiable or not”.
Indeed, the existence of a scaling invariance indicates that the parameters are
unidentifiable. However, the opposite is not true, i.e. its absence does not mean that
the parameters are identifiable. We discuss two counter-examples to illustrate this risk.
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Counter-example 1: the FitzHugh-Nagumo model. We first consider the
classical FitzHugh-Nagumo model, whose structural identifiability and symmetries were
discussed in [6]. It is a nonlinear model that can describe an excitable system such as a
neuron, and it can exhibit oscillatory behaviour. Its equations are:

ẋ1(t) = c

(
x1(t)− x31(t)

3
− x2(t) + d

)
, (1)

ẋ2(t) =
1

c
(x1(t) + a− b · x2(t)) , (2)

y(t) = x1(t) (3)

where the xi(t) are the states, y(t) is the measurable output, and a, b, c, d are unknown
parameters. In what follows we omit the dependency on t to simplify the notation.

We show the calculations of the SIM test below. Briefly, each functionally
independent term in (1) and (2) is equated to its scaled counterpart, which introduces
scaling factors u∗ for every state and parameter (except for x1, which is directly
measured). The scaled terms in the ODE of ẋ2 are divided by ux2 to account for the
fact that the derivative of the state is also scaled. More details about the method can
be found in [5]. The procedure yields the following equations, where (4)–(6) come from
(1) and (7)–(8) come from (2):

uc · c · x1 =c · x1 ⇒ uc = 1, (4)

uc · c · ux2 · x2 =c · x2 ⇒ ux2 = 1, (5)

uc · c · ud · d =c · d⇒ ud = 1, (6)

1

ux2

ua · a
uc · c

=
a

c
⇒ ua = 1, (7)

1

ux2

ub · b · ux2 · x2
uc · c

=
b · x2
c
⇒ ub = 1 (8)

Since the only possible solution is the trivial one (i.e. all the scaling factors are equal to
one), the SIM test classifies this model as structurally locally identifiable (s.l.i.) and
observable.

However, this result is incorrect: the model is in fact unidentifiable and unobservable,
due to the existence of an affine symmetry [6]. This result, which we obtained with the
STRIKE-GOLDD toolbox [9], can be easily verified analytically, as we now show. The
symmetry analysis, performed using the procedure described in [8], finds the following
symmetries, expressed as one-parameter Lie groups of transformations:

x∗2 −→ x2 + ε (9)

a∗ −→ a+ b · ε (10)

d∗ −→ d+ ε (11)

The symmetries are defined as a function of a new parameter ε. The above expressions
(9)–(11) indicate that replacing the terms to the left of the arrow with their right hand
equivalents does not modify the model output. Replacing the right hand expressions of
(9)–(11) in the model ODEs (1)–(2) it is immediate to see that the above
transformations leave the model equations invariant:

ẋ1 = c

(
x1 −

x31
3
− x2 − �ε+ d+ �ε

)
, (12)

ẋ2 =
1

c
(x1 + a+��b · ε− b(x2 + �ε)) (13)
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Thus, the state x2 and the parameters a, d cannot be distinguished from their
transformed values (9)–(11), and are therefore unobservable and structurally
unidentifiable, respectively. However, since the cause of this lack of structural
identifiability and observability is not a scaling symmetry but an affine one, SIM
wrongly classifies them as observable and structurally identifiable.

Counter-example 2: a linear compartment model. This second case study
shows that not only nonlinear models can have non-scaling symmetries. The following
linear compartment model was presented as Example 6.3 in [10], where it was reported
that it is unidentifiable and has no identifiable scaling reparameterization. The model
consists of four states (one of which is directly measured, x1), ten parameters, and one
known input, g:

ẋ1 = a11 · x1 + a12 · x2 + g, (14)

ẋ2 = a21 · x1 + a22 · x2 + a23 · x3, (15)

ẋ3 = a33 · x3 + a34 · x4, (16)

ẋ4 = a42 · x2 + a43 · x3 + a44 · x4, (17)

y = x1 (18)

The model above is structurally unidentifiable and non-observable due to the existence
of scaling symmetries and one higher order Lie symmetry. Reformulating the model by
removing the scaling symmetries, it is possible to obtain an equivalent model with only
seven parameters:

ẋ1 = a11 · x1 + x2 + g, (19)

ẋ2 = a21 · x1 + a22 · x2 + x3, (20)

ẋ3 = a33 · x3 + a34 · x4, (21)

ẋ4 = x2 + a43 · x3 + a44 · x4 (22)

where the measured output is again y = x1. It can be readily seen, following the same
procedure as in the previous example, that the SIM test classifies this model as
structurally locally identifiable (s.l.i.) and observable. The details of the calculations
are not shown here for brevity.

However, this result is incorrect: in fact, only a11, a21, a22 and a34 are s.l.i.. The
remaining parameters (a33, a43 and a44) are structurally unidentifiable, and x4 is
non-observable. As in the previous example, we can verify the correctness of this result
(obtained with the STRIKE-GOLDD toolbox) by examining the symmetries of the
model, which can be written as follows:

x∗4 −→ x3 · ε+ x4 (23)

a∗33 −→ −a34 · ε+ a33 (24)

a∗43 −→ ε(a33 − a44)− a34 · ε2 + a43 (25)

a∗44 −→ a34 · ε+ a44 (26)

Following the same procedure as in the previous example, it can be checked that, by
replacing in the model equations (21) and (22) the left hand side of (23)–(26) with the
right hand side, the transformations are cancelled and we obtain the original equations
again (calculations not shown). This proves that the model is structurally
unidentifiable, and therefore the result of the SIM test is incorrect.
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Computational tools can assess structural identifiability reliably and
efficiently. The previous example demonstrates that even relatively simple models
can have symmetries that make them unidentifiable and non-observable, and which are
not of the scaling type. The counter-examples have also shown that, while the SIM test
does not find these symmetries, it is possible to analyse the structural identifiability and
observability of these models with symbolic computation methods. We note that the
computational cost of these analyses is fairly low: the run-times of the structural
identifiability analyses of the first and second counter-examples were 3 and 25 seconds
in STRIKE-GOLDD, respectively. When we double-checked the results using the
COMBOS web app [11] the run-times were even lower (< 1 and 7 seconds, respectively),
although in fairness it should be noted that COMBOS does not analyse observability.
The time required for entering the models was, at most, a few minutes in each tool.

These results prompt us to comment on another aspect of [5], namely its assessment
of the performance of computational methods. That paper analyses thirteen models
with a number of symbolic computation methods, which, when compared to SIM, are
portrayed as less applicable, less conclusive, and/or producing incompatible results.
However, we have found that the performance of at least some of those computational
tools is misrepresented. In particular, we have examined the case of the
STRIKE-GOLDD toolbox. In [5] it is claimed that the STRIKE-GOLDD toolbox
cannot analyse four of the models (HIV (2), Glycolysis, High dimensional model, and
Within-host virus model) and yields wrong results for a fifth one (NFκB (2), which it
allegedly classifies as unidentifiable when it is structurally identifiable). In contrast, we
analysed these five models with STRIKE-GOLDD and obtained conclusive results in all
cases. We summarize the results in Table 1. We speculate that the issues reported in [5]
could be due to incorrect specifications of the model definitions (e.g. using reserved
variable names) or options (e.g. wrong number of inputs). To clarify this point we
provide STRIKE-GOLDD implementations of the five models listed in Table 1, as well
as their corresponding options files, as supplementary information.

Table 1. Structural identifiability and observability analysis results
obtained with STRIKE-GOLDD.

Model Result Run-time (s) Agrees with SIM

HIV (2) s.l.i., observable 0.6 yes
Glycolysis s.l.i., observable 1.3 yes
High dimensional s.l.i., observable 1.6 yes
NFκB (2) s.l.i., unobservable (x15) 2218 yes*
Within-host virus s.l.i., observable 8.9 yes

Results of the structural identifiability and observability analysis of five models,
obtained with STRIKE-GOLDD; s.l.i stands for structurally locally identifiable. In [5] it
is claimed that STRIKE-GOLDD yields wrong results about NFκB (2) and cannot
analyse the remaining models. Using STRIKE-GOLDD we obtained that NFκB (2) is
s.l.i. and one of its states (x15) is not observable. The latter result is in disagreement
with [5]; however, since x15 does not appear in any equation of the model other than its
own, it is not measured, and its initial condition is unknown, it cannot be observable
even if all parameters are known [12]. We would also like to note that the run-time for
NFκB (2) is much longer than for the other models. This is due to the way in which
STRIKE-GOLDD finds the non-observable state, which entails recalculating the
observability rank for each model variable. This is a particularly unfavourable case, but
the run-time is still in the order of minutes.

These results demonstrate that there is at least one computational method,
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STRIKE-GOLDD, that provides conclusive and correct results for all the models
analysed in [5], as well as for the two case studies used in the present paper. Having
said that, we remark that it is not our purpose to advocate the use of STRIKE-GOLDD
as the ultimate tool. Rather, our claim is that symbolic computing methods are
nowadays a mature solution for performing structural identifiability analyses, although
naturally every method has limitations. Besides STRIKE-GOLDD, a number of
software tools such as SIAN [13], ObservabilityTest [14], COMBOS [11], EAR [15],
GenSSI [16], and DAISY [17], may also be used.

Simple methods are appealing, but their applicability must be examined
with caution. The ability to perform calculations by hand is a desirable feature, not
only due to the convenience of not requiring a computing environment, but also because
this process can provide unique insights about a problem. In this regard, the SIM test
proposed in [5] is appealing and, indeed, it yields correct results in many cases.
Unfortunately, it also gives wrong results in other cases, without providing any hint
whatsoever. As this note has shown, even apparently simple models can have
non-scaling symmetries for which SIM fails. Structural identifiability and observability
are properties that often defy intuition, and the search for a simple approach to analyse
them has proven elusive for decades. Their analysis usually entails complex symbolic
computations that require specialized software. Fortunately, there is a number of
well-established tools, available in a variety of computing environments, which can help
in this endeavour.
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