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Abstract 

Chronic morbidities place longstanding burdens on our health as we age. Although protein biomarkers are 

critical for the early detection of such diseases, current studies are limited by low sample sizes, variability in 

proteomics methods and fluctuations in inflammatory protein expression. Here, we present a novel 

framework for protein-by-proxy analysis of incident disease. We show that DNA methylation proxies for 

nine inflammatory and seven neurology plasma proteins (generated in up to 875 individuals in the Lothian 

Birth Cohort 1936) predict the incidence of seven leading causes of morbidity in the Generation Scotland 

cohort (n=9,537), ascertained via electronic health data linkage over a follow-up period of up to 14 years. 

After correction for multiple testing and adjustment for common disease risk factors, these included proxy 

associations between CCL11 and depression (Hazard Ratio: HR = 1.45, P = 1.8 x 10-4), VEGFA and 

ischaemic heart disease (HR = 1.16, P = 0.02) and associations between incident diabetes and FGF-21 (HR 

= 1.39, P = 9.7 x 10-7), NEP (HR = 1.32, P = 2.8 x 10-6) and N-CDase (HR = 1.16, P = 0.02). Several of the 

protein-proxy associations with disease pinpoint proteins that are already therapeutic targets for the diseases 

in question. These results provide new opportunities to identify circulating biomarkers for disease detection 

and candidate pathways for drug targeting. 

 

1 Introduction 

 

Ageing is associated with the increased incidence of many chronic morbidities which can raise an 

individual’s risk of disability and mortality. The development of clinical tools for early detection and 

prevention of such morbidities is therefore a priority. Plasma protein biomarkers can help to achieve this 

goal, as their divergent expression provides insight into the likely causes and consequences of disease in an 

individual, oftentimes prior to the onset of clinically relevant symptoms 1. The recent characterization of the 

genome-wide genetic and epigenetic architectures of plasma proteins highlights the potential for integrated 

omics data to uncover causal pathways contributing to protein expression 2,3 and health outcomes 2–7. 

Developing robust ways to identify the relationships that exist between genetic architectures, circulating 

proteins and disease onset is therefore critical to uncovering both the mechanisms of disease and ways to 

stratify risk. 

 

Despite the clear utility of protein biomarkers, there are several limitations that impede current research. The 

use of protein expression for risk prediction and causal inference relies on large and consistent datasets. 

Current work is limited by both the availability of suitable samples and the variability across the many 

methods used to generate proteomics data 8. Additionally, proteins involved in the acute-phase inflammatory 
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response are known to be variable in their within-person expression, rendering single-time-point measures of 

these markers problematic 9–11. 

 

We propose DNA methylation (DNAm) proxies as a means to circumvent these limitations. DNAm involves 

the addition of a methyl group to a cytosine residue, typically in the context of a CG dinucleotide (CpG), 

which can regulate gene expression 12. Genome-wide DNAm is commonly measured by the Illumina 

Methylation BeadChip and is widely profiled in cohort studies that do not have proteomics data available; 

DNAm proxies for protein expression would subsequently create new opportunities for large and consistent 

analyses in many existing cohorts. Moreover, as previously demonstrated for C-reactive protein (CRP) and 

Interleukin-6 (IL6), single-time point DNAm proxies have the strong potential to be more stable than 

serological measures over multiple longitudinal measurements, 13–15 offering a means to minimise the 

variability known to affect acute-phase inflammatory protein measures. We therefore hypothesise that 

DNAm can offer an intermediate proxy for the expression of plasma proteins to advance disease biomarker 

detection. 

 

Here, we developed blood-based DNA methylation proxies for plasma protein expression and related these 

proxies to 12 leading causes of morbidity and mortality (Table 1, Fig. 1). A panel of 160 inflammatory and 

neurology proteins in a group of up to 875 individuals from the Lothian Birth Cohort 1936 were used to 

generate DNAm proxies through elastic net penalised regression models. This initial cohort was first split 

into train and holdout test sets to evaluate proxy performance. The models were then re-run using all 

possible individuals as the training set and proxies were applied to two separate test sets in order to select 

the most robust measures. The selected proxies were then projected into an independent test sample of 9,537 

individuals from Generation Scotland, the largest single cohort to have DNAm information available for 

such predictions. Taking advantage of retrospective and prospective data linkage to primary (general 

practice records) and secondary care (hospital) records, we relate protein proxies to the incidence of 12 

diagnoses over a follow up period of up to 14 years. Ten of the traits are recognised by the World Health 

Organisation as leading causes of either morbidity or mortality and include diseases such as chronic 

obstructive pulmonary disease (COPD), diabetes, stroke and Alzheimer’s dementia 16,17. Rheumatoid 

arthritis and inflammatory bowel disease were also included as they are chronic conditions which constitute 

substantial chronic health burdens 18,19.  

 

This work demonstrates that protein-by-proxy analyses can uncover early markers that may be critical to 

disease incidence, several years prior to diagnoses. As these diseases constitute a major global health burden 

and can profoundly affect the wellbeing of an individual as they age, markers that complement risk 
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stratification and deployment of preventative interventions are essential. The availability of our predictors in 

a Shiny App (MethylDetectR) allows for the projection of protein expression into any cohort which has 

Illumina DNAm data, creating opportunities for historic and existing datasets to be probed with no 

requirements for additional proteomics sampling. This approach facilitates a deeper understanding of the 

early mechanisms associated with disease onset and identify candidate pathways for therapeutic targeting. 

 

2 Results 

 

2.1 Creation and validation of DNAm proxies for protein expression  
 

There were 18 neurology and 20 inflammatory proxies generated through elastic net regressions which 

correlated (r > 0.1, P < 0.1) with protein expression when applied to the initial holdout set in the Lothian 

Birth Cohort 1936 (LBC1936). Predictors for these 38 proteins were then created using the full LBC1936 

cohort as the training dataset in elastic net regressions. This generated protein predictors for 37 proteins; one 

protein (TRAIL) contained only an intercept term (i.e. no nonzero features) and was therefore excluded. 

There were between 11 and 457 features for the 37 proxies (median = 84). Validation of these proxies in two 

independent test sets (the Stratifying Resilience and Depression Longitudinally: STRADL subset of 

Generation Scotland, n=778, and the Lothian Birth Cohort 1921: LBC1921, n=162) resulted in the selection 

of 14 neurology and nine inflammatory proxies which performed optimally (r > 0 and P < 0.05 in at least 

one test cohort, Fig. 2) (Supplementary Tables 1-2). A further three inflammatory proxies were included 

without comparisons available, based on their performance in the initial holdout set (P < 0.05). Though the 

IL6 proxy performed poorly in the GS:STRADL test set, it has been validated against ELISA measures 

previously and was therefore also included 14. Predictor weights for these 27 proxies (13 inflammatory, 14 

neurology) are provided in Supplementary Table 3. Across the selected 27 proxies, there were 223 CpG 

probes which were included in 2 or more proxies; a summary for each CpG site with annotations to the 

MRC-IEU EWAS catalog20 traits (P < 3.6 x 10-8) is presented in Supplementary Table 4. The smoking-

related site cg05575921 was the most frequently selected and was present in 12 proxies. The highest 

proportion of cis associations – CpGs within 10Mb of the transcription start site of the gene encoding the 

protein – were found for MDGA1 and IL-18R1 (11% and 6%, respectively).  

 

2.2 Proxy associations with incident diseases in Generation Scotland 
 

There were 72 associations between the selected DNAm protein proxies and time-to-event disease incidence 

in the basic mixed effects Cox proportional hazards regression models with P < 0.05 after FDR correction 

(Supplementary Table 5). This equated to a maximum uncorrected P-value 0.01. Of the 72 associations, 26 
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remained significant with P < 0.05 in the fully-adjusted model accounting for age, sex and common risk 

factors, including alcohol consumption, body mass index, deprivation, educational attainment, and a 

DNAm-based proxy for smoking (Supplementary Tables 6-7). Mean attenuation of log hazard ratios was -

60.5% (ranging from -163.2% to 26.5%, with 69 attenuated, two enhanced and one unchanged), across the 

72 proxies and -33.4% (ranging from -78.9% to 26.5%, with 23 attenuated, two enhanced and one 

unchanged) across the 26 significant associations. Globally, the proportional hazards assumption was 

satisfied for all models. However, six of the 26 fully-adjusted associations failed the proportional hazards 

assumptions for the protein-proxy variable (P < 0.05 for the association between the Schoenfeld residuals 

and time; Supplementary Table 8). Restricting the time-to-event/censor period by possible years of follow-

up, there were minimal differences in the proxy-disease hazard ratios between follow-up periods which did 

not violate the assumption and those that did (Supplementary Table 9). No associations were therefore 

excluded.  

A hazard ratio-weighted network summary of the 26 proxy-disease relationships with P < 0.05 in the fully-

adjusted model is presented in Fig. 3. A summary of the hazard ratios and confidence intervals for each 

proxy-disease relationship is presented in Fig. 4. These findings involved 16 unique protein proxies (nine 

inflammatory and seven neurology) and seven disease outcomes: depression, diabetes, ischaemic heart 

disease, stroke, rheumatoid arthritis, COPD and lung cancer. A one standard deviation increase in DNAm 

proxy CCL11 levels at baseline was associated with risk of incident depression (HR = 1.45, 95% CI = [1.19, 

1.75], P = 1.8 x 10-4). Incident diabetes was associated with elevated baseline proxy measures of three 

proxies: NEP (HR = 1.32, 95% CI = [1.18, 1.49], P = 2.8 x 10-6), FGF-21 (HR = 1.39, 95% CI = [1.22, 

1.58], P = 9.7 x 10-7) and N-CDase (HR = 1.16, 95% CI = [1.03, 1.31], P = 0.02). Of the 16 protein proxies 

which had significant associations, there were nine which had relationships with multiple disease outcomes. 

For example, in addition to the association found for diabetes, FGF-21 proxy levels at baseline were 

associated with stroke (HR = 1.24, 95% CI = [1.08, 1.43], P = 0.002). Whereas higher levels of these proxies 

were associated with increased risk, higher levels of the SIGLEC1 proxy were linked to a reduced incidence 

of lung cancer (HR = 0.79, 95% CI = [0.68, 0.92], P = 0.003). Higher GZMA levels were associated with a 

decreased risk of both COPD (HR = 0.83, 95% CI = [0.73, 0.96], P = 0.01) and rheumatoid arthritis (HR = 

0.67, 95% CI = [0.49, 0.92], P = 0.01). Additional associations for COPD, ischaemic heart disease and lung 

cancer were also observed (Supplementary Table 7). 

Full correlation structures for the 27 proxies included in the Cox analyses and the 16 which were associated 

with incident diseases are presented in Supplementary Fig. 1. There were no correlations between protein 

proxy measures and common risk factor covariates with r > 0.30, with the exception of the EpiSmokEr 

DNAm-derived measure of smoking and age (Supplementary Fig. 2). There were four diseases which were 

associated with multiple proxy predictors; correlation structures and principal components analyses for these 

proteins are presented in Supplementary Fig. 3.  Filtering by an eigenvalue > 1, there were three 

components for the 12 COPD-associated proxies and two components across the five lung cancer proxies, 
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suggesting that DNAm proxies were reflecting several independent proteomic signatures. One component 

with eigenvalue > 1 was present for both ischaemic heart disease and diabetes. A sensitivity analysis which 

removed controls who died after the study baseline from the Cox models did not considerably alter the 26 

associations (Supplementary Table 7).  

 

2.3 White blood cell influences on proxies 
 

There were correlations of up to r = 0.77 between protein proxies and estimated white blood cell (WBC) 

proportions in the Generation Scotland cohort (Supplementary Fig. 2). A sensitivity analysis was therefore 

conducted, which adjusted for estimated WBC proportions in the fully-adjusted Cox proportional hazards 

models. In this analysis, 19 of the 26 fully-adjusted associations remained significant (Supplementary 

Table 10). In the 19 associations, there was an overall mean attenuation in log hazard ratios of -12.9%, 

ranging from -31.3% to 33.8% in relation to the fully-adjusted model, with 15 attenuated, 3 enhanced and 

one unchanged. In a further sensitivity analysis, relationships between estimated WBC proportions and 

incident diseases were assessed in the Cox model structure, independently of proxies. Four inverse 

relationships (higher cell proportions linked to decreased disease risk) were found between natural killer 

cells and the incidence of COPD, rheumatoid arthritis, diabetes and pain (Supplementary Table 11). 

 

To explore the interplay between measured white blood cells and our proxies, the elastic net penalised 

regression models used in the train/test optimisation phase in LBC1936 were re-run, with measured WBCs 

included as features. Of the six immune cells available (Methods), neutrophil and monocyte features were 

selected for and increased the correlation strength between the proxy and measured proteins in the test set 

for seven of the nine inflammatory proxies and three of the seven neurology proxies, providing further 

evidence of a tightly interlinked relationship (Supplementary Table 12). 

 

2.4 Protein Quantitative trait Locus (pQTL) mapping 
 

To determine if pQTL mapping was possible with the proxy measures, GWAS analyses were run for the 

proxies corresponding to 7 proteins with GWAS significant SNPs in previous Lothian Birth Cohort 1936 

analyses 2,3 (N=9 genome-wide significant SNPs; Supplementary Note 1). We replicated 7/9 sites from 

previous studies at P < 5 x 10-8, six of which were cis associations for the protein coding gene, and one of 

which was trans (rs46876657; Supplementary Table 13) 2,3. Moreover, all 7 SNPs were within 75kb of a 

CpG that was included in the corresponding protein proxy, six of which were previously reported as 
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methylation quantitative trait loci (mQTLs) for protein proxy CpGs [PMID 27036880] 21. The proxies 

therefore largely capture mQTLs. 

 

3 Discussion 

 

By projecting DNA methylation proxies for protein expression into a large cohort with extant data linkage, 

we have identified 16 protein proxies that predict the incidence of seven leading causes of morbidity, after 

controlling for common risk factors such as smoking and deprivation.  

 

Here, we developed DNAm proxies for protein expression to advance disease biomarker detection and offer 

a means to identify therapeutic targets. We were able to validate several proxies, demonstrating that DNAm 

can proxy for the expression of these proteins. Further to this, many of the proxy-disease relationships that 

we identify have been found linking true protein measurements and diseases, suggesting that our 

methylomic proxies capture clinically relevant facets of these pathways. Proteins corresponding to proxies 

associated with incident disease in our study are the targets for current therapeutic approaches; a recent trial 

demonstrated a reduction in the rate of decline in renal function in individuals that had type 2 diabetes and 

heart failure resulting from the inhibition of NEP 22,23. NEP inhibition has also been shown to associate with 

improved insulin sensitivity in those with obesity and hypertension 24, which has led to this pathway being 

proposed as a candidate for type 2 diabetes therapy 25. Gene therapies targeting VEGFA to promote 

localised angiogenesis are also in ongoing trials for the treatment of ischaemic heart disease 26,27 and several 

trials are in progress for anti-SIGLEC antibody therapies in cancer due to the role of this receptor family in 

the modulation of tumour-associated macrophages 28,29. Taken together, these examples suggest that our 

DNAm proxies are able to identify disease-relevant pathways for therapeutic targeting. Though our 

associations are in some cases contradictory to these therapeutic strategies, such as the inverse association 

found between SIGLEC1 and lung cancer, these instances may reflect a time-critical, systemic variation in 

protein expression during the window prior to diagnosis and their causality should therefore be explored 

further. 

 

Nine of the proxies were identified as potential biomarkers for the onset of more than one disease. For 

example, the FGF-21 proxy measure associated with incident stroke and diabetes. Serum and plasma 

measures of FGF-21 have been shown to be predictive of type 2 diabetes and metabolic syndrome 30–35, with 

FGF-21 implicated in the response to metformin 36. FGF-21 has also been characterised as a blood-based 

marker for poor cardiovascular health, both generally and in those with type 2 diabetes 37–40. DNAm proxies 
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may therefore uncover important, but as yet, undefined nodes relevant to multiple diseases that are linked 

through the CpG features contributing to them. There were also four diseases which were associated with 

multiple, often intercorrelated proxies. Many of the proteins implicated in proxy-COPD relationships have 

been identified as potential markers for the disease and are thought to contribute to destruction of lung tissue 

as part of an ongoing, inflammatory state 41–44. Principal components analysis suggests that the proxies are 

capturing multiple, distinct signatures of inflammatory protein expression in those that subsequently receive 

a COPD diagnosis. Given that anti-inflammatory therapy for COPD is highly desired but has as yet been 

challenging to achieve 45,46, proxy-driven insight into the interrelatedness of the wider inflammasome may 

offer valuable context for therapeutic strategies. 

 

Though the known disparities between blood and brain DNA methylation 47,48 may have limited the 

detection of markers relevant to neurological diseases with unique pathology in the brain, a relationship was 

found between CCL11 and depression. The mechanisms by which CCL11 may be related to depression are 

unclear; however, CCL11 is thought to mediate peripheral and central nervous system inflammation, with 

evidence that it has microglial and astrocytic targets 49. As CCL11 is suggested as one of several cytokine 

plasma markers that may identify those with depression 50–53, circulating DNAm proxies could prove to be 

relevant markers for the stratification of psychiatric illness risk. 

 

We found that the genetic architecture of the proxy proteins largely captures either mQTLs, or pQTLs which 

constitute mQTLs for the CpG sites contributing to the protein proxies. The proxies are therefore unlikely to 

identify novel pQTL findings. Though testing in a holdout set and two external cohorts suggested that many 

of our 27 optimal proxies were robustly capturing protein expression, there were many proteins for which 

we did not achieve reasonable proxies. As the training sample increases, we expect convergence between 

proxy projections and measured proteins; however, our previous work indicates that there is a threshold for 

variance explained in protein expression by genome-wide DNAm 2,3. Nevertheless, even where DNAm 

proxies CRP and IL6 correlate ~0.2 with measured protein levels, they provide a more stable measure of 

expression than proteomic measures when averaged longitudinally; they often outperform the measured 

proteins in relation to associations with health outcomes and lifestyle factors 13–15. As with CRP and IL6, 

many of the proteins we have created proxies for are involved in or associated with the acute-phase 

response; GZMA is thought to promote the release of IL6, IL8 and TNF-alpha, thereby inducing a cytokine 

syndrome in those with sepsis (a condition hallmarked by a rapid alterations in the inflammatory state)11,54. 

The proxies we have created for GZMA and IL8 may therefore be more stable than longitudinal serum 

measurements. Consequently, the protein proxy-phenotyping approach may augment insights into 

inflammatory pathways which can be difficult to quantify due to natural and disease-associated variability 
55,56. 
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This study has a number of limitations. First, the size of the protein training dataset constrained predictor 

generation. Second, due to missing covariate information, cases were excluded from the fully-adjusted 

models; however, this had a marginal influence on the main associations. Third, whereas there was a degree 

of attenuation in proxy-trait relationships upon adjustment for white blood cell proportions, our analyses 

highlight the interrelated nature of these measures with the proxies. Though many of the strongest 

relationships withstood adjustment for white blood cell proportions, measured white blood cells were 

selected as contributing features for many of the proxies in our elastic net sensitivity analyses. It is therefore 

challenging to establish directionality between the proxies, immune cells and diseases; however, the 

selection of immune cells as features contributing to proxies presents an interesting avenue for further 

exploration. Fourth, Cox model effect sizes should be interpreted with the caveats that hazard ratios reflect a 

relatively arbitrary scale (per SD of the DNAm score) and that DNAm scores were generated using relative 

protein measures, rather than absolute quantification. Fifth, the associations present between proxy measures 

and disease incidence may have been influenced by external factors such as prescription medications and 

disease prevalence at baseline, which should be investigated future analyses. Sixth, though we show that 

many of the proxies trained in an age-homogenous cohort performed well when applied to cohorts of 

differing age distributions, it is likely that protein measurements in our cohorts are somewhat age-sensitive. 

It is therefore possible that our proxies may not generalise optimally beyond a cohort of healthy ageing 

individuals. Finally, our proxies were trained and tested on individuals from relatively homogeneous 

Scottish genetic heritage, which may limit their applicability to individuals from other genetic ancestries. 

 

This current application is particularly valuable for cohorts such as Generation Scotland, which does not 

currently have protein data available but is the largest single-cohort DNAm resource in the world. We have 

created a Shiny app (MethylDetectR 57) to enable any study with Illumina-based DNA methylation data to 

easily generate and visualise projections for the 27 protein proxies in addition to DNAm predictors of 

lifestyle 58 and chronological age 59. These proxies can be filtered by age and sex and visualised for an 

individual (or group of individuals e.g., disease cases) relative to the rest of the input cohort (Fig. 5). 

Another strength is the extensive data linkage capacity in Generation Scotland that allowed us to investigate 

time-to-event for several common disease outcomes. Whereas, the number of incident cases was modest for 

some traits, the extant nature of the linkage means that we will continue to acquire cases across all disease 

areas. Our findings suggest that proxy phenotyping approaches and data linkage to electronic health records 

in large, population-based studies have the potential to (1) capture clinically relevant facets of true protein 

expression; (2) highlight novel disease-associated proteins and mechanisms, many of which have existing 

drug targets; and (3) augment risk prediction years prior to disease onset. This knowledge is integral to the 
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early detection and improved risk stratification of complex diseases, which are central aims for both 

biomedical research and public health 60,61. 

___ 

In conclusion, we validate a novel framework for the large-scale identification of protein biomarkers 

associated with disease. Through this framework, we show that DNA methylation proxies for the expression 

of 16 plasma proteins predict the incidence of seven leading causes of morbidity and mortality. This work 

highlights the potential for methylomics approaches to uncover the drivers of multimorbidity as we age and 

provides context relevant to preventative interventions. 

 

4 Methods 

 

4.1 Lothian Birth Cohorts of 1936 and 1921 
 

The Lothian Birth Cohorts of 1936 (LBC1936; N=1,091) and 1921 (LBC1921; N=550) are longitudinal 

studies of ageing in individuals living in Edinburgh and the surrounding areas 62,63. Participants completed a 

childhood intelligence test at age 11 years in 1947 and were recruited for these cohorts at mean ages of 79 

(LBC1921) and 70 (LBC1936). Participants in both cohorts have been followed up approximately every 3-4 

years since baseline 64. A series of cognitive, clinical, physical and social data, along with blood donations 

that have been used for genetic, epigenetic, and proteomic measurement were collected at the majority of 

visits. 

Separate panels of 92 inflammatory and 92 neurology proteins (Olink® antibody-based technology – 

measurement details in Supplementary Note 2) were assessed in plasma samples from the first and second 

waves of the LBC1936 study, respectively (mean age 69.6 years for inflammatory n=875 and 72.5 years for 

neurology n=706). The Olink® neurology panel was also assessed in plasma samples from wave 3 of the 

LBC1921 cohort in 162 individuals (mean age 86.7 years). Protein levels were rank-based inverse normal 

transformed and regressed on age, sex and four genetic principal components. This was performed 

separately for the train and test sets used in the penalised regression models. two neurology proteins, MAPT 

and HAGH, and twenty-one inflammatory proteins were excluded due to >40% of observations being below 

the lower limit of detection; one further inflammatory protein, BDNF, failed quality control and was also 

removed from the study. This resulted in 160 protein measurements across both panels for use. 

Blood-based DNA methylation was assessed using the Illumina 450k array. Quality control details are 

reported in Supplementary Note 2. There were 459,308 methylation sites measured in the LBC1936. To 

permit comparison across platforms, sites that overlapped between the Illumina 450k and Illumina EPIC 
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arrays were used as the features (93% of the original sites, n=428,489) for the penalised regression models. 

CpG features were scaled to have a mean of zero and variance of one prior to projections into cohorts. 

White blood cell measures in the LBC1936 were acquired using the same blood samples taken for 

methylation and were collected and processed on the same day. Technical details for these measures have 

been outlined previously 65. Monocytes, granulocytes, natural killer cells, B cells and both CD8T and CD4T 

cells were available for inclusion in the elastic net sensitivity analyses. 

 

4.2 Generation Scotland and STRADL  
 

Generation Scotland: the Scottish Family Health Study (GS) is a large, family-structured, population-based 

cohort study of >24,000 individuals from across Scotland. Recruitment took place between 2006 and 2011 

with a clinical visit where detailed health, cognitive, and lifestyle information was collected along with 

biological samples (blood, urine, saliva) 66.  

The Stratifying Resilience and Depression Longitudinally (STRADL) cohort is a subset of 1,188 individuals 

from the GS cohort who undertook additional assessments approximately five years after the study baseline 
67. Measurements for 4,236 proteins in 1,065 individuals from the STRADL cohort were recorded 

(SomaScan® technology – measurement details in Supplementary Note 2). Of the original 160 Olink® 

proteins present on inflammatory and neurology panels, 56 matched the SomaScan SOMAmer IDs and were 

used for test assessments of proxies where possible. The final test set was comprised of 778 individuals 

(mean age 60.1 ± 8.81 years) with both protein measurements and DNA methylation available. The 

methylation data were assessed in two separate batches (nbatch1= 504, nbatch2 = 306 – details in 

Supplementary Note 2).  

In the main GS cohort, blood-based DNA methylation has been generated in two separate sets using the 

Illumina EPIC array. Prior to quality control, Set 1 comprised 5,190 related individuals whereas Set 2 

comprised 4,583 individuals, unrelated to each other and to those in Set 1. Quality control details have been 

reported previously and are also detailed in Supplementary Note 2. Briefly, probes were removed based on 

(i) outliers from visual inspection of the log median intensity of the methylated versus unmethylated signal 

per array, (ii) a bead count <3 in more than 5% of samples, and (iii) ≥0.5% of samples having a detection P 

value >0.05 in Set 1 and ≥1% of samples having a detection P value >0.01 in Set 2. Samples were removed 

(i) if there was a mismatch between their predicted sex and recorded sex and/or (ii) if ≥1% of CpGs had a 

detection P value >0.05 in Set 1 and >0.5% of CpGs had a detection P value >0.01 in Set 2. Ten saliva 

samples were excluded from Set 1, along with three individuals who had answered “yes” to all self-reported 

health conditions. One person with suspected XXY genotype and seven genetic outliers were also removed 
68. The quality-controlled dataset comprised 9,537 individuals (nSet1=5,087, nSet2=4,450). 
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Over 98% of GS participants consented to allow access to electronic health records via data linkage. This 

includes GP records (Read 2 codes), prescription data, and hospital records (ICD codes). These data are 

available both retrospectively and prospectively from the time of initial blood draw, yielding up to 

approximately 14 years of follow-up data. For the current analysis, we considered incident disease data for 

12 outcomes that are leading causes of mortality and morbidity (Supplementary Note 3). For each 

outcome, prevalent cases (ascertained via retrospective ICD and Read 2 codes or self-report from a baseline 

questionnaire) were excluded from the analyses.  Self-report data was not available for the inflammatory 

bowel disease (IBD) outcome which meant that prevalent cases (i.e. recorded as having disease at baseline) 

were only excluded based on data linkage codes. Codes were excluded if they were not closely related to the 

12 diseases and a summary of the included and excluded terms can be found in Supplementary Tables 14-

25. Alzheimer’s dementia was limited to those cases/controls with age of event/censoring greater than or 

equal to 65 years. Breast cancer analyses was restricted to females only. Recurrent and both major and 

moderate episodes of depression were included in the depression trait, whereas single episodes of depression 

were excluded. The diabetes trait was comprised of type 2 diabetes and more general diabetes codes such as 

diabetic retinopathy and diabetes mellitus with renal manifestation. All type 1 and juvenile cases of diabetes 

were excluded from the diabetes trait.  

 

4.3 Ethics declarations 
 

Ethical approval for the LBC1921 and LBC1936 studies was obtained from the Multi-Centre Research 

Ethics Committee for Scotland (MREC/01/0/56) and the Lothian Research Ethics committee 

(LREC/1998/4/183; LREC/2003/2/29). In both studies, all participants provided written informed consent. 

These studies were performed in accordance with the Helsinki declaration. 

 
All components of GS received ethical approval from the NHS Tayside Committee on Medical Research 

Ethics (REC Reference Number: 05/S1401/89). GS has also been granted Research Tissue Bank status by 

the East of Scotland Research Ethics Service (REC Reference Number: 20/ES/0021), providing generic 

ethical approval for a wide range of uses within medical research.  

 

4.4 Elastic Net Protein Predictors 
 

Penalised regression models were generated for each of the 90 neurology and 70 inflammatory proteins in 

the Lothian Birth Cohort 1936 using Glmnet (Version 4.0-2) 69 in R (Version 3.6.0) 70. Protein levels were 

the outcome and there were 428,489 CpG features per model. An elastic net penalty was specified 

(alpha=0.5) and cross validation was applied. To reduce the possibility of overfitting in the cross-fold 
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validation step, each fold represented a single methylation processing batch or a combination of batches, 

with a range of 50-68 and 62-85 individuals per fold for the neurology and inflammatory analyses, 

respectively. Two folds were set aside as the test data and 10-fold cross validation was carried out on the 

remaining data (ntrain=576, ntest=130 for neurology and ntrain=725, ntest=150 for inflammatory). The optimal 

predictors, based on lambda values that minimised the mean cross-validation errors, were applied to the test 

data and we retained proxies with r > 0.1 and P < 0.1 against measured proteins in the holdout set (n=18 

neurology and 20 inflammatory proxies). We generated new elastic net predictors for these 38 proteins, 

using 12-fold cross validation in order to maximise the sample size of the training dataset. All except one of 

the inflammatory folds represented a single batch. Of the 12 neurology folds, three were assigned to a 

singular batch and the remainder were composed of either 2-3 batches. Individuals per fold ranged from 62-

85 and 49-81 for the inflammatory and neurology analyses, respectively.  

Of the 38 DNAm proxies chosen from the optimisation step, 37 generated sufficient features in the elastic 

net regressions on the full Lothian Birth Cohort 1936. The remaining protein (TRAIL) only contained an 

intercept term (i.e. no nonzero features) and was therefore excluded. The 37 DNAm protein proxies from the 

12-fold cross validation were then tested externally through correlations with STRADL (n=778, for both 

inflammatory and neurology panels) and LBC1921 (n=162, for the neurology panel) protein measurements. 

Comparisons were available for all 18 neurology proxies and 14 of the 20 inflammatory proxies. We 

identified 14 neurology proxies and 9 inflammatory proxies with P < 0.05 and r > 0 in at least one of the 

external test sets. Of the 5 inflammatory proxies which had no comparison available, 3 were included based 

on their performance in the holdout set (P < 0.05) and two (CCL11 and TNFB) were excluded (holdout set P 

> 0.05). IL6 did not achieve the required thresholds but has been shown to perform well against ELISA 

measures previously and was therefore included 14. The 27 chosen proxies (13 inflammatory and 14 

neurology) were then applied to the DNAm dataset in Generation Scotland (n=9,537). In both the STRADL 

and GS cohorts DNAm at each CpG site was scaled to have a mean of zero and variance of one prior to the 

projections. 

A sensitivity analysis was performed where we re-ran the elastic net penalised regression models used in the 

initial optimisation step within LBC1936 with the addition of measured white blood cell proportions as 

features.  

 

4.5 Associations with health in Generation Scotland 
 

Cox proportional hazards regression models adjusting for age, sex, and methylation set were used to assess 

the relationship between the 27 selected DNAm protein proxies and 12 leading causes of morbidity and 

mortality in Generation Scotland.  Models were run using the coxme package 71 (Version 2.2-16) in R 

version 3.6.3 with a kinship matrix specified to account for relatedness in the Set 1 methylation data. Time 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.404681doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.404681
http://creativecommons.org/licenses/by/4.0/


 14

to first event was ascertained through data linkage. Disease cases included those who had been diagnosed 

after baseline and subsequently died, in addition to those who received a diagnosis and remained alive. 

Control subjects were censored if disease free at time of death or at the end of the data linkage follow-up 

period. Fully-adjusted models included the following additional covariates measured at baseline: alcohol 

consumption (both units consumed in the previous week and a variable charting if this was more, less, or 

about the same as usual consumption); deprivation (assessed by the Scottish Index of Multiple Deprivation 
72); body mass index (kg/m2); educational attainment (an 11-category ordinal variable: How many years 

altogether did you attend school or study full-time? (0: 0, 1: 1-4,2: 5-9, 3: 10-11, 4: 12-13, 5: 14-15, 6: 16-

17, 7: 18-19, 8: 20-21, 9: 22-23, 10: 24+)); and a DNAm-based proxy for smoking status 73 which was well-

correlated with the number of pack years individuals had smoked in the Generation Scotland cohort (r = 

0.55, n = 9,311). Covariate phenotypes were prepared according to previous methodology 74. A false 

discovery rate multiple testing correction was applied to the 324 protein-proxy:trait associations (27 proxies 

by 12 incident disease traits).  

Proportional hazards assumptions were checked by running the fully-adjusted models and extracting 

Schoenfeld residuals (global test and a test for the protein-proxy variable) using the coxph and cox.zph 

functions from the survival package (Version 3.2-3) 75. These models did not account for relatedness and 

random effects. For each association failing to meet the assumption (Schoenfeld residuals P < 0.05), a 

sensitivity analysis was run across yearly follow-up intervals. To ensure that underlying health conditions 

which had not been diagnosed in controls who had died post-baseline were not influencing the main 

findings, a sensitivity analysis was run which excluded these individuals from the Cox models. 

In a further sensitivity analysis, adjusted Cox proportional hazards models were re-run with Houseman-

estimated white blood cell proportions as covariates 77. A further sensitivity analysis then assessed WBC-

trait relationships independently of proxies by running the basic and fully-adjusted Cox models with WBC 

estimates as predictors, for each WBC-trait combination. 

The correlation structures of the DNAm proxies with DNAm-based estimated white cell proportions and 

phenotypic information 77 were assessed using Pearson correlations and heatmaps using pheatmap (Version 

1.0.12) 78. The ggcorrplot package (Version 0.1.3) 79 was used to generate correlation structures between 

DNAm proxies. The psych package (Version 1.9.12) 80 was used to perform principal components analysis 

on multiple proxy measures which were associated with the same diseases. A network visualisation was 

produced using the igraph package (Version 1.2.5) 76.  

 

4.6 Data availability 
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Lothian Birth Cohort 1936 data are available on request from the Lothian Birth Cohort Study, University of 

Edinburgh (simon.cox@ed.ac.uk). Lothian Birth Cohort 1936 data are not publicly available due to them 

containing information that could compromise participant consent and confidentiality.  

According to the terms of consent for GS participants, access to data must be reviewed by the GS Access 

Committee. Applications should be made to access@generationscotland.org.  

 

4.7 Code availability 
 

All code is available at the following Gitlab repository: https://gitlab.com/marioni-group/dnam-protein-

proxies. Access will be provided upon request. 
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 Table 1:  Summary of incident phenotypes in Generation Scotland. 

 

Trait N cases N controls Years to event 
(mean, sd) 

Rheumatoid arthritis 65 9,281 6.1 (3.5) 

Alzheimer's dementia 69 3,764 8.3 (2.7) 

Bowel cancer 77 9,398 6.4 (3.2) 

Depression 101 8,306 3.9 (3.3) 

Breast cancer 129 5,355 6 (3.4) 

Lung cancer 201 9,265 5.2 (3.1) 

Inflammatory bowel disease 203 9,083 5 (3.5) 

Stroke 317 9,023 6.5 (3.4) 

COPD 346 8,939 6.2 (3.4) 

Ischaemic heart disease 395 8,646 5.8 (3.3) 

Diabetes 428 8,756 5.7 (3.4) 

Pain 1494 5,341 5.2 (3.5) 

Counts are provided for the number of cases and controls for each incident trait in the 
Generation Scotland cohort (n=9,537). Mean time-to-event is summarised in years for each 
phenotype. 
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Fig. 1: A new framework for protein-by-proxy biomarker analyses. 

Elastic net penalized regression models were used to create DNAm proxies for protein expression. Aft
evaluation in a holdout set, the optimal predictors (r > 0.1, P < 0.1) were trained on the full LBC1936 cohort an
tested in a further two external test sets: GS:STRADL (n=778) and LBC1921 (n=162). Selected proxies we
projected into Generation Scotland (N=9,537) and related to the incidence of 12 leading causes of morbidity an
mortality, through GP and hospital electronic health data linkage over a period of up to 14 years. Proxy-diseas
associations with FDR-adjusted P < 0.05 in the basic and P < 0.05 in the fully-adjusted Cox mixed effec
proportional hazards models were identified as significant.  All protein measurements were rank-based invers
normal transformed and regressed on age, sex and four genetic principal components. All CpGs were scaled 
have a mean of 0 and standard deviation of 1. Image created with BioRender.com. 
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Fig. 2: Validation of DNAm proxies for protein expression.  

a, Results from the evaluation of DNAm proxies for protein expression in the LBC1936 cohort for Olink
neurology (train n=576, test n=130) and inflammatory (train n=725, test n=150) protein panels. Of the 16
proteins used in the proxy generation step, there were 38 proxies with r > 0.1 and P < 0.1 in the initial holdout s
which were re-run using the full LBC1936 data as the training set. Of these 38, the inflammatory (b) an
neurology (c) proxies shown performed well (P < 0.05) in either one or both of the subsequent GS:STRAD
(n=778) and LBC1921 (n=162) test sets, wherever protein data was available for comparison. IL6 was previous
validated against ELISA measurements and was therefore included despite poor performance. The correlatio
coefficients are plotted here for the final 27 proxies (13 inflammatory and 14 neurology) with upper and low
confidence intervals. Proxies are ordered by performance in the initial LBC1936 holdout se
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Fig. 3: DNAm proxy associations with incident disease. 

DNAm proxy measures for inflammatory (green) and neurology (blue) panel proteins which predicted incide
diseases (white) in the Generation Scotland cohort (N=9,537). All 26 relationships between proxies and disease
presented here were significant with FDR-corrected P < 0.05 in the basic Cox mixed effects proportional hazar
model and were also significant with P < 0.05 in the fully-adjusted model after accounting for age, sex an
common risk factors. The connecting edges of the network represent proxy-disease relationships and the
thickness is weighted according to log hazard ratios. Positive associations indicating increased risk of disease a
shown as black edges. Protective, negative associations are shown as grey edges. IHD: ischaemic heart diseas
RA: rheumatoid arthritis. COPD: chronic obstructive pulmonary diseas
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Fig. 4: Hazard ratios for DNAm proxy-disease relationships. 

 

Hazard ratios for the Olink® inflammatory and neurology protein proxies (per SD increase) related to health 
outcomes in the Generation Scotland cohort (n=9,537). The 26 proxy-disease associations which were significant 
with FDR-corrected P < 0.05 in the basic Cox mixed effects proportional hazards model and significant with P < 
0.05 in the fully-adjusted model after accounting for age, sex and common risk factors are presented with 
confidence intervals. IHD: ischaemic heart disease. RA: rheumatoid arthritis. COPD: chronic obstructive 
pulmonary disease.

DNAm Protein

GZMA        

SIGLEC1     

TNFSF14     

N−CDase     

VEGFA       

HGF         

G−CSF       

EN−RAGE     

FGF−21      

HGF         

OSM         

NEP         

FGF−21      

CCL11       

Outcome     

RA          

Lung cancer 

IHD         

Diabetes    

IHD         

IHD         

Lung cancer 

Lung cancer 

Stroke      

Lung cancer 

Lung cancer 

Diabetes    

Diabetes    

Depression  

HR          

0.67        

0.79        

1.13        

1.16        

1.16        

1.16        

1.22        

1.22        

1.24        

1.26        

1.3         

1.32        

1.39        

1.45        
1 2 3 0.0 0.5 1.0 1.5 2.0

Hazard Ratio (95% CI) − FDR P<0.05

DNAm Protein

N−CDase     

GZMA        

NTRK3       

GDF−8       

TNFSF14     

OSM         

CXCL9       

EN−RAGE     

HGF         

VEGFA       

G−CSF       

TGF−alpha   

Outcome     

COPD        

COPD        

COPD        

COPD        

COPD        

COPD        

COPD        

COPD        

COPD        

COPD        

COPD        

COPD        

HR          

0.83        

0.83        

0.84        

0.86        

1.16        

1.19        

1.25        

1.25        

1.26        

1.27        

1.29        

1.31        
1 2 3 0.0 0.5 1.0 1.5 2.0

Hazard Ratio (95% CI) − FDR P<0.05

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.404681doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.404681
http://creativecommons.org/licenses/by/4.0/


Fig. 5: The MethylDetectR shiny app for protein proxy generation and visualisation

 
 (a) In MethylDetectR (https://shiny.igmm.ed.ac.uk/MethylDetectR_Demo/), users can obtain DNAm-base
estimates of 27 blood protein levels, as well as epigenetic age, lifestyle and biochemical traits for all individuals 
their sample. In this panel, the distributions of estimated FGF-21 levels are shown for individuals with incide
diabetes (cases; blue) and for those who remained free of the disease (controls; pink) in the present study. Th
score for a selected individual is illustrated by the dotted vertical line. The user can subset the sample by ag
range and sex. (b) In this panel, the user can choose to view percentile ranks for a selected individual whe
compared to the remainder of the sample for up to 10 traits simultaneously. Alternatively, as shown here, the us
can select an option to show the median percentile for cases in their sample with respect to a binary trait o
interest that is uploaded by the user. Interquartile ranges for case percentile ranks are shown by horizontal bars. I
this example, the median percentile for diabetes cases are plotted for a number of physical traits and the thre
protein proxies which were associated with incident diabetes in a fully-adjusted Cox model: FGF-21, N-CDas
and NEP. 
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