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Abstract 12 

Particle tracking is a ubiquitous task in the study of dynamic molecular and cellular processes through 13 

microscopy. Light-sheet microscopy has opened a path to acquiring complete cell volumes for 14 

investigation in 3-dimensions (3D). However, hypothesis formulation and quantitative analysis have 15 

remained difficult due to fundamental challenges in the visualization and the verification of large and 16 

dense sets of 3D particle trajectories. Here we describe u-track 3D, a software package that addresses 17 

these two challenges. Building on the established framework of particle association in space and time 18 

implemented for 2D time-lapse sequences, we first report a complete and versatile pipeline for particle 19 

tracking in 3D. We then present the concept of dynamic region of interest (dynROI), which allows an 20 

experimenter to interact with dynamic 3D processes in 2D views amenable to visual inspection. Third, 21 

we present an estimator of trackability which defines a score for every trajectory, thereby overcoming 22 

the challenges of trajectory validation by visual inspection. With these combined strategies, u-track 3D 23 

provides a framework for the unbiased study of molecular processes in complex volumetric sequences. 24 
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Introduction 25 

Light-sheet fluorescence microscopy (LSFM) achieves three-dimensional (3D) imaging with 26 

minimal phototoxicity, fast sampling, and near-isotropic resolution1,2. Given these advances, many 27 

dynamic intracellular processes that were once challenging to study even in 2D (e.g., mitosis, 28 

cytoskeleton organization, vesicle trafficking, molecular interactions), can now be monitored in the 29 

entire cellular volume1–4. While the application of computer vision techniques are well established for 30 

interrogating cell biological processes in 2D microscopy5, these tools do not provide a solution toward 31 

the interpretation of dense arrangements of structures moving in a dimensionally unconstrained 32 

manner. In 3D, both the visualization of measurement results and their validation require a new set of 33 

computational tools.  Indeed, a key challenge for image analysis in 3D is the limited ability for a user to 34 

interact with the data. The manipulation of time-lapse 3D image volumes is often cumbersome, and any 35 

of the projection mechanisms necessary to map the 3D volume into a 2D data representation on a 36 

screen is prone with artifacts that may cause erroneous conclusions6. Thus, computational tools for 3D 37 

image analysis must be able to reveal the complexity of 3D cellular and sub-cellular processes, while 38 

being as automated as possible to avoid selection and perception biases. 39 

The most elementary way to measure the behavior of intracellular processes in space and time is 40 

particle tracking. Particles can comprise sub-diffraction sized objects that appear in the image volume as 41 

bona fide spots, objects of an extended size that appear as a rigid structure, and larger deformable 42 

objects. The more complex the object’s shape is, the more sophisticated methods are needed for 43 

particle detection.  The problem of particle tracking is then defined as the reconstruction of a set of 44 

trajectories across time points given the coordinates [x(t), y(t), z(t)] of the identified particles in the 45 

individual time points. Many approaches have been proposed to solve this problem 7–10.  However, only 46 

a few of these methods have been implemented in 3D and none of those approaches tackle the 47 

visualization and interpretation challenges 7,11–13.   48 
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Building upon our previous particle tracking work2,9,14, we designed the software package u-track 3D to 49 

enable the measurement, observation and validation of dynamic processes in 3D (Fig. 1). u-track 3D can 50 

detect and track morphologically and dynamically diverse cellular structures, including single molecules, 51 

adhesion complexes, and larger macromolecular structures such as +TIP protein complexes associated 52 

with growing microtubules. The software design is open, allowing users to import the coordinate files 53 

from other detection routines and then apply the u-track framework only for trajectory reconstruction. 54 

To overcome challenges inherent to volumetric data, we introduce an extensive library for visualization 55 

and mapping of dynamic region of interests (dynROIs) that move with the biological structure under 56 

evaluation and enable an intuitive visualization of particle behaviors. Finally, as it is generally impossible 57 

to visually validate the trajectory reconstruction in 3D, we present an algorithm for automatic 58 

assessment of particle trackability throughout the image volume.   59 

Results 60 
The u-track 3D pipeline is designed to measure, visualize and validate complex 61 
entanglements of 3D trajectories 62 
 63 
Multiple particle tracking 64 
To generate a robust 3D particle tracking package, we adopted and modified features that were critical 65 

for accurate particle tracking in 2D9.  This includes the break-down of trajectory reconstruction into a 66 

frame-by-frame association of corresponding particles followed by an association of the resulting track 67 
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segments into full-length trajectories. Both steps rely on the same solution for optimal one-to-one 68 

assignments of particle detections and track segments in a bipartite graph9,15. The two-step approach 69 

permits the closing of temporal gaps in the detection of a particle, as well as the handling of particle 70 

merging and splitting events that are inherent to many biological processes.  As such, the resulting set of 71 

trajectories is a global optimum in space and time for a given set of detections. Moreover, u-track 3D 72 

incorporates a Kalman filtering approach to model on the fly the characteristics of a particle’s Brownian, 73 

directed, and heterogeneous motion, which supports both the procedure for frame-by-frame particle 74 

association and the one of track segment association. To support the concurrent tracking of objects of 75 

Figure 1: u-track 3D is a complete pipeline for the measurement, visualization, and evaluation of large sets of 3D 

trajectories.  The pipeline is illustrated on lattice light-sheet imaging of HeLa cells undergoing mitosis labeled with 

eGFP-labeled EB3 and mCherry-labeled CENPA. 
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variable sizes we implemented a multiscale particle detector equipped with a generalized adaptive 76 

thresholding approach (see Section “Multiscale particle detector” in Material and Methods).  77 

Dynamic regions of interest 78 

Moving from 2D to 3D images complicates the interaction of a human observer with both raw and 79 

derived data. Widely used global image projections, including maximum intensity projection, and other 80 

volume rendering techniques are limited by the overlap of many dynamic structures along the viewing 81 

axis6. However, detailed visualization of 3D images and trajectories in their local context is essential for a 82 

user to adjust software control parameters and to interpret the underlying biology. As such, projection 83 

approaches have to be tailored to emphasize a subset of selected voxel or aspects of highest interest. 84 

Such projections should not only bring the particle or group of particles of interest into focus, but also 85 

continuously adapt as the particles move. To meet this requirement, u-track 3D incorporates a 86 

framework for rendering particle-centric dynamic regions of interest (dynROIs), thereby allowing the 87 

user to follow the particle behavior throughout its lifetime in a visually-comprehensible format. DynROIs 88 

are implemented in a hierarchical object structure across molecular, macromolecular and cellular scales 89 

(see Section “Dynamic Region of Interest estimation” in Material and Methods). First, u-track 3D 90 

provides a variety of shapes (rectangle cuboids, spheres, cones, tubes and rounded tubes) to define 91 

region of interest made of one, two or three trajectories. Second, to manage larger sets of tracks, 92 

dynROIs are built by estimating an affine transform between the associated point cloud in consecutive 93 

time points. Finally, the top level dynROI is defined for the cell. For example, cells embedded in a 3D 94 

environment are often randomly oriented, and their orientation changes throughout time. While image-95 

based registration can be used to correct changes in cell orientation, it is computationally expensive, 96 

especially as the size of the volume and length of the sequence grows. To reduce the computational 97 

burden, we segment and transform the cell mask into a randomly down-sampled point cloud, which is 98 

then used to estimate an affine transform.  99 
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Trackability Score 100 

Validation of tracking results is crucial for proper parameter adjustment during image acquisition and 101 

analysis as well as the biological interpretation of integrated measurements. However, it remains an 102 

extremely challenging task in 3D datasets, particularly when the particle density is high. Contrary to a 103 

scenario in 2D where a single field of view presents a wide range of trajectories for visual inspection, 104 

dynROIs in 3D tend to capture only a few trajectories and cannot represent the heterogeneity of local 105 

image quality, particle density and dynamic properties, which all affect the tracking accuracy. To solve 106 

this problem, we complement u-track 3D with the computation of a local trackability score.  For a 107 

scenario of homogeneous particle density and directionally random displacements, we offered in 108 

previous work a model to compute the probability of tracking errors2.  However, in a more realistic 109 

model, each trajectory bears its own level of uncertainty based on its own stochastic footprint and the 110 

configuration of neighboring particles. Here, we compute for every trajectory and every time point the 111 

confidence by which the algorithm was able to assign the chosen particle to the trajectory (see Section 112 

“Stochastic programming for the evaluation of trackability” in Material and Methods). Specifically, we 113 

exploit the particle history, the detection accuracy and the associated motion model(s) to derive a 114 

trackability metric that represents the likelihood of each of the chosen associations vis-à-vis the set of 115 

alternative associations with neighboring particles. We demonstrate the performance of the resulting 116 

score and how it can be used to compare trackability across space, time and the molecules under study.  117 

3D MPT combined with light-sheet microscopy simplifies the measurement of endocytic 118 
lifetime but gap closing remains a crucial step 119 

To assess the performance of u-track 3D, we investigated the dynamics of various cellular structures 120 

imaged by light-sheet microscopy (Figure 2).  As reported with u-track, gap closing is a crucial step in 2D 121 

particle tracking because of the frequent, transient disappearances: particles might not be detected, 122 

particles move in and out of the microscope’s in-focus volume, or particles can temporarily overlap in 123 
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space. While the latter two sources of disappearance are largely eliminated by proper 3D imaging, the 124 

challenges of false or missing detections remain. To test the performance of u-track 3D in closing gaps, 125 

we examined the lifetimes of clathrin-coated structures forming at the cell plasma membrane (Fig 2a-c). 126 

These structures represent mostly sub-diffraction objects, i.e. they appear in an imaging volume as 3D 127 

point-spread functions. We used  high-resolution diagonally swept light-sheet microscopy2 to sample 128 

every second a full volume of puncta generated by the GFP-labeled AP2 subunit of the endocytic coat. In 129 

this volumetric sequence, u-track 3D recovered the canonical lifetime distributions of abortive and 130 

maturing clathrin-coated pits, that is, an exponential decay for abortive pits and Rayleigh-like 131 

distribution with maximal probability around 20 s for maturing pits (Fig 2.c, Movie 1 and Section 132 

“Clathrin-mediated endocytosis study on a glass coverslip” in Materials and Methods). While the 133 

identification of those two populations  has required extensive trajectory analysis  to discount 134 

incomplete trajectories caused by the limitations of 2D microscopy (e.g. the transient arrival of golgi-135 

associated clathrin coated structures into the evanescent illumination field)16,  our u-track software 136 

achieves accurate trajectory classification directly by thresholding the maximum intensity of trajectories 137 

in 3D (Fig 2.b,c). Importantly, the separation of lifetime distributions into two pit classes can only be 138 

obtained with the support of gap closing (Fig 2.c), suggesting that gaps present a hurdle for accurate 139 

tracking also in 3D.  140 

    141 
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 142 

Figure 2: u-track 3D supports a variety of imaging and biological scenarios. a) Maximum intensity 143 

projections (MIP) of a rat kidney cell layer imaged with diagonally scanned light-sheet microscopy (diaSLM). Cells 144 

are expressing eGFP-labelled alpha subunit of the AP-2 complex. Green box is 160x40x12 um.  Inset shows 145 

trajectories of clathrin aggregates classified as clathrin coated structures or maturing pits. b) Normalized maximum 146 
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intensity of each trajectory as a function of lifetime plotted for six cellular layers composed of multiple cells each. 147 

The green line denotes the median of the cumulated distribution (value T). c) Probability density of lifetime for the 148 

set of trajectories above and below the threshold value T, with and without gap closing (N=6 cellular layers, pooled 149 

trajectories lifetimes). d) Maximum intensity projection (MIP) of HeLa cells in interphase imaged with lattice light-150 

sheet microscopy (LLSM) expressing eGFP-labeled EB1 (orange area is 30x32x7 um). Overlay highlights EB1 151 

trajectories. e) Average microtubule lifetimes, microtubule growth rate as well as average number and duration of 152 

pause and shrinkage events per trajectory for increasing concentrations of nocodazole (N = 5 per conditions; 153 

center line, median; box limits, 25 and 75 percentiles; whiskers, extremum). f) MIP of HeLa cells in metaphase 154 

imaged with LLSM along with 45-degree rotation around the vertical axis. Overlay highlights EB1 trajectories. g) 155 

Same as e) measured for cells in metaphase (N = 5 per conditions).  h) MIP of mouse embryonic stem cell (ES) 156 

nucleus imaged with LLSM expressing GFP-labeled transcription factors. Green box is 13x13x3 um. Overlay 157 

highlights SOX2 trajectories. i) MIP of ES cell nucleus imaged with LLSM expressing GFP-labeled transcription 158 

factors. Overlay highlights SOX2 trajectories tracked after MIP transformation. j) Probability density of SOX2 159 

binding time measured in LLSM overlaid with a 2-component decay fit (N=1 cell). k) Probability density of SOX2 160 

binding time measured in projected LLSM data overlaid with a 2-component decay fit (N=1 cell). 161 

Directed motion filtering captures drug-induced variations in microtubule polymerization 162 
in dense 3D spindle imaged with lattice light-sheet microscopy 163 
 164 
With limited sampling frequency in volumetric imaging due to the serial acquisition of a z-stack 165 

comprising tens to hundreds of focal slices, the automated reconstruction of particle trajectories can be 166 

improved by dynamic motion models through Kalman filtering. To assess the performance of a 3D 167 

implementation of previously published motion models for 2D tracking of microtubule polymerization 168 

dynamics17,18,  we imaged and tracked the dynamics of microtubules in HeLa cells by following GFP-169 

fusions of the microtubule plus-end tracking protein EB1 using lattice light-sheet imaging1 at 1 Hz in 170 

interphase and metaphase. We quantified metrics such as growth rate, growth lifetime and pause 171 

frequency (see Section “Microtubule instability measurement” in Material and Methods). The latter is a 172 

measure for the probability that a stalled or shrinking microtubule, which is accompanied by 173 
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disappearance of the EB1 particle in the movie, is rescued to renewed growth (see Supplementary 174 

Figure 1 and Movie 2). Consistent with our previous observations in 2D17, u-track 3D faithfully detected a 175 

dose-dependent decrease in all three metrics upon treatment of cells with the microtubule-destabilizing 176 

drug nocodazole (Fig 2.d-e). We also investigated the destabilizing effect of nocodazole by measuring 177 

the number and duration of pauses or shrinkages that occur with drug treatment (Fig 2.e) until 178 

disappearance at the highest concentration. We then extended our analyses to mitotic cells, where the 179 

density of EB1 particles is much higher in central regions of the mitotic spindle (see Movie 3).  Both 180 

scenarios show a strong response in nocodazole concentration, indicating that u-track 3D properly 181 

captures the drug-induced variation of growth rate and lifetime (Fig 2.f-g), despite strong variations in 182 

particle density.  183 

2D measurements artificially increases the lifetime of interaction between Transcription 184 
Factor and chromatin  185 

We then sought to investigate the impact of the depth information on the measurement of biological 186 

quantities when compared to 2D particle tracking.  We compared the u-track gap closing and motion 187 

modeling capacities, including an approach to follow particle trajectories with erratic go-stop-go 188 

Supplementary Figure 1:  a) Example of a pause in microtubule polymerization detected in HeLa cell in interphase 

(detail). Yellow circles highlight detection gaps.  b) Example of catastrophe and rescue events detected in the same 

sequence (detail). 
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behaviors14, in both 2D and 3D data using single molecule imaging. We used a lattice light-sheet 189 

microscope to image the interactions between transcription factors (TFs) and chromatin in embryonic 190 

stem cells. In a study using the same biological system, Chen et al19 had shown that TFs alternate 191 

between short-lived binding events at non-specific chromatin sites (residence time ~0.75s), 3D diffusion 192 

(average duration ~3s) and longer lived transcription events where the TF is bound at specific chromatin 193 

sites (residence time ~12s). These results were quantified in 2D using both light-sheet and widefield 194 

imaging. We performed the same analysis, now applying 3D tracking, and contrasted the results to the 195 

tracking of 2D projections of the same 3D volumes (Fig 2.h-k and Section “Single molecule dynamics 196 

study with lattice light-sheet microscopy” in Materials and Methods). Interestingly, when analyzed in 197 

3D, the residence time of binding events was reduced by one third (~7.8s in 3D vs 11.9s in 2D).  Thus, 198 

only on 2D projections are we able to reproduce the results of the original study , which differ 199 

significantly from the 3D results. Interestingly, the shorter binding time observed in 3D trajectories is 200 

consistent with measurements performed in nuclear receptors studies20,21. Together, these data suggest 201 

that the overlap caused by axial integration of the fluorescent signal imaged in 2D may artificially 202 

prolong the lifetimes and change the conclusion on binding kinetics.   203 

3D adhesion formation visualization and analysis using dynamic region of interest 204 
suggests that rounder adhesions are closer to collagen fibers.  205 
 206 
We illustrate the application of a whole-cell dynROI with the study of spatial interactions between cell-207 

matrix adhesions and fluorescently labeled 3D collagen fibers in osteosarcoma cells imaged by axially 208 

swept light-sheet microscopy3 (Fig 3.a and Movie 4). The dynROI allowed us to visualize the relationship 209 

between adhesion shapes and its proximity to collagen fibrils, showing two populations of globular and 210 

elongated adhesions (Fig 3.b-d). The most elongated adhesions are located predominantly at the tip of 211 

the pseudopodial extensions and align with the protrusive direction, while the round adhesions 212 

concentrate in the quiescent part of the membrane. Our measurements show that this elongation 213 
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distribution can be decomposed further (Fig 3e). We found a unimodal distribution of mostly globular 214 

adhesions in close contact with collagen fibers, assessed by a score that integrates the distances 215 

between voxels in adhesions and collagen fiber masks (see Section “Adhesions and collagen interaction 216 

imaging and analysis” in Materials and Methods). In contrast, adhesions with a lesser degree of collagen 217 

contact display a bimodal distribution of globular and elongated adhesions. These data suggest – quite 218 

unexpectedly from what is known in 2D –  that the most engaged adhesions may be the least 219 

elongated22. We further conjecture from this finding that adhesion elongation in 3D may be less driven 220 

Figure 3: Dynamic Regions of Interest (dynROI) reveals the behavior of local particle involved in highly dynamic 

sub-cellular processes. a) Dual-colored orthogonal MIP of osteocarcinoma cells expressing eGFP-labeled 

paxillin and embedded in collagen labelled with Alexa fluor 568. Overlay highlights dynamic region of interest 

(dynROI).  b) View of the dynROI. c) – d) Detection of adhesions colored as a function of the degree of collagen 

contact and elongation. e)   Probability density of elongation for adhesions with high and low degree of contact 

with collagen fibers (N=1 cell). 
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by a zippering of an integrin-mediated plaque along a collagen fiber, but rather dictated by the 221 

organization of cell-cortical actin fibers or the local collagen architecture. Indeed, this behavior becomes 222 

apparent by replay of time-lapse sequences of the proximity and elongation parameters in the spatially 223 

stabilized dynROI (Movies 5, 6 and 7). DynROIs are thus a powerful way to assess the spatial distribution 224 

and heterogeneity of molecular interactions in highly dynamic cells.  225 

Dynamic region of interest enables the automated exploration of mitotic spindle across 226 
scale and the observation of different kinetochore capture mechanisms by microtubules 227 
 228 
Many cellular processes involve a massive reorganization of multiple macromolecular structures, which 229 

challenges 3D analysis by conventional visualization approaches. A classic example is the mitotic spindle 230 

of vertebrate cells23. While thousands of microtubules reorganize to form a dense bipolar array, the two 231 

spindle poles move apart and rotate back and forth. At the same time, spindle microtubules establish 232 

contacts with chromosomes at specialized attachment sites termed kinetochores, and subsequently 233 

move chromosomes towards poles or the spindle center. The complexity of these structures and their 234 

rapid dynamics are virtually impossible to understand by mere visual inspection of volume renderings. 235 

We therefore assessed how u-track 3D and dynROIs facilitates the analysis of this process. The image 236 

dataset comprises dual-channel time-lapse sequences of GFP-labelled microtubule plus-ends and 237 

mCherry-labelled kinetochores of mitotic HeLa cells, acquired by lattice light sheet microscopy as 238 

described in ref24, with an acquisition frequency of 0.1 Hz to enable longer imaging, from prometaphase 239 

to metaphase.  In addition to microtubule plus-ends and kinetochores, our multiscale particle detection 240 

approach is able to locate the spindle poles based on the diffuse clouds of microtubule plus-end marker. 241 

Pole trajectories can then be used to define a dynROI that follows the spindle motion (Fig 4.a and 242 

Section “Dynamic Region of Interest estimation” in Materials and Methods). An embedded second 243 

dynROI follows the point cloud formed by the kinetochore trajectories (Fig 4.b and Section “Dynamic 244 

Region of Interest estimation” in Materials and Methods). Based on the pair of dynROIs, we further 245 
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construct a planar dynROI with an orientation that is defined by the interpolar axis and a vector 246 

following the kinetochore-associated dynROI motion (Fig 4.c,d, Movie 8, 9 and Section “Dynamic Region 247 

of Interest estimation” in Materials and Methods). Our framework for dynROI estimation thus enables 248 

the automated visualization of dynamic mesoscale structures composed of different molecular 249 

assemblies.  250 

The hierarchical model of dynROIs also enables the detailed analysis of microscale collective molecular 251 

processes that move throughout the cellular volume. This facilitates the study of complex subprocesses, 252 

as for example the formation of kinetochore fibers during spindle assembly. In previous work24, we 253 

Figure 4: a) - d)  Dual-colored orthogonal MIP of HeLa cells undergoing mitosis labeled with eGFP-labeled EB3 and 

mCherry-labeled CENPA. Overlays highlight, a) a dynROI built around centrosome trajectories, b) a dynROI built 

around CENPA trajectories, and c) a plane built to visualize the dynamics of chromosomes relative to the spindle 

location. d) View of the dynROI following described in h.  e) Definition of a conical dynROI between a centrosome 

and a kinetochore.  f) Dual-colored orthogonal MIP of HeLa cells during pro-metaphase. Overlay highlights the 

motion of the dynROI. g)  Cumulative overlays of the detected microtubule plus-end position for three periods of 

10 seconds between 53s to 102s post nucleus envelope breakage. h) Plus-ends count function of time and 

distance from the pole (N = 1 dynROI). 
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showed with spindle-wide statistics and indirect modeling that kinetochore fiber formation is 254 

accelerated by an augmin-dependent nucleation and directional growth along the fiber towards 255 

kinetochores. To expand the analysis of this process, we now use dynROIs to directly visualize the 256 

dynamic space between spindle poles and kinetochores (Fig 4.e-g and Movie 10). We define a 257 

kinetochore fiber assembly dynROI by a cone whose medial axis connects spindle pole and a target 258 

kinetochore (see Section “Dynamic Region of Interest estimation” in Materials and Methods). By 259 

systematically inspecting kinetochore fiber assembly dynROIs, we observed a strong directional bias in 260 

microtubule polymerization along a kinetochore fiber and toward  kinetochores, consistent with 261 

previous observations24. We also observed microtubule polymerization branching off from a kinetochore 262 

fiber and polymerizing toward another kinetochore (circled in red in Fig 4.g, time 53 s – 72 s). The 263 

branching was followed by a rapid poleward motion of the targeted kinetochore and an increase of plus-264 

end count in the dynROI (Fig 4.g,h, time 93 s – 102 s) suggesting that the target kinetochore was 265 

captured, and that this new capture established a new avenue for microtubule amplification. This data 266 

indicates that kinetochore capture might occasionally involve interactions between neighboring 267 

kinetochore fibers. The example underscores how the dynROI library implemented in u-track 3D enables 268 

the visual discovery of dynamic processes that are completely obscured in 3D image volumes.  269 

The trackability score detects tracking ambiguities with high precision  270 

Given how cumbersome it is to visualize particle trajectories, a systematic validation of the tracking 271 

performance by visual inspection – the gold standard in most cell biological studies in 2D – seems out of 272 

reach for many applications in 3D. Thus, we developed a self-assessment pipeline that attributes every 273 

trajectory with a trackability score predicting the accuracy of the automated tracking solution. The 274 

principle behind the trackability score and its performances are explained in Figure 5 and Section 275 

“Stochastic programming for the evaluation of trackability” of Material and Methods. Figure 5.a shows 276 

an example of an ambiguous association between time 𝑡𝑡 − 1 and 𝑡𝑡 where two assignment hypotheses 277 
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between detections and track heads have a similar association cost. Despite this ambiguity, the bipartite 278 

graph matching identifies a single optimal solution without the possibility for error estimation (see Fig 279 

5.a.i). To determine the level of ambiguity, we resample all track head predictions 𝑁𝑁  times and test the 280 

stability of the original assignment (one resampling example is shown in Fig 5.a.ii). The approach is 281 

illustrated in Figure 5.b-d based on the tracking of a transcription factor in a dataset acquired with 282 

multifocus microscopy and previously published in ref25. Each dot indicates a resampled prediction of 283 

the particle location at 𝑡𝑡, and blue versus red defines whether the newly computed local assignment 284 

matches or differs from the original solution.  The trackability score is defined as the fraction of 285 

matching samples. As such, the trackability score infers tracking accuracy by considering both the local 286 

competition of detection candidates for track head associations and the uncertainty of motion 287 

prediction for each track head.   288 

We evaluated the capacity of our score to predict tracking quality in a variety of scenarios.  We 289 

simulated multiple sets of trajectories of increasing complexity and applied u-track 3D to trace the 290 

particle movements between time points. Using the ground truth, we then classified each link of the 291 

extracted traces as a true positive (TP) or false positive (FP). This classification allows us to compute for 292 

each simulated sets the true Jaccard Index (JI), a popular metric for linking accuracy7, computed as  𝐽𝐽𝐽𝐽 =293 

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

= 𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹+𝐿𝐿

  where L represents the number of simulated links.   Of note, we did not introduce 294 

noise to the set of simulated particle detections to focus our evaluation on the ability to predict the risk 295 

of linking errors.  Figure 5.f presents an example of simulated trajectories with increasing diffusion 296 

coefficients; the display is truncated to five consecutive time points to improve visibility. With a 297 

detection density fixed to 0.1 um-3 and increasing speed of diffusion, the tracking performance rapidly 298 

deteriorates to completely inaccurate links and trajectory lifetime distributions (see Fig 5.g-h).  The 299 

trackability score follows precisely the decrease in the JI until it plateaus at 0.5 for very challenging 300 
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conditions (Fig 5.i).  The initially close match between trackability score and JI is expected by design as 301 

larger diffusion speeds increase ambiguities as well as the number of false positives and negatives.  302 

However, beyond a diffusion of 0.6 um2/s, the prediction of the particle location in the next frame is less 303 

likely centered on the correct detection. As such, during the resampling of the expected particle 304 

location, the rate of samples in agreement versus disagreement with the original link is defined by 305 

chance, hence the score plateaus at 0.5.  We also simulated a scenario in which the particle density 306 

increases at a diffusion fixed to 0.3 um2/s. Analogous to the increase in diffusion, the trackability score 307 

follows the JI up to a density of 0.25 um-3 where the two performance measurements start to diverge 308 

(see Supplementary Figure 2).  In the case of directed displacements and a given density of 0.1 um-3, our 309 

trackability score also follows the true JI up until a critical velocity of 1.8 um/s which is more than twice 310 

the average distance between a particle and its closest neighbor (see Supplementary Figure 3). Finally, 311 

we sought to test our approach in a scenario in which trajectories undergo sudden transitions between 312 

diffusive and directed motion (see Supplementary Figure 4). Of note, the densities, diffusion coefficients 313 

and velocities are fixed in this scenario and the only parameter that varies is the transition rate, ranging 314 

from 0 (no transition) to 0.5 (on average one transition every two frames). Our results show that the 315 

trackability score also correctly predicts the reduction in tracking accuracy as increasing transition rates 316 

makes tracking more challenging. A quasi-plateau is reached due to the high frequency of dynamic 317 

transitions. A detailed description of the parameters used for all simulation experiments can be found in 318 

Section “Simulation parameters for trackability evaluation”. In conclusion, our simulations show that the 319 

proposed trackability score is able to detect subtle changes in tracking quality in a large variety of 320 

scenarios. While our score diverges from the true Jaccard Index when the simulated frame rate is not 321 

high enough to initialize motion prediction, the trackability score nevertheless detects at least 60% of 322 

linking errors, indicating that the tracking experiment must be re-designed for accurate estimation of 323 

both trajectories and errors. 324 
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 328 

  329 

 Figure 5: The trackability score relies on the stochastic footprint of each trajectory to infer tracking accuracy. a) 

Example of a tracking ambiguity due to three trajectories in close proximity (orange, blue and red). Dashed lines 

represent the true motion between track heads at time  𝑡𝑡 − 1 and detections at time 𝑡𝑡, represented by gray dots. 

Colored gradients represent the likelihood of each expected particle location at time 𝑡𝑡, estimated using the history 

of positions up to time 𝑡𝑡 − 1 and considering multiple motion model hypotheses. The optimal assignment between 

the expected and detected particle positions at time 𝑡𝑡 in this case yields an erroneous assignment from the orange 

track head to detection 2 and from the blue track head to detection 3 (graph a.i) . Resampling of the expected 

locations results in a new assignment (graph a.ii), this time without error. b) Orthogonal Maximum Intensity 

Projection (MIP) of Embryonic Stem (ES) cells expressing eGFP- labelled Sox2 molecules imaged by Multifocus 

Microscopy. Overlaid boxes highlight the ROI enlarged in c – e). c) Orthogonal MIP of ROI. Overlay shows a 

trajectory where two close detections create assignment ambiguity. d) Overlay illustrates the stochastic resampling 

of the predicted particle positions at this time-point; blue circles: assignments in agreement with the original 

solution; red circles: assignments that differ from the original solution. e) Overlay shows trajectory segments 

colored according to estimated trackability scores. g) Examples of simulated trajectories with diffusion coefficients 

ranging from 0.1 um2/s to 1 um2/s with a fixed particle density of 0.1 um-3. Visualization is limited to five 

consecutive frames to reduce clutter.  f) Lifetime of simulated trajectories (the change in distribution is due to 

trajectories leaving the field of view as the diffusion coefficient increases). h) Lifetime distribution measured 

through tracking shows a loss of the original distributions when the diffusion coefficient exceeds 0.2 um2/s. i) 

Accuracy measured through the jacquard index (JI, blue); the trackability score (orange, dashed), which is derived 

without external ground truth, closely follows the JI up to a diffusion coefficient 0.6 um2/s beyond which tracking is 

random. 
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 330 

 Supplementary Figure 2: The trackability score predicts the performance decrease associated to particle density. 

a) Examples of simulated trajectories with particle density ranging from 0.01 to 0.5 um-3 with a fixed diffusion 

coefficient of 0.3 um2/s.  Visualization is limited to five consecutive frames to reduce clutter. b) Lifetime of 

simulated trajectories. c) Lifetime distribution measured through tracking. d) Accuracy measured through the 

jacquard coefficient on the ground truth and estimated with the trackability score using the detection set.  

Supplementary Figure 3: The trackability score predicts the decrease in performance associated to particle 

velocity.  a) Examples of simulated trajectories presenting directed motions described by velocities ranging from 0 

to 2.2 um/s with a fixed diffusion component coefficient of 0.15 um2/s and density set to 0.1 um-3.  Visualization is 

limited to five consecutive frames to reduce clutter. b) Accuracy measured through the jacquard coefficient on the 

ground truth and estimated with the trackability score using the detection set.  
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  331 

Supplementary Figure 4: The trackability score predicts the decrease in performance associated to the 

heterogeneity of motion types in a single trajectory.  a) Illustration of the transition rate used to simulate a dataset 

with increasing heterogeneity. b) Examples of simulated trajectories with diffusive motion described by a 

coefficient set to 0.1 um2/s, and directed motion set to 1.5 um/s with a diffusive component of 0.1 um2/s. Density 

is set to 0.2 um-3. Visualization is limited to five consecutive frames to reduce clutter. c) Accuracy measured 

through the jacquard coefficient on the ground truth and estimated with the trackability score using the detection 

set.  
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The trackability score can be used to compare tracking quality across time, space and 332 
fluorescent channels.  333 

In order to evaluate the performance of the trackability score in indicating high vs low confidence in 334 

experimental tracking results, we first analyzed the spatiotemporal variation in the tracking quality of 335 

endocytic pits moving along a dynamic membrane (see Section “Endosome trackability on cell cultured 336 

on top of collagen” in Material and Methods). The cells were plated on collagen and imaged at high-337 

resolution using diagonally swept light-sheet microscopy2. The acquisitions present a large variety of 338 

dynamic behaviors, from a quiescent membrane in the center to rapid protrusive displacements at the 339 
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leading edge (Fig. 6.a).  To selectively analyze those areas, we manually selected dynROIs to capture a 340 

quiescent area, a slow protrusion-retraction cycle and a fast protrusion-retraction cycle. Since both the 341 

cell and its environment are moving, those dynROIs were selected within a larger dynROI built from all 342 

the trajectories detected (see Movie 11). The trackability score shows a consistently high score in the 343 

Figure 6: Demonstration of trackability score on experimental data. a) Orthogonal MIP of breast cancer cells 

imaged with diaSLM expressing eGFP-labelled alpha subunit of the AP-2 complex. Boxes show ROIs with 

different types of activity. Dot overlays show local level of ambiguity. b) Number of track segments over time 

for the three ROIs (N=1 cell).  c) Trackability score over time for the three ROIs (N=1 cell). d) Cumulative 

distribution of the average trackability score of trajectories for both EB3 and Kinetochore channels sampling 

the dynamics of the mitotic spindle shown in Fig 4. e) Four ROIs (two for each channel) showing trajectories 

colored according to their mean trackability score. Trajectories were selected near the 10th and 90th 

percentiles of the cumulative distribution. Yellow dots show surrounding detections. 
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quiescent dynROI, a large and transient decrease in trackability around the fast protrusive motion and 344 

an average decrease in the slower protrusion (Fig 6.b,c). Our score is thus able to accurately reflect the 345 

variation in trackability across space and time and detect time points when tracking ambiguity arises due 346 

to rapid movement at the level of the whole cell.  347 

In a second experiment we tested the capacity of our trackability score to compare tracking quality in a 348 

complex scene with heterogeneous cellular structures. We analyzed the spindle assembly dataset shown 349 

in Fig 4.f-h with labelled microtubule plus-ends and kinetochores. The cumulative distributions of 350 

trajectory-averaged trackability scores showed that kinetochore trajectories overall are more reliably 351 

reconstructed compared to microtubule plus-end trajectories (Fig 6.d), consistent with their much lower 352 

density and slower motion. Our score also enables the analysis of trackability on a per-trajectory basis. 353 

Indeed, trajectories with a trackability score near the 90th percentile of the cumulative distribution 354 

appear to be error-free for both plus-end and kinetochore channels (Fig. 6.e). In contrast, a plus-end 355 

trajectory with a score near the 10th percentile shows a likely erroneous path in an area of very high-356 

density, crisscrossing microtubules. Because of the overall much higher trackability of the kinetochore 357 

channel, the 10th percentile of the trackability score distribution of these trajectories picks out a 358 

trajectory with only one likely wrong link (see arrow)  caused by false positive particle detection. Based 359 

on these examples we conclude that the trackability score is a faithful reporter of the overall accuracy of 360 

tracking results in a given imaging channel, and it further assists selection of correctly tracked objects in 361 

a dense population of trajectories. 362 

Discussion 363 

We report here a new version of the popular tracking framework u-track, which now enables the study 364 

of particle dynamics in 3D live microscopy and tackles key challenges in the exploration and analysis of 365 

those complex datasets. First, we demonstrate the 3D implementation of the particle trajectory 366 
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reconstruction in space and time, including several particle motion models that support particle tracking 367 

in a variety of imaging and biological scenarios.  We demonstrate applications of the u-track 3D software 368 

to the measurement of lifetimes of endocytic events, of microtubule growth dynamics, and of the stop-369 

and-go behavior of individual transcription factors binding to chromatin. We introduce dynROIs, which 370 

unveil local particle behaviors embedded in highly dynamic sub-cellular processes that would otherwise 371 

be buried in global renderings of the 3D trajectories. We illustrate these functionalities across scales, 372 

from the cell-wide heterogeneity of adhesions in a collagen-embedded cell, to the microscale 373 

organization of microtubules during chromosome capture. Finally, we introduce a strategy for automatic 374 

detection of tracking ambiguities that pinpoints the locations and times of potential tracking errors in 375 

the full set of reconstructed trajectories. We demonstrate the approach on simulations and 376 

experimental datasets ranging from mapping the spatial heterogeneity of tracking quality in the 377 

quantification of endocytic events, to the automatic identification of high- and low-quality trajectories 378 

imaged in the mitotic spindle.  Thus, u-track 3D complements the development of light-sheet 379 

microscopy with a much-needed tool set for the exploration and the quantitative analysis of the 380 

biological processes these movies capture. 381 

The u-track 3D software is implemented in Matlab and distributed with a user-friendly GUI and tutorial 382 

scripts. The GUI is designed for testing the software and for the interactive visualization of the particle 383 

detections, trajectories and dynROI locations overlaid onto the raw data.  In particular, both raw voxels 384 

and measurements can be observed using either slice-by-slice visualization or maximum intensity 385 

projections in the frame of reference of the laboratory or in a frame of reference of a dynamic region of 386 

interest. The scripts are primarily used for batch processing and analysis at scale, and they enable the 387 

systematic visualization of tracking results across a full dataset with a newly designed renderer.  As 388 

opposed to traditional interactive rendering, our engine is designed for the fully automated and 389 

parallelized rendering of raw data and overlaid measurements that takes advantage of the 390 
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asynchronous nature of processing jobs. Montages of raw and overlaid images can be easily specified 391 

and saved in a variety of formats (png, avi and gifs). As an example, all of the panels in Figure 4 392 

presenting microscopy data have been produced by this rendering engine. The script interface also 393 

provides a finer control of the shape of dynROIs than the GUI (cone, tube, rounded tubes etc …).  Finally, 394 

both detection and tracking can be limited to those dynROIs, enabling the rapid adjustment of algorithm 395 

parameters before processing the full dataset and tracking in a more appropriate frame of reference. 396 

Two datasets are provided to test the software, one extracted from the endocytosis imaging introduced 397 

in Figure 6.a, the other extracted from the mitosis imaging experiment introduced Figure 4.  398 

While the robustness and wide applicability of the software already has been tested in several 399 

studies24,26, many challenges remain toward a generic approach for the automated exploration of 3D 400 

sequences. A chief bottleneck comes with the multiple sources of motions occurring across scales, 401 

especially in more physiologically relevant environments with a high degree of freedom. Indeed, while a 402 

given framerate may be sufficient to sample and track the motion of particles on a static substrate, the 403 

object may not be trackable when the particle-embedding volume moves rapidly. U-track 3D addresses 404 

this problem with the estimation of dynamic regions of interest, which allow the pre-alignment of 405 

particle groups associated with an entire cell or subcellular structure on a coarser scale for refined 406 

tracking of individual particles on a finer scale. However, the automated estimation of the scale, type, 407 

clusters and magnitude of those displacements remains an open problem for heterogeneous groups of 408 

objects. New developments in stochastic filtering approaches for multiscale displacements are thus 409 

necessary. Recent progress in neural networks to mimic Bayesian approaches are promising27,28 and 410 

could also be adapted to a multiscale representation. Another key challenge in the analysis of dynamic 411 

3D data is the quantification of the motion of diffuse signaling molecules or macromolecular structures 412 

that do not present a well-defined particle in the imaged volume. These motions can be estimated 413 

coarsely using 3D optic flow approaches for which a few promising methods tailored to fluorescence 414 
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imaging have been proposed29–31. Finally, the visualization and interaction with large multidimensional 415 

data remains difficult. In this paper we propose to remove any direct manipulation of the virtual camera 416 

to direct the rendering through automatically defined dynROI. While we do believe this is the future of 417 

3D sequence exploration, the underlying rendering engine is limited to maximum intensity projections 418 

or slide-by-slide visualization. Community efforts are currently underway to provide a generic and 419 

versatile graphic library along with GUI interface such as Napari32 and Sciview33. They could complete 420 

the capabilities of our renderer with more advanced volumetric rendering (alpha, ray casting) as well as 421 

surface rendering. We thus introduce u-track as a feature-complete software for the quantification and 422 

analysis of 3D trajectories, but also as a steppingstone toward the automated exploration of any types 423 

of dynamic datasets. In the meantime, as we deliver the software to the community, we are 424 

continuously improving the software by fixing bugs and evaluating suggestions for improvements made 425 

by the community. 426 
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Materials and methods 454 
 455 
Multiscale particle detector 456 

Three-dimensional microscopy imposes specific constrains to the design of a particle detector. First, the 457 

diversity of shapes and sizes of intracellular structures may not be visible to the naked eye in a 458 

volumetric rendering, we must thus design a detector that is responsive to those variations. Second, 459 

light scattering and variation in signal intensity create large changes in signal-to-noise ratio (SNR) across 460 

space that are also difficult to assess visually. Our detector must then be adapted to those changes from 461 
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low to high SNR. Finally, the large dimension of 3D data sets requires the design of computationally 462 

efficient approaches. Following, we describe a multiscale detector equipped with an adaptive 463 

thresholding approach that tests multiple possible scales at each location through the implementation 464 

of multiple iterations of filtering. 465 

We first developed a multiscale adaptive thresholding approach inspired by our previous work focused 466 

on the sensitive detection limited to the case of diffraction-limited fluorescent structures 16. Let us 467 

consider the following image model  468 

𝑀𝑀(𝒙𝒙,𝐴𝐴,𝜎𝜎, 𝜇𝜇,𝐶𝐶) =  𝐴𝐴(𝒙𝒙)𝐺𝐺𝜎𝜎,𝜇𝜇(𝒙𝒙)  +  𝐶𝐶(𝒙𝒙)  + 𝜖𝜖(𝒙𝒙) 469 

where 𝐴𝐴 denotes the spot amplitude, 𝒙𝒙 the 3D position,  𝐺𝐺𝜎𝜎,𝜇𝜇(𝒙𝒙) is a Gaussian function with standard 470 

deviation 𝜎𝜎 and mean 𝜇𝜇, 𝐶𝐶 is the background signal and 𝜖𝜖(𝒙𝒙) is the additive noise following a Poisson-471 

Gaussian stochastic footprint. The least-square formulation of our optimization problem as 472 

argmin
𝐴𝐴(𝒙𝒙),𝐶𝐶(𝒙𝒙)

� �𝐴𝐴(𝒙𝒙)𝐺𝐺𝜎𝜎,𝜇𝜇(𝒙𝒙) +  𝐶𝐶(𝒙𝒙) − 𝐼𝐼(𝒙𝒙)�
𝟐𝟐

𝑥𝑥∈𝑊𝑊

, 473 

where 𝐼𝐼(. ) denotes the image volume and 𝑊𝑊is a 3D box of size 8𝜎𝜎, can be simplified to the resolution of 474 

a linear system that can be decomposed in multiple filtering passes: 475 

𝐴𝐴(𝒙𝒙𝟎𝟎) =
�𝐼𝐼 ∗  𝐺𝐺𝜎𝜎,0�(𝒙𝒙𝟎𝟎) − (𝐺𝐺𝜎𝜎,0������� ∗ 𝟏𝟏𝑤𝑤)(𝒙𝒙0)

𝑛𝑛𝐺𝐺𝜎𝜎,0
𝟐𝟐������� + 𝑛𝑛𝐺𝐺𝜎𝜎,0�����𝟐𝟐

 476 

and 477 

𝐶𝐶(𝒙𝒙𝟎𝟎) =
(𝐼𝐼 ∗ 𝟏𝟏𝑤𝑤)(𝒙𝒙𝟎𝟎)− 𝑛𝑛𝐺𝐺𝜎𝜎,0�����𝐴𝐴(𝒙𝒙𝟎𝟎)

𝑛𝑛
 478 

where 𝒙𝒙0 is the fixed voxel position 𝟏𝟏𝑤𝑤 is a unitary convolution kernel along 𝑊𝑊, n is the number of voxel 479 

encompassed in 𝑊𝑊.  The statistical analysis of the local residuals resulting from the fit 480 

𝑟𝑟(𝒙𝒙) =  �𝐴𝐴(𝒙𝒙𝟎𝟎)𝐺𝐺𝜎𝜎,𝜇𝜇(𝒙𝒙) +  𝐶𝐶(𝒙𝒙𝟎𝟎) − 𝐼𝐼(𝒙𝒙)�, 481 

with 𝒙𝒙 ∈ 𝑊𝑊, provides a p-value-based threshold for testing for the hypothesis that 𝐴𝐴(𝒙𝒙𝟎𝟎) ≫ 𝐶𝐶(𝒙𝒙𝟎𝟎)  as 482 

described in16.  This approach yields a sensitive binary map 𝐻𝐻0,𝜎𝜎(. )  for  the detection of the voxel 483 
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describing a fluorescence object at scale 𝜎𝜎. This approach avoids the fitting of an object template in 484 

order to reduce computation time.   485 

Next, we carry out this adaptive thresholding step at multiple scale to obtain a vote map. 486 

𝑉𝑉(𝒙𝒙) = �𝐻𝐻0,𝜎𝜎(𝒙𝒙)
𝜎𝜎∈Ω

 487 

where Ω is the scale range, typically ranging between 120 nm and 1 um. The resulting object mask 𝑉𝑉(. ) 488 

thus summarizes the presence of particles at any scale at a given voxel (see Supp. Fig. 3) using only 489 

filtering operations that can process each voxel in a parallelized fashion.   In order to refine the 490 

localization of objects present in contiguous object masks, we implemented a multiscale Laplacian of a 491 

Gaussian filtering framework34 to estimate a map of scale response 𝑆𝑆(. ) for each voxel defined as:  492 

𝑆𝑆(𝒙𝒙) = argmax
𝜎𝜎∈Ω

𝜎𝜎2∇2(𝐼𝐼(𝒙𝒙) ∗  𝐺𝐺𝜎𝜎,0(𝒙𝒙))  493 

where ∇2(. ) denotes the Laplacian operator. The watershed algorithm is then applied to further 494 

segment this scale response map to detect touching objects. The center of object is determined through 495 

the weighted centroid of the voxels belonging to a same object mask.   496 

 497 
Supplementary Figure 5: Principle of multiscale Laplacian-of-Gaussian filtering (top) and multiscale 498 

adaptive thresholding approach (bottom) demonstrated on a slice of a volumetric imaging of cellular 499 

adhesions (detail). 500 

 501 

Dynamic Region of Interest estimation 502 
 503 
In order to visualize and map the molecular processes nested in volumetric time lapse sequences, we 504 

propose a framework for the definition of dynamic regions of interest (dynROI) from point cloud 505 
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sequences. Those dynROIs are described by dynamic bounding boxes (or rectangular cuboids) that are 506 

sized to fit the data optimally and oriented according to a moving frame of reference. In this note, we 507 

describe the general principles underpinning the estimation of those dynROIs from dynamic point clouds 508 

and their implementation across scales: from cellular down to molecular dynROIs. 509 

Generic point cloud tracking principle 510 
 511 
We first define an optimal frame of reference in the first time point of the sequence with an origin 𝑂𝑂0 512 

described by the average point cloud position and with unit vectors (𝑢𝑢0,𝑣𝑣0,𝑤𝑤0) described by the 513 

eigenvectors of the covariance matrix of the point positions (a.k.a. principal component analysis). The 514 

orientation of the dynROI box in the first frame is described by this frame of reference and its size is 515 

defined by the boundaries of the point cloud augmented by a tunable margin (default is set to 5 voxel).  516 

The frame of reference at time t is then estimated through a rigid transform as:  517 

(𝑂𝑂𝑡𝑡 ,𝑅𝑅𝑡𝑡  ) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � ‖𝒙𝒙𝑡𝑡 − (𝑅𝑅𝑡𝑡𝒙𝒙0 + 𝑂𝑂𝑡𝑡)‖
𝒙𝒙𝑡𝑡∈Ωt
𝒙𝒙0∈Ω0

 518 

using the Iterative closest point algorithm35, where Ω𝑡𝑡 denotes the set of points coordinate at time 𝑡𝑡. 519 

The unit vector (𝑢𝑢𝑡𝑡 ,𝑣𝑣𝑡𝑡 ,𝑤𝑤𝑡𝑡) are then estimated by applying the rigid transform to (𝑢𝑢0,𝑣𝑣0,𝑤𝑤0). At each 520 

time point the size of the box is adjusted to fit the extension of the current point cloud in the current 521 

orientation with the additional margin. Multiple dynROI shapes have then been implemented to adjust 522 

to the local process (box, sphere, tube, rounded tube, plane and cone). 523 
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524 

Supplementary Figure 6: Principle of generic point cloud tracking applied to cell Dynamic region of 525 

interest estimation for the cell. 526 

Dynamic region of interest estimation for the cell 527 

The cell is first segmented using the Otsu algorithm and the point cloud representing the cell mask is 528 

downsampled randomly to reduce its density by 90% and speed up computations. The generic point 529 

cloud tracking principle described above is applied to the downsampled sequence with a margin set to 530 

30 voxels and a box-shaped dynROI (see Supplementary Figure 6). 531 

Dynamic region of interest for the spindle 532 

Spindle poles were detected using the multiscale detector with the default p-value (set to 0.005) and 533 

scales ranging from 0.4 to 0.8 ums. The motion of poles was modeled with a piecewise stationary 534 

Brownian and Directed motion model with a maximum instantaneous displacement set to 3 times the 535 

process noise estimated from a Kalman filtering of the trajectory, a lower bound set at 0.5 um and upper 536 

bound set at 0.8 um.  Failure to detect the very dynamic aggregate on nucleating microtubules is 537 

handled with gap closing, the maximum gap is set to 2 s (or 2 frames) with a minimum length of 2 s for 538 

the track segment. The resulting dynROI was built has a rounded tube center with a fringe of 9 microns 539 

around the segment formed by the two brightest objects present during the complete sequence.  540 

Dynamic region of interest for the chromosomes 541 

The kinetochores marking the center of chromosomes were detected using the multiscale detector with 542 

the default p-value (set to 0.005) and scales ranging from 0.15 to 0.25 voxels. Motion was modeled with 543 
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a Brownian motion model with a maximum instantaneous displacement set to 5 times the process noise 544 

estimated by Kalman filtering of the trajectory, a lower bound set at 0.4 um and upper bound set at 0.6 545 

um.  Variation in SNR were managed with a maximum gap set to 4 s (or frames) with a minimum length 546 

of 2 s for the track segment. The dynROI was estimated using the generic point cloud tracking principles 547 

described in Section 5.1 using all the trajectories detected inside the spindle dynROI with a box-shaped 548 

dynROI and a margin of 0.1 um.  549 

Dynamic region of interest estimation for the interpolar region 550 

Let (𝑂𝑂𝑡𝑡𝑠𝑠,𝑢𝑢𝑡𝑡𝑠𝑠, 𝑣𝑣𝑡𝑡𝑠𝑠,𝑤𝑤𝑡𝑡𝑠𝑠) and �𝑂𝑂𝑡𝑡𝑘𝑘 ,𝑢𝑢𝑡𝑡𝑘𝑘 ,𝑣𝑣𝑡𝑡𝑘𝑘,𝑤𝑤𝑡𝑡𝑘𝑘� denote the frames of reference estimated for the spindle and 551 

the chromosome respectively. We want to build a frame of reference �𝑂𝑂𝑡𝑡𝑖𝑖 ,𝑢𝑢𝑡𝑡𝑖𝑖 ,𝑣𝑣𝑡𝑡𝑖𝑖,𝑤𝑤𝑡𝑡𝑖𝑖� that follows an 552 

interpolar plane showing how microtubule nucleation events inside the spindle are orchestrated to 553 

capture chromosomes efficiently. We first set the origin to  𝑂𝑂𝑡𝑡𝑖𝑖 = 𝑂𝑂𝑡𝑡𝑠𝑠 and 𝑤𝑤𝑡𝑡𝑖𝑖 = 𝑤𝑤𝑡𝑡𝑠𝑠 so that one axis is 554 

following the spindle at all time. For the plane to describe the motion of the chromosome population, 555 

the second unit vector follows a slice of the kinetochore-associated dynROI 𝑣𝑣𝑡𝑡𝑘𝑘
′ = cos(𝜃𝜃)𝑢𝑢𝑡𝑡𝑘𝑘 +556 

sin(𝜃𝜃)𝑤𝑤𝑡𝑡𝑘𝑘   projected to ensure orthogonality as  𝑣𝑣𝑡𝑡𝑖𝑖 = 𝑣𝑣𝑡𝑡𝑘𝑘
′. �1 −𝑤𝑤𝑡𝑡𝑖𝑖

T𝑤𝑤𝑡𝑡𝑖𝑖�.  Finally the last unit vector is 557 

set as 𝑢𝑢𝑡𝑡𝑖𝑖 = 𝑣𝑣𝑡𝑡𝑖𝑖  ×𝑤𝑤𝑡𝑡𝑖𝑖. The dynROI type is a plane with a lateral fringe of 50 voxels, a height of 4 voxels 558 

and an angle 𝜃𝜃 set to 𝜋𝜋
2

. 559 

Dynamic region of interest estimation for the Kinetochore fibers 560 

Assuming K-fibers to span the region between poles and kinetochores as a straight polymer, its 561 

associated microtubule dynamics was observed using a conical dynROIs with an angle of pi/12.  562 

Stochastic programming for the evaluation of trackability 563 

The association of particle detections with trajectory heads is performed in a temporally greedy fashion, 564 

i.e. particles detected at time 𝑡𝑡 are linked to the heads of track segments defined up to time 𝑡𝑡 −565 

1 without consideration of the track segments beyond 𝑡𝑡 and only indirect consideration of track 566 
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segment before t-1. Therefore, our definition of trackability relates to the level of ambiguity in assigning 567 

particles detected in time point t to track segment heads in t – 1. The optimal association is obtained by 568 

linear assignment of heads to particles in a bi-partite graph:  569 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
{𝑎𝑎𝑖𝑖𝑖𝑖}

� 𝑐𝑐𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖  
𝑖𝑖∈Ω,𝑗𝑗∈Dt

 𝑠𝑠. 𝑡𝑡.  �𝑎𝑎𝑖𝑖𝑖𝑖
𝑖𝑖∈Ω

= 1 𝑎𝑎𝑎𝑎𝑎𝑎 � 𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗∈Dt

= 1, 570 

where Ω is the set of track segment heads, 𝐷𝐷𝑡𝑡 is the set of detections measured at time 𝑡𝑡,  𝑎𝑎𝑖𝑖𝑖𝑖 ∈ {0,1} 571 

denotes the assignement of the ith track segment to the jth particle and 𝑐𝑐𝑖𝑖𝑖𝑖 ∈ ℝ is the cost associated to 572 

making that association. The association cost 𝑐𝑐𝑖𝑖𝑖𝑖  typically reflects the distance between the predicted 573 

location of the 𝑖𝑖th track segment at 𝑡𝑡 and the 𝑗𝑗th detection at this same time point.  This assignment 574 

problem is convex, hence with a guaranteed unique solution, and can be solved using a variety of linear 575 

programming algorithms15,36,37.  However, a key challenge in our framework is the deterministic aspect 576 

of this solution. There is no measure of uncertainty attributed to the final graph of associations (see Fig 577 

5.a). While several algorithms have been proposed to estimate the uncertainty related to the total 578 

optimal cost of a linear programming problem, a.k.a. stochastic programing 38, they do not focus on the 579 

detection of local changes in association made in the bi-partite graph. In this Section, we will first detail 580 

how we consider the randomness present in the history of each track to estimate the probability 581 

distribution associated to all assignment costs 𝑐𝑐𝑖𝑖𝑖𝑖. We will then describe how these uncertainties can 582 

then be exploited to detect local ambiguities in the assignment problem, which subsequently define a 583 

score of trackability. 584 

Stochastic filtering approaches are routinely used to estimate the parameter describing the dynamic 585 

properties of tracked particles from their position history.  They enable the prediction of particle 586 

location from one frame to the next to refine the cost used for linear assignment.  Those temporally 587 

recursive algorithms also provide inferences of track segment prediction uncertainty from t-1 to t. 588 
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Briefly, let 𝒙𝒙𝑡𝑡 be a variable describing the state of the track segment. For a particle moving in a directed 589 

fashion, it is defined as: 590 

𝒙𝒙𝑡𝑡 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑). 591 

The associated probability 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒛𝒛1:𝑡𝑡)  can be estimated recursively thanks to the Bayes rule: 592 

𝑝𝑝(𝒙𝒙𝑡𝑡|𝒛𝒛1:𝑡𝑡) ∝ 𝑝𝑝(𝒛𝒛𝒕𝒕|𝒙𝒙𝒕𝒕)�𝑝𝑝(𝒙𝒙𝑡𝑡|𝒙𝒙𝑡𝑡−1)𝑝𝑝(𝒙𝒙𝑡𝑡−1|𝒛𝒛1:𝑡𝑡−1)  𝑑𝑑𝒙𝒙𝒕𝒕−𝟏𝟏, 593 

where 𝒛𝒛𝟏𝟏:𝒕𝒕 represents the past measured positions  assigned to a particular track. Kalman filtering is a 594 

scalable and flexible way to model the motions of thousands of particles in parallel, and as such is used 595 

in the majority of tracking approaches7, including u-track.  In this framework, the relationships between 596 

random variables are assumed to be linear and described as follows:  597 

𝒙𝒙𝑡𝑡 = 𝑭𝑭𝒙𝒙𝑡𝑡−1 + 𝒘𝒘𝑡𝑡 598 

𝒛𝒛𝑡𝑡 = 𝑯𝑯𝒙𝒙𝑡𝑡 + 𝒗𝒗𝑡𝑡 599 

where 𝑭𝑭  is the state transition matrix between consecutive time points, 𝑯𝑯  is the observation matrix, 600 

and 𝒘𝒘𝑡𝑡 and 𝒗𝒗𝑡𝑡 are the model and measurement noise respectively, both assumed to be Gaussian with 601 

covariance matrices 𝑸𝑸𝑡𝑡  and  𝑹𝑹𝑡𝑡. The Gaussian and linear assumption provides an analytical solution 602 

with a computationally efficient implementation to estimate 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒛𝒛1:𝑡𝑡)~𝑁𝑁�𝒙𝒙�𝒕𝒕,𝑷𝑷�𝒕𝒕� (see our previous 603 

work14 for a detailed review). Before optimal assignment between a track segment at  𝑡𝑡 − 1 and the 604 

object detected on frame 𝑡𝑡, the probability distribution of the predicted particle positon at time 𝑡𝑡 is then 605 

described by  𝑝𝑝(𝒙𝒙𝑡𝑡|𝒛𝒛1:𝑡𝑡−1)~𝑁𝑁�𝑭𝑭𝒙𝒙�𝒕𝒕−𝟏𝟏,𝑭𝑭𝑷𝑷�𝒕𝒕−𝟏𝟏𝑭𝑭⏉ + 𝑸𝑸𝒕𝒕�. As such the variation of the cost to associate the 606 

ith track segment to the 𝑗𝑗th measurement can be expressed, without loss of generality as:  607 

𝑐𝑐𝑖𝑖𝑖𝑖  ~ �𝑯𝑯𝑯𝑯 − 𝒛𝒛𝒕𝒕
𝑗𝑗� 𝒔𝒔. 𝒕𝒕.  𝒙𝒙 ~ 𝒑𝒑�𝒙𝒙𝒕𝒕𝒊𝒊�𝒛𝒛1:𝑡𝑡−1

𝒊𝒊 �.  608 

This expression provides us with a direct way to explore the space of possible combination of cost values 609 

through Monte Carlo Simulations. U-track 3D implements several types of stochastic filtering 610 

approaches such as unimodal and multimodal Kalman filtering as well as piecewise stationary motion 611 

filtering or smoothing approaches, where the same principles can be straightforwardly applied.  612 
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The principle underlying the use of our predicted probability distribution to evaluate assignment 613 

stability is described graphically in Figure 5.  Our local trackability score is defined as:  614 

𝑇𝑇𝑡𝑡𝑖𝑖 =
1
𝑁𝑁
�[𝑎𝑎𝑖𝑖𝑗𝑗∗ = 𝑎𝑎𝑖𝑖𝑗𝑗𝑛𝑛]
𝑁𝑁

𝑛𝑛=1

 615 

where  𝑎𝑎𝑖𝑖𝑗𝑗∗ is the initial assignment found for the 𝑖𝑖th trajectory, 𝑎𝑎𝑖𝑖𝑗𝑗𝑛𝑛  is a newly computed assignment 616 

resulting from the 𝑛𝑛th out of a total of N simultaneous resampling rounds of all costs 𝑐𝑐𝑖𝑖𝑖𝑖  and [.] denotes 617 

the Iverson bracket. Each new assignment result, or vote, is considered different if the track segment is 618 

assigned to another detection, or determined to be a track termination. As such, a lower score 𝑇𝑇𝑡𝑡𝑖𝑖 reflect 619 

a larger instability in the optimal assignment, hence a higher ambiguity and lower trackability. In our 620 

experiments, the number of resampling rounds is set to N = 20.  621 

Simulation parameters for trackability evaluation 622 
 623 
Parameters used to simulate the object described in Section “The trackability score detects tracking 624 

ambiguities with high precision”.  625 

Varying parameter  Diffusion Density Velocity Transition Rate 

Figure  5.f-i Supp 2 Supp 3 Supp 4 

Diffusion Coef. (um2/s) 0.1 – 1.0  0.3 0.15 0.1 

Density (um-3) 0.1 0.01 – 0.5 0.1 0.2 

Velocity (um/s) 0 0 0 – 2.2 1.5 

Transition Rate 0 0 0 0 – 0.5 

Volume size (um3) 1000  1000 um3 1000 um3 1000 um3 

Frame rate (Hz) 1  1 1 1 

Movie Length (s) 150 150 150 150 

Trajectory lifetime (s) 20 20 20  20 
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Standard error on detection 0.005 0.005 0.005 0.005 

 626 

 627 

Clathrin-mediated endocytosis study on a glass coverslip 628 
Cell preparation and imaging  629 

Inner medulla collecting duct (IMCD) mouse epithelial cells (ATCC CRL-2123) stably expressing alpha-630 

adaptin GFP16 were cultured in DMEM/F12 supplemented with 10% fetal calf serum and 1% 631 

antibiotic/antimycotic.  Cells were plated on 5 mm diameter coverslips (64-0700, Thomas Scientific) and 632 

mounted to a custom machined holder for imaging with a high-NA version of diagonally scanned light-633 

sheet microscopy2.  This microscope is equipped with an NA 0.71 water dipping illumination objective 634 

(54-10-7, Special Optics), and a 25X/NA 1.1 water dipping detection objective (CFI75 Apo LWD 25XY, 635 

Nikon Instruments), and a Hamamatsu Flash 4.0 sCMOS camera.  Briefly, 500 time points were acquired 636 

with 30 uW of 488 nm illumination (measured at the back pupil of the illumination objective) and a 15 637 

ms camera exposure.  Each image stack was 106.5 x 39.9 x 23.1 um3, with a lateral and axial voxel size of 638 

104 and 350 nm, respectively, resulting in a 1.008 Hz volumetric image acquisition rate.  639 

Clathrin structure trajectory estimation and post-processing 640 

Clathrin structure aggregates, labelled by alpha-adaptin GFP were detected using a multiscale particle 641 

detector with a p-value set to 0.05 and scales ranging from 0.15 um to 0.5 microns. For tracking, the 642 

motion of particles was modeled with a Brownian motion model with a maximum instantaneous 643 

displacement set as three times the process noise estimated by Kalman filtering of the trajectory, a 644 

lower bound set at 0.1 um and upper bound set at 0.3 um. When detection gaps are enabled, the 645 

maximum gap length is set to 3 s (or frames) with a minimum length of 3 s for any track segment 646 

allowable to be connected by the gap closing algorithm39.  647 
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The median of the maximum intensity reached per track was then used to discriminate between 648 

abortive and maturing CCPs.  To account for the variation of fluorescence signal across acquisitions, the 649 

maximum intensities were scaled such that the empirical cumulative distribution function (cdf) of 650 

maximum intensities computed for each acquisition matched the median cdf of all acquisitions, as 651 

previously described in ref16.  652 

Microtubule instability measurement 653 
Cell preparation and imaging  654 

Cell preparation and imaging of microtubule plus-ends has been carried with Lattice Light-sheet 655 

microscopy as described in ref1.  656 

Plus-ends trajectory estimation  657 

Plus-ends, labelled through GFP tagging of EB1, were detected using a multiscale detector with the 658 

default p-value (set to 0.005) and scales ranging from 0.15 um to 0.25 um. The polymerization of 659 

microtubule was modeled with a directed displacement estimated through a Kalman filtering of the 660 

trajectory, similar to18, but now in 3D. The random component of this displacement was estimated as 3 661 

times the process noise of the Kalman filter with a lower bound of 0.3 um and an upper bound of 0.6 662 

um.  663 

The shrinkages and pauses detection framework proposed in18 has also been translated to 3D plus-ends 664 

trajectories. The detection of both shrinkages and pauses is carried out by closing gaps between track 665 

segments, which implicitly delineate phases of microtubule growth. In our experiment, the minimum 666 

growth duration to consider gap closing was set to 4 s (or frames) and the maximum gap duration was 667 

set to 8 s. In order to detect pauses, the maximum angle between a speed vector estimated immediately 668 

prior and posterior to the pause event was set to 30 degrees, the maximum positional fluctuation in the 669 

plus-ends location during a pause is set to 0.5 um. To detect a shrinkage event between two segments, 670 

we first measure the distance D between the termination point of the earlier segment (which is 671 
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equivalent to the potential locus of a catastrophe event) and the initiation point of the later segment 672 

(which is equivalent to the potential locus of a rescue point) along the path of the earlier segment. The 673 

two segments are connected by the gap closer if the distance between the initiation point to the closest 674 

point along the trajectory of the first segment does not  exceeds  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜃𝜃) with 𝜃𝜃 set to 20 degrees in 675 

our experiment.  676 

Single molecule dynamics study with lattice light-sheet microscopy 677 
Cell preparation and imaging  678 
Cell preparation of fluorescently labelled Sox2 transcription factor for single molecule imaging is 679 

described in ref1. Briefly, 100 time points were acquired with Lattice light-sheet microscopy imaging. 680 

Nine planes spaced 500nm apart were acquired at 50 ms of camera exposure, resulting in a 2 Hz 681 

volumetric image acquisition rate.  Each image stack was 50 x 50 x 5 um3, then cropped around the 682 

nucleus, with a lateral and axial voxel size of 100 and 500 nm, respectively. 683 

Estimation of transcription factor binding times  684 
Transcription factor single molecules were detected using a multiscale detector using a p-value of 0.01 685 

and a scale ranging from 0.15 to 0.3 um. Transcription factor motion was modeled using a Brownian 686 

motion model with a maximum instantaneous displacement estimated as 6 times the process noise 687 

estimated by Kalman filtering of trajectory to account for speed variations during long periods of 688 

confined diffusion, a lower bound set at 0.3 um and upper bound set at 0.5 um. The maximum gap is set 689 

to 4 s (or frames) with a minimum length of 2 s for any track segment allowable to be connected by the 690 

gap closing algorithm. We assume that if the single molecule is detectable it immobilized at the DNA. 691 

Accordingly, characteristic binding times  𝜏𝜏  are estimated by a double exponential fit to the lifetime 692 

distribution.  693 

Adhesions and collagen interaction imaging and analysis  694 
Cell preparation and imaging 695 
For three-dimensional imaging of adhesions, mycoplasma-free U2OS cells were cultured in DMEM with 696 

10% fetal bovine serum (Sigma; F0926-500ML) at 5% CO2 and 37 °C. Cells were lentivirally transduced 697 
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with a truncated CMV promoter (Addgene #110718) driving the expression of mNeonGreen-Paxillin 698 

(Allele Biotechnology).  Cells were seeded into a pH-neutralized collagen solution (~2 mg/mL) that, when 699 

polymerized, fully embedded cells in a three-dimensional extracellular matrix environment.  For 700 

visualization of the extracellular matrix, a small concentration of the collagen was fluorescently 701 

conjugated with Alexa Fluor 568 NHS Ester (A20003, ThermoFisher).  Samples were imaged with a high-702 

NA variant of Axially Swept Light-Sheet Microscopy using 488 nm and 561 nm lasers for illumination 703 

(OBIS LX, Coherent, Inc.).  The details of this microscope will be published elsewhere. Briefly, lasers are 704 

combined, spatially filtered, expanded, and shaped into a light-sheet with a cylindrical lens.  This light-705 

sheet was relayed to a bidirectional scan unit (6215, Cambridge Technology), a remote focusing system 706 

(CFI S Plan Fluor ELWD, Nikon Instruments), and eventually to the illumination objective (54-10-7, 707 

Special Optics). Fluorescence was detected in a widefield format with a water-dipping objective (CFI75 708 

Apo LWD 25SW, Nikon Instruments) and imaged onto two sCMOS cameras (ORCA-Flash4.0, Hamamatsu 709 

Photonics) with a 500 mm achromatic doublet (49-396, Edmund Optics), laser line filter, a dichroic, and 710 

bandpass filters (ZET405/488/561/640, ZT568rdc, ET525/50m, and ET600/50m, Chroma Technology 711 

Corporation).  The laser laterally dithered for shadow reduction and scanned synchronously with the 712 

detection objective (P-603.1S2 and E-709.SRG, Physik Instrumente) to acquire a three-dimensional stack 713 

of images.  All equipment was controlled with custom LabVIEW software, which is available from UTSW 714 

upon completion of a material transfer agreement.   715 

Adhesion detection and elongation analysis 716 
Paxilin aggregates as a surrogate for adhesions were detected using the multiscale detector described in 717 

Section “Multiscale particle detector” based on a p-value of 0.001 and a scale ranging from 0.3 to 0.5 718 

um. The elongation of each detected adhesion is computed through a tubularity metric evaluated for 719 

each voxel and averaged across all the voxels associated to a single adhesion. Similar to the classic 720 

vesselness estimator by Frangi and colleagues40, our tubularity metric is based on the eigen values of the 721 

Hessian matrix to describe local curvature,. Let (𝜆𝜆1 < 𝜆𝜆2 < 𝜆𝜆3) be the three eigenvalues of the Hessian 722 
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matrix computed at each voxel, the tubularity metric 𝑇𝑇 = 1 − | 𝜆𝜆1 𝜆𝜆2|⁄   yields a value between 0 and 1 723 

increasing with the elongation of the adhesions. As such, a noteworthy difference between the classic 724 

score described in Frangi’s approach is the use of the two lowest eigen-values (associated with the two 725 

axis of lowest curvature direction) to discriminate between flat and elongated adhesions. 726 

Endosome trackability on cell cultured on top of collagen 727 
Cell preparation and imaging  728 
Sum159O breast cancer cells41 stably expressing alpha-adaptin GFP were imaged similarly to the one 729 

platted on glass coverslip , with the exception that they were plated on a ~2 mm thick bed of rat tail-730 

derived Collagen Type I (354236, Corning). 731 

Clathrin structure trajectory estimation  732 
Clathrin structure aggregates, labelled by alpha-adaptin GFP were detected using a multiscale particle 733 

detector with a p-value set to 0.01 and scales ranging from 0.125 to 0.5 microns. For tracking, the 734 

motion of particles was modeled with a Brownian motion model. In order to follow the erratic 735 

displacements caused by large protrusive motions, the maximum instantaneous displacement was set to 736 

5 times the process noise estimated by Kalman filtering of the trajectory, a lower bound set at 0.3 um 737 

and upper bound set at 0.6 um. The maximum gap length is set to 3 s (or frames) with a minimum length 738 

of 3 s for any track segment allowable to be connected by the gap closing algorithm39.  739 

Movies Descriptions 740 
Movie 1  741 
Detail of a rat kidney cells layer expressing GFP-AP2 subunit imaged with diagonally scanned light-sheet 742 

microscopy (diaSLM) acquired with a volumetric frequency of 1 Hz and rendered with maximum 743 

intensity projection (MIP). Overlay highlights trajectories colored according to maturing events (green), 744 

aborting events (orange) and tracks discarded because their lifetimes are cut by the acquisition 745 

beginning and end (blue). The red spheres highlight gap location.  746 
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Movie 2  747 
Details of HeLa cell in interphase expressing GFP-EB1 imaged with lattice light-sheet microscopy, 748 

rendered with MIP, and acquired with a volumetric frequency of 1 Hz under control condition (left) and 749 

after treatment with 33 nM of nocodazole (right). Overlay highlights trajectories, colored uniquely, and 750 

yellow circles highlight location of pauses and rescues.  751 

Movie 3 752 
HeLa cell in metaphase expressing GFP-EB1 imaged with lattice light-sheet microscopy, rendered with 753 

MIP, and acquired with a volumetric frequency of 1 Hz. Overlay highlights trajectories. Rendering using 754 

the Amira rendering software. 755 

Movie 4  756 
Dual-colored orthogonal MIP of osteocarcinoma cells expressing eGFP-labeled paxillin and embedded in 757 

collagen labelled with Alexa fluor 568 acquired with a volumetric frequency of 0.07 Hz. Overlay 758 

highlights dynamic region of interest (dynROI).  759 

Movie 5 760 
Mask of detected adhesions colored according to their proximity to the closest collagen fiber.  761 

Movie 6 762 
Mask of detected adhesions colored according to their elongations.  763 

Movie 7 764 
Slice of the mask of detected adhesions and collagen fibers taken at the center of cell dynROI described 765 

in Fig. 2.a and Movie 3. 766 

Movie 8 767 
Dual-colored orthogonal MIP of HeLa cells undergoing mitosis labeled with eGFP-labeled EB3 and 768 

mCherry-labeled CENPA acquired with a volumetric frequency of 0.1 Hz. From left to right, overlays 769 

highlight a dynROI built around centrosome trajectories, a dynROI built around CENPA trajectories, and 770 

a plane built to visualize the dynamics of chromosomes relative to the spindle location. 771 
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Movie 9 772 
Dual-colored orthogonal MIP of HeLa cells undergoing mitosis labeled with eGFP-labeled EB3 and 773 

mCherry-labeled CENPA acquired with a volumetric frequency of 0.1 Hz. The red overlay highlights the 774 

dynROI tracking a plane built to visualize the dynamics of chromosomes relative to the spindle location. 775 

Movie 10 776 
Left: Dual-colored orthogonal MIP of HeLa cells during pro-metaphase acquired with a volumetric 777 

frequency of 1 Hz. Overlay highlights the motion of the dynROI. Right: Rendering of the volume 778 

described by the dynROI in its associated frame of reference. Green dots highlight plus-ends inside the 779 

mapping cone and red circle describe the motion of the target kinetochore. 780 

Movie 11 781 
Top: Orthogonal MIP of breast cancer cells imaged with diaSLM expressing eGFP-labelled alpha subunit 782 

of the AP-2 complex acquired with a volumetric frequency of 1 Hz. Rectangular overlays show dynROIs 783 

with different types of dynamic of activity. Dot overlays show local level of ambiguity. Bottom: 784 

Rendering of the volume described by the dynROI in their associated frames of reference. 785 

 786 
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