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Abstract 28 

With advances in whole genome sequencing (WGS) technology, multiple statistical methods 29 

for aggregate association testing have been developed. Many common approaches aggregate 30 

variants in a given genomic window of a fixed/varying size and are not reliant on existing 31 

knowledge to define appropriate test units, resulting in most identified regions not being 32 

clearly linked to genes, limiting biological understanding. Functional information from new 33 

technologies (such as Hi-C and its derivatives), which can help link enhancers to the genes 34 

they affect, can be leveraged to predefine variant sets for aggregate testing in WGS. 35 

Therefore, in this paper we propose the eSCAN (Scan the Enhancers) method for genome-36 

wide assessment of enhancer regions in sequencing studies, combining the advantages of 37 

dynamic window selection in SCANG with the advantages of increased incorporation of 38 

genomic annotation. eSCAN searches biologically meaningful searching windows, increasing 39 

power and aiding biological interpretation, as demonstrated by simulation studies under a 40 

wide range of scenarios. We also apply eSCAN for association analysis of blood cell traits 41 

using TOPMed WGS data from Women’s Health Initiative (WHI) and Jackson Heart Study 42 

(JHS). Results from this real data example show that eSCAN is able to capture more 43 
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significant signals, and these signals are of shorter length and drive association of larger 44 

regions detected by other methods. 45 

Main text 46 

In genome-wide association studies (GWAS), most significantly associated variants 47 

are located outside coding regions of genes, making it difficult to interpret the biological 48 

function of associated variants. Statistical power to detect rare variant associations in 49 

noncoding regions, which is of increasing importance with the advent of large-scale whole 50 

genome sequencing (WGS) studies, is also limited with a standard single variant GWAS 51 

approach. Aggregate testing is necessary to increase statistical power to detect rare variant 52 

associations; linking noncoding variants to their likely effector genes is necessary for 53 

interpretation of identified aggregate signals. Many standard methods for aggregate analysis 54 

of the noncoding genome are agnostic to regulatory and functional annotation (for example, 55 

standard sliding window analysis, where all variants in a given location bin (for example a 5 56 

kb or 10 kb window) are analyzed, followed by analysis of a subsequent partially overlapping 57 

window, until each chromosome is assessed in full)1-3. SCANG has recently been proposed as 58 

an improvement on conventional sliding-window procedures, with the ability to detect the 59 

existence and locations of association regions with increased statistical power 4. SCANG 60 

allows sliding-windows to have different sizes within a pre-specified range and then searches 61 

all the possible windows across the genome, increasing statistical power. However, since 62 

SCANG tests all possible windows, it can "randomly" identify some regions across the 63 

genome regardless of their biological functions. Identified regions could often cross multiple 64 

enhancer regions with distinct functions, thus impeding the identification of biologically 65 

important enhancers and their target genes. This cross-boundary issue may also lead to a 66 

higher false positive rate in a fine-mapping sense. The whole region/chromosome in which 67 
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the detected regions are located may not be a false positive, but locations of the detected 68 

regions will not match the true association regions. Moreover, SCANG applies SKAT to all 69 

candidate windows, but computing p-values in SKAT requires eigen decomposition5. This 70 

analysis method is therefore very time-consuming and has high computational costs, which 71 

may not be feasible for increasingly large genome-wide studies. 72 

In addition to sliding window approaches, many analyses of WGS data rely on 73 

aggregate tests of predefined variant sets, attempting to link the most likely regulatory 74 

variants (as defined by tissue specific histone marks, open chromatin data, sequence 75 

conservation, etc) to genes prior to association testing, with variants assigned to genes based 76 

on either physical proximity or chromatin conformation1; 3. There is increasing data available 77 

to define these tissue specific regulatory regions, which are known to show enrichment for 78 

GWAS identified noncoding variant signals.6-8 Recent biotechnological advances based on 79 

Chromatin Conformation Capture (3C), such as promoter capture Hi-C data, can also better 80 

link gene promoters to enhancers based on their physical interactions in 3D space 9. We here 81 

propose an extension of SCANG which combines the advantages of both scanning and fixed 82 

variant set methods (see Fig. 1 for illustration). Our eSCAN (or “scan the enhancers” with 83 

“enhancers” as a shorthand for any potential regulatory regions in the genome) method can 84 

integrate various types of functional information, including chromatin accessibility, histone 85 

markers, and 3D chromatin conformation. There can be a significant distance between a gene 86 

and its regulatory regions; simply expanding the size of the window to include kilobases of 87 

genomic data around each gene will include too many non-causal SNPs, giving rise to power 88 

loss, as well as difficulties in results interpretation9. Our proposed framework can enhance 89 

statistical power for identifying new regions of association in the noncoding genome. We 90 

particularly focus on integration of 3D spatial information, which has not yet been fully 91 

exploited in most WGS association testing studies. Our method allows users to input broadly 92 
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defined regulatory/enhancer regions and then select those which are most likely relevant to a 93 

given phenotype, in a statistically powerful framework.  94 

Given our incomplete understanding of chromatin conformation and enhancer 95 

annotation, an annotation agnostic approach such as SCANG does have some advantages, in 96 

that no prior information is needed for rare variant testing. However, our simulations and the 97 

real data example presented here demonstrate the advantages of our eSCAN method, which 98 

can flexibly accommodate multiple types of annotation information and shows significant 99 

power gains over SCANG, as well as a lower false positive rate in different scenarios for both 100 

continuous and dichotomous traits. These advantages are demonstrated in our application of 101 

eSCAN to TOPMed WGS analyses of four blood cell traits in the Women’s Health Initiative 102 

(WHI) study, with replication in Jackson Heart Study (JHS). 103 

The eSCAN procedure can be split into two steps: a p-value computing step and a 104 

decision-making step (using a p-value threshold). First, for each enhancer, set-based p-values 105 

are calculated by fastSKAT, which applies randomized singular value decomposition (SVD) 106 

to rapidly analyze much larger regions than standard SKAT, and then p-values are "averaged" 107 

by the Cauchy method via ACAT 4. Second, eSCAN calculates two types of significance 108 

threshold. The first is an empirical data-driven threshold computed by Monte Carlo 109 

simulation on the basis of a common distribution of p-values; the second is an analytical 110 

estimation by extreme value distribution10. eSCAN then defines the enhancers with p-values 111 

below the threshold as significant. Further details are in the Supplemental Methods. 112 

 We next evaluated the performance of eSCAN using simulated data under the null 113 

model (more details in Supplemental Methods). On average, each simulated enhancer had a 114 

length of 4025 bp and contained 122 variants with MAF below 5%. For both continuous and 115 

dichotomous simulations, we applied eSCAN to 1,000 replicates with sample sizes of 2,500, 116 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.405266doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.405266


6 
 

5,000 and 10,000, respectively, and set the genome-wide type I error rate at 0.05. Under all 117 

scenarios, our method has a well-controlled genome-wide type I error rate (Table 1). 118 

 To assess eSCAN under the alternative model, we applied eSCAN and two SCANGs, 119 

i.e. the default SCANG and enhancer based SCANG, to a wide range of simulated scenario to 120 

benchmark their performances in terms of power and false positive rate, using four metrics, 121 

namely causal-variant detection rate, causal-enhancer detection rate, variant false positive 122 

rate and enhancer false positive rate (more details in Supplemental Methods). For 123 

continuous traits, both the enhancer-based SCANG and our eSCAN analysis showed higher 124 

power than the default SCANG, at both the variant level and the enhancer level (Fig. 2a-b), 125 

for all tested sample sizes, suggesting the benefit of aggregating variants using enhancer 126 

information. Notably, the power gain between eSCAN and enhancer-based SCANG is much 127 

more pronounced than that between enhancer-based SCANG and default SCANG. eSCAN 128 

increases the variant-level power by 23.50%, 45.94% and 27.98% for the three tested sample 129 

sizes, respectively; and boosts the enhancer-level power by 17.60%, 45.47% and 24.14%, 130 

respectively. With respect to false positive rate, eSCAN showed a remarkably lower false 131 

positive rate than those from the two SCANG procedures, at both the variant-level and 132 

enhancer-level (Fig. 2c-d).  133 

 These results demonstrate eSCAN’s capabilities to powerfully and accurately detect 134 

causal enhancers. We further evaluated eSCAN in more simulation scenarios to verify 135 

eSCAN's robustness to dichotomous traits and the proportion of causal enhancers, as well as 136 

the proportion of causal variants within the causal enhancers. Results show that these gains 137 

are robust to choice of parameters (Fig. S1-3).  138 

 To assess the performance of eSCAN in real data, we compared eSCAN to both 139 

enhancer based SCANG and the default SCANG using WGS data in 10,727 discovery 140 

samples from the Women’s Health Initiative (WHI) and 1,970 replication samples from the 141 
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Jackson Heart Study (JHS) (Supplemental Methods and Table S1). We only considered 142 

variants with a minor allele frequency < 5% in each cohort. Windows with a total minor 143 

allele count (MAC) < 10 were excluded from the analysis. To achieve a fair comparison, we 144 

first applied eSCAN and enhancer-based SCANG for association analysis between putative 145 

enhancers and four blood cell traits measured at baseline in WHI, white blood cell count 146 

(WBC), hemoglobin (HGB), hematocrit (HCT) and platelets (PLT), with a genome-wide 147 

error rate at the level of 0.05 by Bonferroni correction in both methods. For eSCAN, 148 

enhancers were defined using promoter capture-Hi-C (PC-HiC) data in any tested white 149 

blood cell type (including neutrophils, monocytes, and lymphocytes) for WBC, erythroblasts 150 

for HGB and HCT and megakaryocytes for PLT11, defining any noncoding region with 151 

statistically significant interactions with a gene promoter as an enhancer region. For 152 

enhancer-based SCANG, we analysed the subset of rare variants falling into any enhancer 153 

region as defined using PC-HiC annotation (more details in Supplemental Methods). For the 154 

default SCANG, due to the limited computational feasibility, we only performed the analysis 155 

for WBC. 156 

Overall, eSCAN detected 19 significant regions associated with blood cell traits while 157 

enhancer-based SCANG only detected 7 regions (Table 2 , Table S3 and Fig. S4A-D). Also, 158 

eSCAN showed consistently smaller p-values for top regions compared with enhancer-based 159 

SCANG (Fig. S4A-D and Table 2). Among the 19 genome-wide significant regions detected 160 

by eSCAN in the unconditional analysis, 4 were located within +/- 500kb of known GWAS 161 

loci and were still significant at the Bonferroni correction level of 0.05/4 after conditioning 162 

on known blood cell trait GWAS loci12-20 (Table 2 and Table S2). Also, of the significant 163 

regions, two were replicated at 0.05 level in replication samples. Note that the low replication 164 

rate is likely due in large part to the much smaller sample size of the JHS replication cohorts; 165 
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we also note as a limitation that we did not correct for multiple testing in these replication 166 

analyses, due to this small sample size. .  167 

To more comprehensively compare the top regions of eSCAN and two SCANG 168 

procedures, enhancer-based SCANG and the default SCANG, we relaxed the significance 169 

level for WBC by using the empirical threshold (more details in Supplemental Methods). 170 

The detected regions by eSCAN are of shorter length and contains fewer variants and than 171 

those identified by the two SCANG variants (Fig. S5b). Also, each region identified by 172 

eSCAN contains a single regulatory element based on annotation from promoter capture Hi-C. 173 

By contrast, regions identified by SCANG can cross multiple regulatory regions (Fig. S5c), 174 

which indicates that, with the help of enhancer information, eSCAN can more effectively 175 

narrow down variants and/or regulatory regions associated with a trait of interest than 176 

SCANG. We further investigated a segment on chromosome 10 where two signals were 177 

detected by enhancer-based SCANG and four by eSCAN. The two regions from SCANG 178 

overlapped the four eSCAN signals. All four were smaller in size than the SCANG detected 179 

regions. We also note that each SCANG signal contains two eSCAN signals (Fig. 3a-c). We 180 

then removed the associated variants in the overlapped regions between eSCAN and SCANG 181 

(which are regions detected by eSCAN since in both cases, the eSCAN regions are subsets of 182 

the SCANG regions), and re-did SCANG analysis using the retained variants only. Both 183 

regions then became insignificant (p-values� 0.02) using SCANG (Fig. 3d), suggesting that 184 

the sub-regions detected by eSCAN were most likely the functional regions contributing to 185 

the original significant signal. 186 

 The computational complexity of eSCAN depends on the sample size, the number of 187 

considered enhancers along a certain chromosome, and the number of rare variants residing 188 

in enhancer regions. For JHS (n=1,970) and WHI (n=10,727) eSCAN takes an average of 3h 189 

and 26h, respectively, to examine all the sets of rare variants along one chromosome, using 190 
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our cluster computing platform with one computing node and 8Gb of memory (Fig. S6) while 191 

SCANG limited to enhancer regions takes an average of 2.6 days and 5.3 days respectively as 192 

more eigen-decomposition steps are performed.  193 

 We propose here eSCAN, a novel aggregation method for whole genome sequencing 194 

analysis, which can integrate various types of functional information to aggregate enhancers 195 

or putative regulatory regions from WGS data and test for association with phenotypes of 196 

interest. Our method has several important advantages: (1) it has higher power and lower 197 

false positive rate, enabling it to accurately detect more significant signals than other methods 198 

(Fig. 2 and S1-4); (2) the signals identified by eSCAN are of shorter sizes, which suggests 199 

eSCAN can more accurately locate the associated variants; (3) eSCAN boosts the biological 200 

interpretation of detected signals by incorporating functional annotation; (4) it is 201 

computationally efficient (Fig. S6). 202 

eSCAN can be viewed as an extension of SCANG with respect to its use of dynamic 203 

searching windows and use of the p-value as its test statistic4. But it differs from SCANG in 204 

several key ways. SCANG restricts the size of searching windows within a pre-specified 205 

range and then tests all possible windows, "randomly" identifying some large regions across 206 

the genome regardless of their biological functions. eSCAN allows more flexible and 207 

biologically meaningful searching windows that mark putative enhancer(s) (Fig. 1). In 208 

addition, eSCAN builds on fastSKAT, a computationally efficient approach to approximate 209 

the null distribution of SKAT statistics 21. 210 

Based on our simulations in a variety of scenarios, eSCAN can be flexibly applied to 211 

different phenotypes, both quantitative and qualitative, and is able to detect more significant 212 

signals than competing methods with a better control over false positive rate than other WGS 213 

based methods (Fig. 2 and Fig. S1-3). Using WGS data from the JHS and WHI studies, we 214 

demonstrate an enrichment of association signals using eSCAN procedure. It can detect 215 
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reported signals which are not found by SCANG procedures, indicating that it is less likely to 216 

miss important regions. In addition, the regions detected by eSCAN are of shorter size than 217 

those of SCANG on average. By removing eSCAN signals from WGS data on chromosome 218 

10 and re-running SCANG procedures, we verify that, at least for this segment, the signals 219 

detected by eSCAN drive the significant associations in larger regions identified by SCANG 220 

(Fig. 3; Fig. S5), a pattern we anticipate would be true for many associated regions.  221 

Despite the modest sample size available for our blood cell trait analysis, interesting 222 

and biologically plausible rare and low frequency variant enhancer region signals were 223 

identified in our analyses from WHI. Of the genes regulated by replicated regions, BACH2 224 

(regulated by a region on chromosome 6: 90,423,754-90,425,200) is a key immune cell 225 

regulatory factor and is crucial for the maintenance of regulatory T-cell function and B-cell 226 

maturation 22. Among other interesting genes CCL18 (regulated by a region on chromosome 227 

17: 35,982,416-35,983,367, which was not replicated in JHS) was reported to stimulate the 228 

bone marrow overall, which could lead to increased platelets23. These findings suggest that 229 

the associated enhancer regions identified by eSCAN may in fact play key regulatory relevant 230 

to the biological functions of blood cells, with eSCAN finding regions were not identified 231 

using the SCANG method. We do note, however, that these findings should be considered 232 

preliminary, given our modest sample size, and could be influenced by unadjusted for 233 

selection bias in WHI TOPMed sampling (enrichment for stroke and venous 234 

thromboembolism) and lack of adjustment for a genetic relationship matrix which could 235 

better capture cryptic relatedness and differential ancestry unadjusted for by PCs. However, 236 

these issues impact eSCAN and SCANG equally, and do not change our central methods 237 

comparison findings.  238 

 With respect to the weights in fastSKAT, we used two standard MAF-based weights: 239 

one is the Beta distribution with �� � �� � 1 reflecting that all the variants have equal effect 240 
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size, the other is �� � 1, �� � 25  upweighting rarer variants. One can also use external 241 

measures by incorporating individual level functional annotations, such as FATHMM-XF24 242 

and STAAR25, as the weight for each variant. Incorporation of functional evidence has 243 

demonstrated its values in variant level association studies 26; 27. In addition, the eSCAN 244 

framework is flexible regarding its unit aggregate tests. In our implementation, we use 245 

fastSKAT because of its small computational cost, but other aggregate tests can also be used, 246 

such as SMMAT, a recently proposed test which is an efficient variant set mixed model 247 

association test 28. 248 

Another attractive feature of eSCAN is its significance threshold. Since candidate 249 

regions are highly likely to be correlated because of either physical overlapping or LD, 250 

making the set-based p-values also correlated, the classic Bonferroni correction would be too 251 

conservative. While we do use a classic Bonferroni correction in our real data example from 252 

WHI, due to the small sample size available to us for replication, this is almost certainly over-253 

conservative. eSCAN provides two estimations of significance threshold, either empirically 254 

or analytically, using the strategies from SCANG and WGScan respectively, which have 255 

demonstrated significant enrichments of signals in Li et al.4 and He et al.10. In addition, 256 

although our analyses focused on unrelated individuals, it can be readily extended to related 257 

samples by replacing the generalized linear model (GLM) with the generalized linear mixed 258 

model (GLMM) in the first step4. 259 

One potential limitation of eSCAN is the lack of base pair resolution in defining 260 

regions important for gene regulation, due to the sparsity of reads with most Hi-C and 261 

chromatin conformation assays (leading to resolution as broad as 40 kb when assessing 262 

interactions between genomic regions). ATAC-seq data, albeit much finer resolution, still 263 

results in open chromatin peak regions that usually contain multiple rare variants, particularly 264 

as sample size increases, hurdling inference at the resolution of single base pair or single 265 
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variant. These limitations are intrinsic to the functional annotation data employed rather than 266 

to the eSCAN methodology. We anticipate that rapid technological improvements in the 267 

functional annotation datasets will continue mitigating these issues by providing increasingly 268 

finer resolution and more comprehensive data, which would render eSCAN even more 269 

valuable in the near future. 270 

  271 
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Supplemental Data Description 272 

Supplemental Data include supplemental methods, six figures and three tables, which are 273 

included as an Excel file. 274 
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Figure titles and legends 416 

Figure 1: An illustration of eSCAN. 417 
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Figure 2: Power and false positive Rate Comparison of eSCAN and SCANG for 420 

Continuous Traits as Sample Size Changes. 421 

We evaluated the performance of eSCAN for continuous traits analysis as sample size 422 

changes. The total sample sizes considered were 2,500, 5,000 and 10,000. For each 423 

configuration, we compared three methods: eSCAN and two SCANGs: enhancer-based 424 

SCANG (aggregating enhancers across the genome) and default SCANG (scan the whole 425 

genome). We evaluated power and false-positive performance at both variant-level and 426 

enhancer-level.  427 

Panel a presents power at the variant-level (a.k.a. causal-variant detection rate). Panel b 428 

presents power at enhancer-level(a.k.a. causal-enhancer detection rate). Panel c presents 429 

results of the false positive rate at variant-level. Panel d presents the false positive rate at the 430 

enhancer-level. 431 
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Figure 3: A segment on chromosome 10 where two signals were detected by SCANG 434 

and four by eSCAN. 435 

We further investigated a segment on chromosome 10 where two signals were detected by 436 

SCANG and four by eSCAN. The two regions from SCANG (chr10: 113,767,467-437 

113,773,998 with p-value=2.66×10^(-7) and chr10: 113,774,365-113,779,787 with p-438 

value=7.81×10^(-7)) overlapped the four eSCAN signals (a). All four is smaller in size than 439 

the SCANG detected regions (b). Specifically, eSCAN detected chr10: 113,770,735-440 

113,773,147 with p-value=2.84×10^(-6); chr10: 113,773,148-113,774,046 with p-441 

value=6.59×10^(-6); chr10: 113,774,047-113,775,910 with p-value=9.55×10^(-6) and chr10: 442 

113,775,911-113,778,291 with p-value=1.92×10^(-5)). Each SCANG signal contains two 443 

eSCAN signals (c). We then removed the associated variants in the overlapped regions 444 

between eSCAN and SCANG (which are regions detected by eSCAN since in both cases, the 445 

eSCAN regions are subsets of the SCANG regions), and re-did SCANG analysis using the 446 

retained variants only. Both regions then became insignificant (p-values>0.02) using SCANG 447 

(d), suggesting that the sub-regions detected by eSCAN were most likely the functional 448 

regions contributing to the original significant signal. 449 
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Tables 451 

Table 1: Genome-wide empirical type 1 error rates of eSCAN from simulation studies, 452 

shown for different sample sizes and trait distributions. 453 

Sample size n=2,500 n=5,000 n=10,000 

Continuous Traits 0.003 0.002 0.001 

Dichotomous Traits 0.001 0.001 0.002 

Table 2: Significant results by eSCAN for blood cell traits in TOPMed whole genome 454 

sequencing data. Chromosome, start position (hg38), end position (hg38), p-value in 455 

discovery samples (Women's Health Initiative, WHI), p-value of nearest region tested by 456 

enhancer-based SCANG, known GWAS loci within +/- 500kb, associated trait (HGB, 457 

hemoglobin, PLT, platelet count, WBC, white blood cell count), p-value in the replication 458 

samples (Jackson Heart Study, JHS), gene(s) regulated by the detected region, total minor 459 

allele count (MAC) in the discovery samples, total MAC in the replication samples.460 
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Chr Start End P-value 

P-value by 

enSCANG 

(strat:end) 

Known 

GWAS 
Trait 

P-value 

(replication) 
Regulated gene MAC 

MAC 

(replicat

ion) 

5 178,360,084 178,360,305 9.54E-10 
5.82E-02 
(178,342,330: 
178,367,547) 

No HGB 0.56 COL23A1 22 30 

8 98,026,570 98,027,915 1.01E-08 
9.24E-04 
(98,023,407: 
98,078,162) 

No HGB 0.11 MTDH; LAPTM4B; RNU7-177P; Y_RNA; MATN2; RPS23P1 11 11 

9 32,397,109 32,404,847 2.52E-08 
7.75E-03 
(32,289,232: 
32,422,553) 

Yes HGB 0.42 
CAAP1; IFT74; RP11-337A23.3; IFNK; AL353671.1; AL353671.2; 

DDX58; TOPORS-AS1; TOPORS; NDUFB6; APTX; DNAJA1 
15 18 

16 14,509,775 14,511,544 1.67E-08 
1.78E-03 
(14,479,136: 
14,781,283) 

No HGB 0.76 ERCC4; RPS26P52; MIR193B; MIR365A 34 6 

16 53,504,703 53,505,714 6.45E-07 
1.04E-02 
(53,483,984: 
53,535,907) 

No HGB 0.80 
CHD9; RP11-467J12.4; RBL2; AKTIP; CRNDE; IRX5; LPCAT2; 

MMP2; CNOT1 
25 107 

17 37,034,219 37,034,447 1.46E-08 
7.13E-04 
(37,016,046: 
37,060,384) 

No HGB 0.63 DHRS11; DHRS11; MRM1 13 4 

1 103,517,128 103,522,214 2.55E-14 
1.26E-02 
(103,476,276: 
103,518,492) 

No PLT 0.51 
ACADM; RP4-682C21.5; RP11-57H12.3; RWDD3; SASS6; 

COL11A1 
25 27 

1 37,597,769 37,598,312 4.92E-27 
5.37E-03 
(37,588,746: 
37,598,034) 

No PLT 0.46 

RP1-43E13.2; UBR4; LINC01137; ZC3H12A; MEAF6; C1orf109; 

CDCA8; C1orf122; YRDC; MTF1; RP11-109P14.10; FHL3; 

UTP11L 

25 13 

1 39,128,051 39,129,395 6.32E-12 
2.42E-02 
(39,127,407: 
39,129,821) 

No PLT NA RP11-420K8.1; KIAA0754; BMP8A; PABPC4 28 NA 
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6 148,155,161 148,157,516 1.29E-09 
3.20E-02 
(148,142,817: 
148,156,466) 

No PLT 0.70 SAMD5 40 18 

6 90,423,754 90,425,200 3.46E-09 
4.86E-02 
(90,422,386: 
90,424,684) 

No PLT 0.01 
MDN1; snoU13; GJA10; Y_RNA; RP11-63K6.7; RP3-512E2.2; 

BACH2 
15 5 

9 113,408,320 113,408,738 6.24E-11 
4.72E-04 
(113,286,449: 
113,425,110) 

No PLT 0.10 CDC26; PRPF4; RP11-168K11.2 36 17 

12 27,242,306 27,243,091 2.34E-10 
1.16E-02 
(27,239,926: 
27,242,793) 

No PLT 0.02 
CASC1; LYRM5; ASUN; FGFR1OP2; RP11-421F16.3; TM7SF3; 

MED21; CCDC91; RP11-967K21.1; C12orf29; C12orf50 
40 12 

15 75,460,830 75,464,641 1.60E-07 
7.61E-03 
(75,455,032: 
75,466,056) 

No PLT 0.29 CTD-2026K11.3; SNUPN; CTD-2026K11.1; IMP3;SNX33 38 14 

17 35,982,416 35,983,367 3.24E-15 
2.14E-03 
(35,974,330: 
36,042,136) 

Yes PLT 0.12 CCL18; AC069363.1; ZNHIT3 14 31 

1 35,978,873  35,979,878 1.17E-19 
9.08E-03 
(35,918,715: 
36,037,384) 

Yes WBC 0.11 AGO1 17 11 

1 166,941,439 166,942,948 2.81E-09 
2.68E-03 
(166,881,863: 
167,002,809) 

Yes WBC 0.34 RP11-102C16.3 10 5 

10 51,376,256 51,378,263 6.10E-08 
1.65E-02 
(51,281,521: 
51,397,833) 

No WBC 0.73 RP11-96B5.3 21 74 

14 96,608,711 96,610,505 3.67E-11 
5.06E-03 
(96,599,488: 
96,619,536) 

No WBC 0.25 CTD-2200A16.1; U6 15 12 
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