

Article 1

Multimodal-Multisensory Experiments: Design and 2

Implementation 3

Moein Razavi 1,, Takashi Yamauchi 1*, Vahid Janfaza 2, Anton Leontyev 1, Shanle Longmire-Monford 4
1, Joseph Orr 1 5

1 Department of Psychological and Brain Sciences, Texas A&M University; moeinrazavi@tamu.edu, takashi-6
yamauchi@tamu.edu, a.g.leontiev@tamu.edu, college4me@tamu.edu, joseph.orr@tamu.edu 7

2 Department of Computer Science and Engineering, Texas A&M University; vahidjanfaza@tamu.edu 8
* Correspondence: takashi-yamauchi@tamu.edu; Tel.: +1-979-845-2503 9

Received: date; Accepted: date; Published: date 10

Abstract: The human mind is multimodal. Yet most behavioral studies rely on century-old measures 11
of behavior - task accuracy and latency (response time). Multimodal and multisensory analysis of 12
human behavior creates a better understanding of how the mind works. The problem is that 13
designing and implementing these experiments is technically complex and costly. This paper 14
introduces versatile and economical means of developing multimodal-multisensory human 15
experiments. We provide an experimental design framework that automatically integrates and 16
synchronizes measures including electroencephalogram (EEG), galvanic skin response (GSR), eye-17
tracking, virtual reality (VR), body movement, mouse/cursor motion and response time. Unlike 18
proprietary systems (e.g., iMotions), our system is free and open-source; it integrates PsychoPy, 19
Unity and Lab Streaming Layer (LSL). The system embeds LSL inside PsychoPy/Unity for the 20
synchronization of multiple sensory signals - gaze motion, electroencephalogram (EEG), galvanic 21
skin response (GSR), mouse/cursor movement, and body motion - with low-cost consumer-grade 22
devices in a simple behavioral task designed by PsychoPy and a virtual reality environment 23
designed by Unity. This tutorial shows a step-by-step process by which a complex multimodal-24
multisensory experiment can be designed and implemented in a few hours. When conducting the 25
experiment, all of the data synchronization and recoding of the data to disk will be done 26
automatically. 27

Keywords: multimodal experiment; multisensory experiment; automatic device integration; open-28
source; PsychoPy; Unity; Virtual Reality (VR); Lab Streaming Layer (LSL); LabRecorder; 29
LabRecorderCLI; Windows command line (cmd.exe) 30

 31

1. Introduction 32

1.1. The mind is multimodal 33

Psychology is the scientific study of the brain, mind and behavior. The brain supervises different 34
autonomic functions such as cardiac activity, respiration, perspiration, etc. Current methods to study 35
human behavior include self-report, observation, task performance, gaze, gait and body motion, and 36
physiological measures such as electroencephalogram (EEG), electrocardiogram (ECG), functional 37
magnetic resonance imaging (fMRI). These measures are indicators of human behavior; however, the 38
gap here is that they are mostly studied separately from each other, while human behavior is 39
inherently multimodal and multisensory, where different measures are connected and dependent on 40
each other. Signals from multiple sources have overlap in locations (spatial) or timing (temporal) in 41
the brain; hence, a single measurement cannot be as informative as multiple measurements in 42
distinguishing between different functions [1]. 43

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

mailto:moeinrazavi@tamu.edu
mailto:takashi-yamauchi@tamu.edu
mailto:takashi-yamauchi@tamu.edu
mailto:a.g.leontiev@tamu.edu
mailto:college4me@tamu.edu
mailto:vahidjanfaza@tamu.edu
mailto:takashi-yamauchi@tamu.edu
https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

A more accurate behavioral measurement needs different measures to be recorded and analyzed 44
concurrently [2]. Hochenberger (2015) suggests that multimodal experiments facilitate the perception 45
of senses that operate in parallel [3]. Similar to using multiple classifiers to improve accuracy in a 46
classification task, combining different measures in studies of brain functionality and its association 47
with behavior helps improve the predictions of human behavior [4]. 48

Designing and developing a multimodal and multisensory study is complicated and costly. All 49
events and time series must be recorded and timestamped together; data from multiple 50
measurements and multiple subjects should be stored in an easily accessible and analyzable format. 51
All the devices must start recording at the same time without the effort of running the devices one 52
by one. For psychological and cognitive science experiments, an instant and easy to setup system is 53
vital, due to the need to collect data from a large group of participants (around 50-60 participants). 54

There are several proprietary systems that ease multimodal-multisensory experimentation (e.g., 55
iMotions). Yet, it is costly and challenging to integrate different devices with these systems. Due to 56
limitations of proprietary software the stimulus presentation and data acquisition should be in 57
different software which makes it difficult for 1) synchronization (since different software may have 58
different processing times which results in different delays) and 2) instant and easy experiment setup. 59
Here we present a system that allows stimulus presentation, data acquisition and recording in the 60
same [opensource] software and how to make this process automatic and adaptable for various 61
multimodal-multisensory experiments. 62

Contributions. To summarize, this paper makes the following contributions. 63
• For psychological and cognitive science experiments, an instant and easy-to-setup system that 64

can be used for multimodal-multisensory experiments is vital. We have designed a 65
comprehensive, customizable and fully opensource system in PsychoPy and Unity platforms 66
which can be used for that purpose. To the best of our knowledge, our system is the first of this 67
kind. 68

• We have provided a tutorial on how to make stimulus presentation and data acquisition in the 69
same [opensource] software and how to make the process of synchronizing multiple sensors, 70
devices and markers (from environment and the user response) and saving the data on disk 71
automatically. 72

• We have created several applications and also customized the SDKs of different devices to create 73
multimodal-multisensory experiments using LSL and made the source files open access. By 74
studying the source files, users will find how to customize their devices’ SDKs for this purpose. 75

• Due to limitation of the proprietary systems for supporting different devices, we have provided 76
a platform which makes it possible for all opensource devices to be synchronized together 77
automatically. Also, with the aid of our system, all non-opensource devices which can send data 78
to one of the opensource platforms such as C, C++, C#, Python, Java and Octave can be 79
synchronized. 80

In what follows, section 1.2 reviews previous works and their findings that elucidate the 81
importance of using multisensory experiments. Section 2 discusses major challenges of implementing 82
multisensory experiments and the available methods of addressing those challenges. Section 3 83
presents an overview of the tools and methods utilized in the proposed system. Sections 4 and 5, 84
provide a step-by-step tutorial on developing multimodal/multisensory experiments in PsychoPy 85
and Unity platforms, respectively. Finally, section 6 presents the results and discusses the cases of 86
use and potential future works. 87

1.2. Related Work 88

Although many past studies provided useful information about human behavior using only a 89
single source, multiple sources are involved with actual behavior in the natural environment [5]. A 90
few studies tried to integrate multiple measures into the experimental psychology/neuroscience 91
portal. Reeves et al. (2007) state the importance of using multiple measures in the goals of Augmented 92
Cognition (AUGCOG) [6]; they discuss the combination of multiple measures together as a factor for 93

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

the technologies that improve Cognitive State Assessment (CSA). Jimenez-Molina et al. (2018) 94
showed that analyzing all measures of electrodermal activity (EDA), photoplethysmogram (PPG), 95
EEG, temperature and pupil dilation at the same time, significantly improves the classification 96
accuracy in a web-browsing workload classification task, compared to using a single measure or a 97
combination of some of them [7]. 98

Several studies to date have put these recommendations to work by integrating several measures 99
concurrently. Born et al. (2019) used EEG, GSR and eye-tracking to predict task performance in a task 100
load experiment; they found that low-beta frequency bands, pupil dilations and phasic components 101
of GSR were correlated with task difficulty [8]. They also showed that the statistical results of 102
analyzing EEG and GSR together were more reliable than analyzing them individually. Leontyev et 103
al. combined user response time and mouse movement features with machine learning technics and 104
found an improvement in the accuracy of predicting attention-deficit/hyperactivity disorder (ADHD) 105
[9–11]. Yamauchi et al. combined behavioral measures and multiple mouse motion features to better 106
predict people’s emotions and cognitive conflict in computer tasks [12,13]. Yamauchi et al. further 107
demonstrated that people’s emotional experiences change as their tactile sense (touching a plant) was 108
augmented with visual sense (“seeing” their touch) in a multisensory interface system [14]. Chen et 109
al. (2012) tried to identify possible correlations between increasing levels of cognitive demand and 110
modalities from speech, digital pen, and freehand gesture to eye activity, galvanic skin response, and 111
EEG [15]. Lazzeri et al. (2014) used physiological signals, eye gaze, video and audio acquisition to 112
perform an integrated affective and behavioral analysis in Human-Robot Interaction (HRI) [16]; by 113
acquiring synchronized data from multiple sources, they investigated how autism patients can 114
interact with affective robots. Charles and Nixon (2019) reviewed 58 articles on mental workload 115
tasks. They found that physiological measurements such as ECG, respiration, GSR, blood pressure, 116
EOG and EEG need to be triangulated because though they are sensitive to mental workload, no 117
single measure satisfies to predict mental workload [17]. Lohani et al. (2019) suggest that analyzing 118
multiple measures such as head movement together with physiological measures (e.g., EEG, heart 119
rate, etc.) can be used for the drivers to detect cognitive states (e.g., distraction) [18]. Gibson et al. 120
(2014) integrated questionnaires, qualitative methods, and physiological measures including ECG, 121
respiration, electrodermal activity (EDA) and skin temperature to study activity settings in disabled 122
youth [19]; they stated that using multiple measures reflects a better real-world setting of the youth 123
experiences. Sciarini and Nicholson (2009) used EEG, eye blink, respiration, cardiovascular activity 124
and speech measures in a workload task performance [20]; as they outlined, using only one measure 125
is not sufficient in the multidimensional tasks in a dynamic environment. Thus, multiple measures 126
should be considered. The authors also highlighted the lack of clear guidance on how to integrate 127
different systems as an important issue. 128

Integrating multiple measurements is quite complicated. Although the aforementioned studies 129
integrated multiple measures, they did not synchronize these measures together. They have different 130
sampling rates and also lack a coherent and easy to implement method for combining the measures. 131
Asynchronized multiple measurs are prone to error and make it difficult to assess their interactions 132
with each other. 133

The following section provides a summary of the challenges for device integration and different 134
methods of addressing them. 135

2. Multisensory Experiments 136

2. 1. Challenges of Implementation 137

There are several challenges to be addressed during the integration process: 138
1. All events and time series must be recorded and timestamped together, with the same timing 139

reference, to be analyzable. 140
2. Because multiple subjects (N>50) are needed in psychological experiments for statistical 141

analysis, data from multiple measures and multiple subjects should be stored in a format that 142
can be easily analyzed together. 143

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

3. A method should be used to record the data from all the devices simultaneously without the 144
need to run the devices one by one. 145
For the first challenge, UDP (User Datagram Protocol) and TCP (Transmission Control Protocol) 146

offer potential solutions. However, UDP is unreliable since it is a connectionless protocol that does 147
not guarantee data delivery, order, or duplicate protection. On the other hand, TCP is a connection-148
oriented protocol that guarantees errorless, reliable and ordered data streaming and it works with 149
internet protocol (IP) for data streaming. Thus, for reliable data transport, TCP is preferred. 150

For the second and third challenges, there are at least two options. One is to use proprietary 151
software (e.g., iMotions, Biopac, etc.) which has its own advantages. For example, it has extensive 152
support and is relatively easy to implement. However, proprietary software is costly and restrictive; 153
it often forces the researchers to purchase other proprietary devices that are functional only for that 154
particular software design. Because of that, the users are limited in the number of experimental 155
manipulations they can introduce. Finally, proprietary software developers often charge steep 156
licensing fees, which limit people’s access (especially in developing countries). Thus, it is imperative 157
to devise a system that will address the problem of simultaneous observation, but that is also 158
accessible to everyone. 159

 Another method, which is more versatile and preferred, is to employ opensource tools that are 160
available for multiple platforms (e.g., LSL). LSL (https://github.com/sccn/labstreaminglayer/wiki) is 161
available on almost all open-source platforms including, Python, C, C++, C#, Java, Octave, etc. 162
Currently, the majority of the consumer and research-grade devices support LSL. Above all, as long 163
as these devices are capable of sending their data to the platforms like Python, C, MATLAB, etc., LSL 164
can be used for streaming their data. LSL uses TCP for stream transport and UDP for stream 165
discovery and time synchronization. 166

LSL is developed by the Swartz Center for Computational Neuroscience (SCCN) at the 167
University of California San Diego (UCSD). 168

LSL can be embedded in free and open-source stimulus presentation platforms like PsychoPy 169
(https://www.psychopy.org/) and Unity (https://unity.com/, Figure 1). 170

 171

Figure 1. Schematic architecture for integrating devices: Objects that are defined in PsychoPy/Unity 172
(usually task markers) can send data directly to LSL. Also, different devices can send data to LSL by 173
calling child processes inside PsychoPy/Unity 174

Wang et al. (2014) used PsychoPy, EEG, and LSL for Brain-Computer Interface (BCI) stimulus 175
presentations. They used these to synchronize the stimulus markers and EEG measurements [21]. 176

Figure 2, shows the overall structure of the method proposed in this paper. 177

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://github.com/sccn/labstreaminglayer/wiki
https://www.psychopy.org/
https://unity.com/
https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

 178

(a) (b)

Figure 2. Flowchart of creating an automatic multisensory experiment using (a) PsychoPy; (b) Unity

As shown in Figure 2, creating a multimodal/multisensory experiment can be done in 179
PsychoPy/Unity environment. Different devices send data to LSL using LSL functions that are 180
embedded in PsychoPy/Unity. Then by embedding LabRecorder in PsychoPy/Unity, data can be 181
recorded on the disk as a .xdf file. 182

The devices used for this paper can be called and start recording by running child processes in 183
Python and C#, which allows the processes to be directly embedded in PsychoPy and Unity, 184
respectively. Finally, everything can be started from a main PsychoPy experiment or Unity VR 185
project. 186

In the following, an introduction to PsychoPy/Unity, LSL, and LabRecorder 187
(https://github.com/labstreaminglayer/App-LabRecorder/releases) is provided. 188

3. Overview: PsychoPy, Unity, Lab Streaming Layer (LSL), Lab Recorder 189

Our overall strategy for building a multimodal and multisensory experiment is to bridge 190
PsychoPy/Unity, LSL, and LabRecorder. The principle of integration is to call different devices from 191
PsychoPy/Unity to send their data streams to LSL; LabRecorder starts recording the streams 192
available on LSL from command line, which would also be embedded in PsychoPy/Unity. 193

PsychoPy allows for the building of behavioral experiments with little to no programming 194
experience using premade templates for stimulus presentation and response collection. Unity enables 195
the creation of 2D and 3D gaming environments. LSL is a set of libraries for synchronous collection 196
of multiple time series in research experiments 197
(https://labstreaminglayer.readthedocs.io/info/intro.html). LabRecorder is an LSL application that 198
allows saving all the streams that are available on LSL on disk in a single .xdf file. 199

PsychoPy 200

 PsychoPy is an open-source software package written in the Python programming 201
language primarily for use in Neuroscience and Experimental Psychology research [22,23] 202
(https://www.psychopy.org/). PsychoPy has three main building blocks for constructing behavioral 203
experiments: stimulus/response components, routines and loops (Figure 3). 204

Stimulus components are premade templates for displaying various types of stimuli: geometric 205
shapes, pictures, videos, audio signals, etc. The user can control which stimuli they want to present, 206
in what order and for how long (along with other stimulus-specific properties). Similarly, response 207

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://github.com/labstreaminglayer/App-LabRecorder/releases
https://labstreaminglayer.readthedocs.io/info/intro.html
https://www.psychopy.org/
https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

components allow for recording different types of responses: key press, mouse clicks/moves, as well 208
as vocal responses. 209

Stimulus and response components are organized within routines, which are a sequence of 210
events within one experimental trial. For example, consider a Flanker task (Figure 3) in which a 211
participant is presented with five arrows, with the middle arrow pointing to the same direction as 212
surrounding arrows (congruent) or to the opposite direction (incongruent). The participant has to 213
press the key on the keyboard indicating the direction of the middle arrow (“left” or “right” arrow 214
key). In this task, the stimulus component “arrows” (Figure 3C) presents the arrangement of letters 215
for a given trial, while component “key_resp” (Figure 3D) records the participant’s response. 216
Altogether, they constitute the routine “flanker_task” (Figure 3A). 217

The trial parameters (in this case, which succession of arrows to show, e.g., →→→→→ or 218
→) are controlled by the loop “trials_loop” (Figure 3B). Loops contain information about the 219
variables that are supposed to change from trial to trial. As the name suggests, loops repeat routines 220
updating the routine components with the values prescribed by the experimenter. 221

 222

Figure 3. PsychoPy components: A) routine B) loop C) text stimulus D) keyboard response 223

PsychoPy provides an option to include custom python code, which can be embedded in the 224
beginning or the end of the experiment, in the beginning or the end of each routine, and for each 225
frame of the screen; the code written in Each Frame will run every refreshment cycle of the monitor 226
screen (Figure 4). 227

 228

Figure 4. PsychoPy python custom code component 229

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

Unity 230

Unity is a game engine platform that allows creating games in 2D and 3D environments. It 231
enables the users to script in C# for handling the scenes and objects. In Unity, the game environment 232
is called a Scene, and each component in the environment (e.g., characters) is called a GameObject. 233
Every GameObject will be defined in a Scene. Complete documentation of Unity is available on 234
https://docs.unity3d.com/Manual/UsingTheEditor.html (Figure 5). 235

 236

Figure 5. (A) Left: tools for manipulating the Scene view and the GameObjects within Scene; Centre: 237
play, pause and step buttons. (B) Hierarchy of every GameObject in the Scene shows how 238
GameObjects attach together. (C) The Game view shows the final rendered game. The play button 239
can start the game simulation. (D) The Scene view allows to visually navigate and edit your Scene. 240
(E) The Inspector Window allows to view and edit all the properties of the currently selected 241
GameObject. (F) The Project window shows the imported Assets of the game. 242

We created a multisensory experiment by embedding LSL in the PsychoPy custom code 243
component and Unity. This process is discussed in detail in sections 4.4 and 5 for PsychoPy and 244
Unity, respectively. 245

Lab Streaming Layer 246

The Lab Streaming Layer (LSL) connects a Psychopy experiment or a game in Unity (stimulus 247
presentation and data acquisition) with multiple sensor devices. LSL consists of a core library and 248
applications built on top of that library, which allows synchronous collection of multiple time series 249
in research experiments and recording the collected data on disk. In LSL, a single measurement from 250
a device (from all channels) is called a Sample. Samples can be sent individually for improved latency 251
or in chunks of multiple samples for improved throughput. All the information about data streams 252
(series of sampled data) is sent through an XML as the metadata which contains name, type, 253
channel_count, channel_format and source_id for each stream. Through Stream Outlet, chunks or 254
samples of data are made available on LSL network and these streams are visible to all the computers 255
connected to the same local network, LAN (Local Area Network) or WLAN (Wireless Local Area 256
Network). Streams can be distinguished with their assigned name, type and other queries created on 257
the XML metadata. The streams that are available on the LSL network can be received by the 258
computers that call the Stream Inlet. 259

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://docs.unity3d.com/Manual/UsingTheEditor.html
https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

To define a stream in LSL, stream outlets are created by calling StreamOutlet functions that take 260
StreamInfo as the input. StreamInfo includes name, type, number of channels, channel format (string, 261
int, float, etc.) and source ID as the input. Name, type and source ID are arbitrary and can be defined 262
by the user; the number of channels and channels format depends on the characteristics of the 263
streams. Then whenever needed, data can be transported by calling the functions that push the data 264
in Samples or Chunks to the LSL. Once all the stream outlets are available on the LSL network, they 265
can be saved in a single XDF using LabRecorder application, or they can be received in another 266
platform by means of StreamInlet functions. 267

This complicated data acquisition and synchronization process can be semi-automated by 268
LabRecorder, which is explained in the next section. 269

LabRecorder 270

LabRecorder is responsible for recording the streams available on LSL on the hard disk (it can 271
be downloaded from https://github.com/labstreaminglayer/App-LabRecorder/releases). Figure 6 272
shows LabRecorder GUI; names of the streams that are available on LSL can be seen on the left panel. 273
However, in the latest version of LabRecorder, there is no need for LabRecoder GUI to record the 274
data. LabRecorder can start recording the available LSL streams by writing one line of code that 275
opens the LabRecorder command line interface (LabRecorderCLI) in the background. This process 276
is explained in Sections 4 and 5. 277

 278

Figure 6. LabRecorder GUI 279

In sections 4 and 5, a case study explains how to integrate multiple devices such as EEG, GSR, 280
Eyetracking, Bodymotion, mouse trajectories, button click, and task-related markers within a 281
stimulus presentation software, PsychoPy (section 4) and Unity (section 5). The program 282
automatically saves all the recording data into a single .xdf file in a user-specified folder. All these 283
would be done with the aid of the LSL embedded in PsychoPy/Unity. 284

We used opensource software for the integration of different sensors and devices. Also, different 285
consumer-grade and affordable devices are used, including 1) for EEG, g.tec Unicorn, Muse, 286
Neurosky Mindwave [24], BrainProducts LiveAmp, OpenBCI Cyton (8-Channel) and OpenBCI 287
Cyton + Daisy (16-Channel), 2) for GSR, Gazepoint biometrics device and also e-Health Sensor 288
Platform v2.0 for Arduino, 3) for eyetracking Gazepoint, 4) for body motion, Microsoft Kinect Sensor 289
V2 for Windows. A basic sample experiment in PsychoPy and a basic VR environment in Unity that 290
integrate different devices are available on our GitHub: PsychoPy_Example_GitHub and 291
VR_Example_GitHub. Table 1 shows the list of the devices used for the case study. 292

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://github.com/labstreaminglayer/App-LabRecorder/releases
https://github.com/moeinrazavi/MultiModal_MultiSensory_Flanker_Task
https://github.com/moeinrazavi/VR_LSL
https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 1. The devices used for integration in the sample experiment. 293

Type Device

Method for

sending data to

LSL

Link

Mouse

clicks/coordinates Mouse

define LSL

stream in

PsychoPy

EEG g.tec Unicorn

C++ application

called from

PsychoPy/Unity

https://github.com/moeinrazavi/Unicorn_LSL

BrainProducts

LiveAmp

C++ application

called from

PsychoPy/Unity

https://github.com/moeinrazavi/LiveAmp-

LSL

 OpenBCI

Cyton

(+Daisy)

Python script

called from

PsychoPy/Unity

https://github.com/moeinrazavi/OpenBCI-

LSL

NeuroSky

Mindwave

NeuroSky

Python library

and functions

in

Psychopy/Call

a Python script

in Unity

Muse

Muse Python

library and

functions in

Psychopy/Call

a Python Script

in Unity

Link 1: BlueMuse_Application

Link 2: BlueMuse_Installation_Guide

GSR eHealth

Sensor v2.0

Arduino

Shield

Python script

called from

PsychoPy/Unity

https://github.com/moeinrazavi/eHealth-

GSR-LSL

 Gazepoint

Biometrics

Device

Python script

called from

PsychoPy/Unity

https://github.com/moeinrazavi/Gazepoint-

Eyetracking-GSR-HeartRate--LSL

Eyetracking Gazepoint

Python script

called from

PsychoPy/Unity

https://github.com/moeinrazavi/Gazepoint-

Eyetracking-GSR-HeartRate--LSL

Body Motion Kinect

C++ application

called from

PsychoPy/Unity

https://github.com/moeinrazavi/Kinect-

BodyBasics-LSL

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://github.com/moeinrazavi/Unicorn_LSL
https://github.com/moeinrazavi/LiveAmp-LSL
https://github.com/moeinrazavi/LiveAmp-LSL
https://github.com/moeinrazavi/OpenBCI-LSL
https://github.com/moeinrazavi/OpenBCI-LSL
https://github.com/kowalej/BlueMuse/releases/download/v2.1/BlueMuse_2.1.0.0.zip
https://github.com/kowalej/BlueMuse
https://github.com/moeinrazavi/eHealth-GSR-LSL
https://github.com/moeinrazavi/eHealth-GSR-LSL
https://github.com/moeinrazavi/Gazepoint-Eyetracking-GSR-HeartRate--LSL
https://github.com/moeinrazavi/Gazepoint-Eyetracking-GSR-HeartRate--LSL
https://github.com/moeinrazavi/Gazepoint-Eyetracking-GSR-HeartRate--LSL
https://github.com/moeinrazavi/Gazepoint-Eyetracking-GSR-HeartRate--LSL
https://github.com/moeinrazavi/Kinect-BodyBasics-LSL
https://github.com/moeinrazavi/Kinect-BodyBasics-LSL
https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

Next two sections provide a step-by-step case study detailing the integration of multiple sensory 294
devices using PsychoPy/Unity, LSL and LabRecorder. Also, it is explained how to make the process 295
automatic for an easy-to-use multimodal-multisensory experiment. 296

4. Case Study: Building a Multisensory Experiment (PsychoPy) 297

This section provides a tutorial for building a multisensory experiment by embedding LSL in 298
PsychoPy. The task used in this case study is a simple version of the Flanker task with only 4 trials. 299
On each screen, participants are presented with a sequence of arrows →→→→→, , 300
→→→→ or → (Figure 7) and are asked to navigate their mouse cursor to a box on the top 301
left or top right of the screen based on the direction of the center arrow in each sequence. Starting 302
with this simple task, we show step by step how to add mouse/cursor motion, EEG (g.tec Unicorn, 303
Muse, Neurosky Mindwave, BrainProducts LiveAmp, OpenBCI Cyton and OpenBCI Cyton + Daisy), 304
GSR (e-Health Sensor Platform v2.0 for Arduino and also Gazepoint biometrics device), Eyetracking 305
(Gazepoint), and Body Motion (Kinect) one by one to the experiment. 306

 307

Figure 7. Arrow Flanker task 308

4. 1. Software and Plugin Installation 309

PsychoPy provides a graphical user interface for designing a wide range of psychological 310
experiments without any programming (see Appendix for the installation process). For example, 311
text/picture can be added in different routines as stimuli by adding text/picture items, and also 312
keyboard/mouse can be added as items for recording response. PsychoPy uses Python programming 313
language in the background; custom Python code items can be used to add the features which are 314
not available in the PsychoPy GUI (e.g., LSL). Routines and loops can be added for repeating one or 315
several routines, including the stimuli, user’s response, and sending their markers to LSL in the 316
experiment. Then all of these (routines, loops and custom code in routines) can be compiled and run 317
together using PsychoPy. pylsl is a Python library that allows using LSL in Python (see Appendix 318
for installing pylsl on PsychoPy). Module Popen from python subprocess library is used for sending 319
data from different devices to LSL. Then, using module popen from python os library enables us to 320
use command line to open LabRecorder in the background of the experiment. This will save all the 321
streams automatically without needing to open the LabRecorder user interface (explained in section 322
4.3). 323

4. 2. Design 324

As shown in Figure 8, the example experiment contains 6 routines and one loop for the last 3 325
routines, which repeats the stimulus presentation. There are 3 main routines named Initialize, 326
Record_Start and Stimulus_Presentation. The Initialize routine defines all the streams from the task 327
that are intended to be sent to LSL. In the Record_Start routine, we write a command to start 328
recording all the streams that are available on LSL in a .xdf file. Finally, in the Stimulus_Presentation 329
routine, we write the script to send the task stimulus markers and mouse coordinates to LSL. 330

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

 331

Figure 8. Main components of the example multisensory experiment: 1) initializing LSL streams 2) 332
start recording LSL streams 3) stimulus presentation and sending stimulus and response markers to 333
LSL 334

In the Experiment Settings, as shown in Figure 9, one of the fields is defined as UIN, which 335
would be used in the recorded .xdf file name. 336

 337

Figure 9. PsychoPy Experiment Settings 338

In the experiment folder, there is a folder, Stimuli, and a file, stimuliFile.xlsx, inside it, which 339
contains stimID, stim_type, stim, corr_key (shows the correct response) and cong (indicates whether 340
the stimulus is congruent or incongruent) (Figure 10). This .xlsx file is the input for the Conditions of 341
the loop component Trials_Loop (Figure 11). 342

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

 343

Figure 10. the Excel file used for stimulus presentation in our PsychoPy example experiment 344

 345

Figure 11. Choosing stimuliFile.xlsx as the input for the Conditions of the loop 346

4. 3. Adding Automatic Data Acquisition to the Experiment 347

To start recording the data streams available on LSL into a .xdf file, the code script shown in 348
Figure 12 is added in the custom code named xdf_record, which is inside the End Routine tab of the 349
Recording_Start routine. This script uses Windows command line to open the LabRecorder in the 350
background of the experiment and starts recording the data. It is important to note that all the streams 351
are created and initialized before the script that calls LabRecorder in the background. 352

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

 353

Figure 12. PsychoPy custom code from starting LabRecorder automatically from command line 354

In the following, a step by step process on how to add different streams to the experiment is 355
shown. 356

4.3.1 Mouse data + Flanker task markers 357

 After opening the experiment Flanker_Mouse.psyexp, inside the Initialize routine, there is a 358
custom code named initialize_code. After opening initialize_code, in the Begin Experiment tab, 359
first, the required modules are imported (Figure 13), then 3 LSL streams are created. The first stream 360
is for sending stimulus markers (Figure 14), the second stream is for sending user response markers 361
(Figure 15), and the third stream is for sending mouse coordinates to LSL (Figure 16). 362

 363

Figure 13. Importing the required modules 364

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

 365

Figure 14. Defining a stream for sending stimulus type (congruent/incongruent) to LSL in each 366
stimulus presentation 367

 368

Figure 15. Defining a stream for sending user response (clicking on the left/right box) to LSL 369

 370

Figure 16. Defining a stream for sending mouse coordinates to LSL in each trial 371

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

In order to send a stimulus marker to LSL, in the Begin Routine tab of the custom code 372
stimulus_code, which is inside the Stimulus_Presentation routine, we added the code shown in 373
Figure 17. In order to send the user response data to LSL, in the same custom code, we added the 374
code shown in Figure 18 in the End Routine tab (since the option “End Routine on valid click” is 375
selected for the mouse component in the Stimulus_Presentation routine). Finally, to send mouse 376
coordinates data to LSL, in the Each Frame tab (since the mouse coordinates should be sent in each 377
refresh of the monitor screen), we added the code shown in Figure 19. Similarly, if keyboard is used 378
instead of mouse for user response, to send keyboard data to LSL, key_resp.keys should be used as 379
the argument for the outlet.push_chunk/outlet.push_sample (This is not shown here for brevity). 380

 381

Figure 17. Sending the type of stimulus to LSL at the onset of stimulus presentation on the screen 382

 383

Figure 18. Sending the user response data (whether the user clicked on the left/right box) to LSL at 384
the moment he clicks on the left/right box. 385

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

 386

Figure 19. Sending mouse coordinates in each refresh of the monitor screen to LSL 387

Features such as maximum velocity, maximum acceleration, total distance of the mouse 388
movement, area under the curve, maximum absolute deviation from a straight line, etc. can be 389
extracted easily from Mouse data by a package for R and Python called mousetrap (Kieslich 2017). 390

4.3.2 Mouse Data + Flanker task markers + EEG 391

The following shows how to add different EEG devices to the experiment. 392
• g.tec Unicorn (8-channel EEG device) 393

We have developed a C++ program (using Unicorn SDK) to send the data from Unicorn 394
device to LSL. The application can be downloaded from our GitHub and copied inside the 395
experiment lib folder. Then the application can be simply called from PsychoPy by adding 396
the script shown in Figure 20 in the Begin Experiment tab of the initialize_code inside the 397
Initialize routine. This will automatically send data from a paired Unicorn device to LSL. 398

 399

Figure 20. Running the application for sending g.tec Unicorn data to LSL 400

 401

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

• BrainProducts LiveAmp (16, 32 and 64-channel EEG device) 402
We have developed three C++ applications (using LiveAmp SDK) to send data from 16, 32 403
and 64-channel LiveAmp devices to LSL. The application associated with the desired device 404
can be downloaded from our GitHub and copied inside the experiment lib folder. Then, the 405
application can be called from PsychoPy by adding the script shown in Figure 21 in the 406
Begin Experiment tab of the initialize_code which is inside the Initialize routine. This will 407
automatically send data from a LiveAmp device to LSL. 408

 409

Figure 21. Running the application for sending BrainProducts LiveAmp data to LSL 410

• OpenBCI Cyton (8-channel) and OpenBCI Cyton + Daisy (16-channel EEG Device) 411
First pyOpenBCI needs to be installed using: pip install pyOpenBCI. Then OpenBCILSL 412
folder should be download from our GitHub and copied in the experiment lib folder. Then, 413
to send data from OpenBCI automatically to LSL, the code shown in Figure 22 should be 414
added in Begin Experiment tab of the initialize_code inside the Initialize routine. In the 415
OpenBCILSL.py file, in case Daisy module (16-channel) is used, daisy = True and the number 416
of channels in the LSL stream info = 16; otherwise, daisy = False and the number of channels 417
in the LSL stream info = 8 (Figure 23). 418

 419

Figure 22. Calling the Python script for sending OpenBCI Cyton/OpenBCI Cyton + Daisy data to 420
LSL 421

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

 422

Figure 23. Python script for sending OpenBCI Cyton/OpenBCI Cyton + Daisy data to LSL 423

• NeuroSky Mindwave (1-channel EEG device) 424
First, mindwavelsl needs to be installed using the command pip install mindwavelsl. Then, 425
the lines of code shown in Figure 24 should be added in the Begin Experiment tab of the 426
initialize_code, which is inside the Initialize routine. 427

 428

Figure 24. Sending NeuroSky Mindwave data to LSL 429

• Muse (4-channel EEG device) 430
First, BlueMuse needs to be downloaded from: 431
https://github.com/kowalej/BlueMuse/releases/download/v2.1/BlueMuse_2.1.0.0.zip and 432
installed as instructed in https://github.com/kowalej/BlueMuse. Then muselsl module 433
should be installed using: pip install muselsl. To run BlueMuse automatically in the 434
background when the experiment is started, the lines shown in Figure 25 should be added 435
in the Begin Experiment tab of the initialize_code inside the Initialize routine. 436

 437

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://github.com/kowalej/BlueMuse/releases/download/v2.1/BlueMuse_2.1.0.0.zip
https://github.com/kowalej/BlueMuse
https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

 438

Figure 25. Sending Muse data to LSL 439

EEG data can be analyzed in EEGLAB (MATLAB Toolbox; 440
https://sccn.ucsd.edu/eeglab/index.php) and Python MNE module. In order to read the .xdf files in 441
EEGLAB, xdfimporter extension needs to be added to EEGLAB. To analyze data using Python MNE, 442
pyxdf module should be installed for Python. 443

4.3.3 Mouse Data + Flanker task markers + EEG + GSR (Arduino) 444

For GSR, 2 different devices are used, 1) eHealth Sensor v2.0 Arduino shield, and 2) Gazepoint 445
Biometrics kit. For eHealth Arduino shield, first, add <eHealthDisplay.h> and <eHealth.h> libraries 446
need to be added to Arduino IDE. To send data from Arduino to LSL, first its data should be sent to 447
the Serial port with a script in Arduino IDE (https://www.arduino.cc/en/main/software) (Figure 26) 448
and deploying this script on the Arduino device. Then, a separate Python/C/C++/etc. script can 449
receive the data from the Serial port and send it to LSL. We have developed a Python script named 450
Serial2LSL.py, which can be downloaded from our GitHub: https://github.com/moeinrazavi/eHealth-451
GSR-LSL. In this script the Serial port name needs to be changed based on the name of the port that 452
the Arduino is connected to (Figure 27). Then, the Python script Serial2LSL.py should be called from 453
PsychoPy as a subprocess (Figure 28). This will send the data from Arduino automatically to LSL 454
when it is connected to the Serial port. The so-called Arduino IDE and Python scripts can be found 455
in the lib folder. 456

 457

Figure 26. Arduino IDE script to send Arduino data to Serial port 458

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://sccn.ucsd.edu/eeglab/index.php
https://www.arduino.cc/en/main/software
https://github.com/moeinrazavi/eHealth-GSR-LSL
https://github.com/moeinrazavi/eHealth-GSR-LSL
https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

 459

Figure 27. Python script for receiving data from Serial port and sending it to LSL 460

 461

Figure 28. Calling the Python script for sending Arduino data to LSL 462

GSR data can be analyzed using ledalab (a MATLAB Toolbox) which can be downloaded from 463

http://www.ledalab.de/. To analyze the data in ledalab, the .xdf file needs to be opened in MATLAB 464

workspace (See Appendix). In the next subsection, it is shown how to send GSR data from the 465
Gazepoint Biometrics kit (along with Gazepoint eyetracking data) to LSL. 466
 467

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

http://www.ledalab.de/
https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

4.3.4 Mouse Data + Flanker task markers + EEG + GSR + Eyetracking 468

First, download the Gazepoint installer from https://www.gazept.com/downloads/ to install the 469
Gazepoint Control application. This application is used for eyetracking calibration and needs to be 470
run in the background of the experiment while collecting the data from Gazepoint. We have 471
developed a Python script using Gazepoint SDK to send eyetracking and biometrics data (GSR, heart-472
rate, etc.) to LSL. This Python script can be accessed by downloading the folder 473
Gazepoint(Eyetracking+Biometrics)-LSL from our GitHub: 474
https://github.com/moeinrazavi/MultiModal_MultiSensory_Flanker_Task/tree/master/lib. The 475
folder should be added to the experiment lib folder. The lines of code in Figure 29 are used to open 476
Gazepoint Control. Then the code in Figure 30 is used to minimize the experiment screen to have 477
access to Gazepoint Control for calibration. And finally, Figure 31 shows the code to check whether 478
the Gazepoint Control is not closed by the user, and by running the LSLGazepoint.py as a subprocess, 479
it starts sending data to LSL. 480

 481

Figure 29. Script for running Gazepoint Control application. 482

 483

Figure 30. Script for minimizing the experiment screen to access the Gazepoint Control calibration 484

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://www.gazept.com/downloads/
https://github.com/moeinrazavi/MultiModal_MultiSensory_Flanker_Task/tree/master/lib
https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

 485

Figure 31. If Gazepoint Control closed by the user, run it again and send Gazepoint eyetracking (+ 486
GSR and heartrate) to LSL 487

4.3.5 Mouse Data + Flanker task markers + EEG + GSR + Eyetracking + Body Motion 488

Kinect for Windows v2 is used to record body motion. To do so, the Microsoft Kinect for 489
Windows SDK 2.0 should be downloaded from https://www.microsoft.com/en-490
us/download/details.aspx?id=44561. We have developed a C++ application based on Kinect Body 491
Basics SDK to send data from a connected Kinect device to LSL. This application can be accessed by 492
downloading the folder Kinect-BodyBasics-LSL from our GitHub: 493
https://github.com/moeinrazavi/Kinect-BodyBasics-LSL and copying this folder in the experiment lib 494
folder. Then, the code shown in Figure 32 should be added to the Begin Experiment tab of 495
initialize_code in the Initialize routine. 496

 497

Figure 32. Running the application for sending Kinect body motion data to LSL 498

At the end of experiment, in order to stop recording, the lines of code shown in Figure 33 can be 499
added to the End Experiment tab. 500

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://www.microsoft.com/en-us/download/details.aspx?id=44561
https://www.microsoft.com/en-us/download/details.aspx?id=44561
https://github.com/moeinrazavi/Kinect-BodyBasics-LSL
https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

 501

Figure 33. Script for stop recording the data from all the devices 502

5. Building a Multisensory Virtual Reality (VR) Experiment (Unity) 503

In this section, first it is shown how to create simple interactable game objects in a VR 504
environment using Unity. Then, a tutorial is provided on how to synchronize VR environment data 505
(e.g., objects positions and orientations), user data (i.e., marker for pressing HTC VIVE controller 506
trigger, positions of player and controllers), and data from multiple devices such as EEG (g.tec 507
Unicorn, Muse, Neurosky Mindwave, BrainProducts LiveAmp, OpenBCI Cyton and OpenBCI Cyton 508
+ Daisy), GSR (e-Health Sensor Platform v2.0 for Arduino), Eyetracking (HTC VIVE Pro with Tobii 509
Eyetracking), and Body Motion (Kinect) together by LSL. Finally, it is explained how to embed 510
LabRecorder in Unity to save data automatically on disk. 511

5. 1. Software and Plugin Installation 512

In order to design a VR environment, Unity (https://unity3d.com/get-unity/download) and 513
Steam (https://store.steampowered.com/about/) need to be installed which are available to download 514
for free. 515

5. 2. Create simple interactable objects in VR environment 516

After installing Unity and Steam, in order to create a VR environment in Unity, a new 3D project 517
should be created from Projects part in Unity Hub (Figure 34). 518

 519

Figure 34. Create a new 3D project in Unity 520

1

2

3

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://unity3d.com/get-unity/download
https://store.steampowered.com/about/
https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

After creating the project, there is a Main Camera object in Unity SampleScene which is fixed to 521
the environment and useless for VR purposes (Figure 35). It will be shown later how to attach a 522
camera object to the player that can move with it. 523

 524

Figure 35. Delete Main Camera object from the Scene 525

To utilize VR properties and functions, SteamVR Plugin should be imported to the project. 526
SteamVR Plugin can be downloaded and imported from Asset Store in Unity. In the pop-up windows 527
that appear after importing SteamVR Plugin, “import” (Figure 36.a) and “Accept All” (Figure 36.b) 528
should be selected, respectively. 529

 530

 531

Figure 36. a. Import SteamVR Plugin 532

 533

Figure 36. b. Import SteamVR Plugin 534

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

Next, simple objects (e.g., Plane and Cube) are added to the Scene (Figure 37). To make the 535
objects interactable with the user, first the Interactable and then Throwable features should be added 536
to the Cube object (Figure 38). By doing this, the user can move and throw the Cube object. 537

 538

Figure 37. Add Plane and Cube objects to the Scene 539

 540

Figure 38. Add Interactable and then Throwable components to the Cube 541

Then a Player object is added to the Scene by dragging it to the Scene (Figure 39). The Player 542
object will define the position of the user in the VR environment. After that, [CameraRig] object is 543
added to the Player by dragging it to the Player (Figure 40). This will attach the VR camera and 544
controllers (here HTC VIVE Pro camera and controllers) to the Player object. 545

 546

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

 547

Figure 39. Add Player object to the Scene 548

 549

Figure 40. Add [CameraRig] object to the Player 550

In the following, it is shown how to synchronize the data from the VR environment, user and 551
different devices using LSL. 552

5. 3. Synchronize data from VR, user and different devices by LSL 553

In this step, to use LSL features, LSL4Unity plugin should be added to the Assets folder in the 554
main project folder (here VR_LSL). In addition, to send HTC VIVE eyetracking and controller trigger 555
press data to LSL, we developed two C# scripts which should also be added to the Assets folder 556
(Figure 41). The LSL4Unity plugin and these scripts can be accessed from our GitHub: 557
https://github.com/moeinrazavi/VR_LSL. 558

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://github.com/moeinrazavi/VR_LSL
https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

 559

Figure 41. Add LSL4Unity plugin and developed scripts for sending HTC VIVE eyetracking and 560
controller trigger press data to LSL in the project’s Assets folder. 561

5.3.1 Send VR objects data to LSL 562

Each object in Unity has a component named Transform which defines the Position and Rotation 563
of that object in the environment (Figure 42). The LSLTransformOutlet function in LSL4Unity plugin 564
can be attached to each object and send data from its Transform component to LSL. Figure 43 shows 565
how to add this function to the Cube object by dragging the function to the object. The Sample Source 566
field of this function should be set to the object that its Transform data needs to be sent to LSL (Figure 567
43). The LSLTransformOutlet function provides up to 3 types of data to be sent to LSL. The first type 568
contains 4 channels that send the rotation data in the Quaternion system (angles with x,y,z and w 569
axes); the next one has 3 channels that are associated with the rotation data in the Euler system (angles 570
with x,y and z axes). The last one includes 3 channels that send the position data (x, y and z 571
coordinates) to LSL (Figure 44). 572

 573

Figure 42. Transform component of an object 574

 575

Figure 43. Add LSLTransformOutlet function to the Cube object 576

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

 577

Figure 44. LSLTransformOutlet data streaming choices 578

5.3.2 Send VR objects data + user data to LSL 579

Here it is shown how to send the camera rotation, camera position coordinates and controller 580
trigger press markers to LSL. The camera is attached to the Player object. 581

First, to send the camera rotation and position data to LSL, similar to the previous subsection, 582
the LSLTransformOutlet function is attached to Camera object under the Player object and Camera 583
is chosen as the Sample Source of this function (Figure 45). Similar to camera, the position and 584
rotation of the controllers can be sent to LSL by attaching LSLTransformOutlet function to the 585
Transform component of each controller (not shown here for brevity). 586

 587

Figure 45. Add LSLTransformOutlet function to the Camera object 588

Then, to have access to controllers, SteamVR Input need to be generated by clicking on SteamVR 589
Input in Window tab. On every pop-up window that appears, Yes and finally Save and generate 590
buttons should be selected (Figure 46). The SteamVR Input makes controller button actions accessible. 591

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

 592

Figure 46. Generate SteamVR Input 593

5.3.3 Send VR objects data + user data + data from different devices to LSL 594

In order to send data from controllers, eyetracking and other devices, an empty GameObject is 595
created and added to LSL_Functions (Figure 47). 596

 597

Figure 47. Create an empty GameObject (here renamed to LSL_Functions) 598

We have developed C# scripts to send data from different devices to LSL. In the following, it is 599
shown how to add these scripts to LSL_Functions object, step by step. A brief explanation for some 600
of the scripts is also provided. 601
• Sending controller trigger press marker to LSL 602

To send the controller trigger press markers to LSL, the Steam VR_Activate Action Set On Load 603
function needs to be added to LSL_Functions object. This function allows access to controller button 604
actions. The Action Set in this function must be set to \actions\default. Then the 605
VIVE_Controller_Trigger_LSL script that we have developed in C# and the LSL Marker Stream 606
function need to be added to LSL_Functions. The VIVE_Controller_Trigger_LSL function uses LSL 607
Marker Stream to send controller trigger press data to LSL (Figure 48). In 608
VIVE_Controller_Trigger_LSL panel, the Trigger_Data should be set on 609
\actions\default\in\GrabPinch; this will assign the action of sending data to LSL to the controller 610

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

trigger. Choosing Right Hand or Left Hand for the Hand Type, will determine whether to send data 611
from the right-hand or the left-hand controller to LSL. 612

 613

Figure 48. Add the scripts to send controller trigger press data to LSL 614

• Sending Eyetracking data to LSL 615
In order to send the Eyetracking (HTC VIVE Pro with Tobii Eyetracking) data to LSL, first, Tobii 616

XR SDK for Unity needs to be downloaded from https://vr.tobii.com/sdk/downloads/. Then, while 617
the project is open, opening the downloaded file will start importing the required libraries for Tobii 618
eyetracking in Unity. 619

Then the Tobii_Eye_Tracking_LSL function that we developed with C# should be added to the 620
LSL_Functions object (Figure 49). 621

 622

Figure 49. Add the script to send eyetracking data to LSL 623

• Send data from other devices to LSL 624
Here it is shown how to send data from other devices (EEG (g.tec Unicorn, Muse, Neurosky 625

Mindwave, BrainProducts LiveAmp, OpenBCI Cyton and OpenBCI Cyton + Daisy), GSR (e-Health 626
Sensor Platform v2.0 for Arduino), and Body Motion (Kinect)) to LSL. To do that, first, the required 627
folders should be downloaded from our GitHub and copied in the Assets folder (Figure 50). Also, the 628
Multiple_Devices_LSL script that we developed in C# needs to be copied it in the Assets folder 629
(Figure 51). This script uses Windows Command Prompt to automatically send data from the devices 630
mentioned above to LSL (Figure 52). 631

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://vr.tobii.com/sdk/downloads/
https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

 632

Figure 50. Add files associated with different devices to the Assets folder 633

 634

Figure 51. Add the Multiple_Devices_LSL script to Assets folder 635

 636

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

 637

Figure 52. Multiple_Devices_LSL script: Send data from 1) g.tec Unicorn, 2) BrainProducts LiveAmp, 638
3) OpenBCI, 4) NeuroSky Mindwave, 5) Muse, 6) eHealth v2 GSR sensor and 7) Kinect to LSL 639

In Figure 53, it is shown how to add Multiple_Devices_LSL script to LSL_Functions object in 640
Unity. 641

 642

Figure 53. Add the Multiple_Devices_LSL script to LSL_Functions object 643

In the following, it is shown how to call LabRecorder to start recording the data available on 644
LSL automatically by embedding LabRecorder in Unity. 645

First, the LabRecorder folder available on our GitHub 646
(https://github.com/moeinrazavi/VR_LSL/tree/master/Assets/LabRecorder) is added to the Assets 647
folder (Figure 54). Also, the script LabRecorder_Record_XDF that we developed in C# should be 648
added to the Assets folder (Figure 55). Then the LabRecorder_Record_XDF script must be added to 649

1
2

3

 4

5

6

7

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://github.com/moeinrazavi/VR_LSL/tree/master/Assets/LabRecorder
https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

the LSL_Functions object (Figure 56). By doing this, when the Play button is pressed in Unity, all the 650
data sent to LSL will start being recorded automatically. 651

 652

Figure 54. Add the LabRecorder file to Assets folder 653

 654

Figure 55. Add the LabRecorder_Record_XDF script to Assets folder 655

 656

Figure 56. Add the LabRecorder_Record_XDF script to LSL_Functions object 657

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

6. Results and Discussion 658

6.1. Results 659

After the experiment is finished, for both PsychoPy and Unity projects, all the streams will be 660
saved with their associated timestamps in a single .xdf file. Each stream can be easily accessed with 661
the assigned name, type and source_id inside the Python script, MATLAB script or EEGLAB toolbox. 662
Ojeda et al. (2014) created an open-source EEGLAB toolbox, MoBILab, for analyzing data from 663
multiple sensors at the same time (EEG, body motion, eye movement, etc.) [25]. 664

In order to open .xdf file using Python, see Appendix. 665

6.2. Discussion and Future Work 666

The ability to use multiple measures that are synchronized together to distinguish factors 667
affecting behavior and brain functionality is getting more attention. Previous works have mostly used 668
one or a couple of measures to study the human mind and behavior. Some studies showed that using 669
various measures (multimodal experiments) can improve the accuracy and the confidence for 670
interpretation of the results. That said, an accurate and easy to use system to integrate and 671
synchronize multiple measures with different sampling rates is often lacking. In this paper, a practical 672
and comprehensive method on integrating and synchronizing multiple different measures together 673
is provided. We developed some applications that make the integration process easier and accessible 674
for different devices. Once the experiment is created and all the streams are defined, it is 675
straightforward for the experimenter to run the experiment for each subject as everything starts being 676
recorded and saved on the disk automatically. It is also very time-saving in preparing the system for 677
the multisensory experiments. An important customizable feature of the proposed system, which is 678
useful for Brain-Computer Interface and Neurofeedback purposes, is that the user can easily define 679
markers for special behaviors of the signals (e.g. abrupt changes in the signals) [26]. It is expected that 680
for future works, adding stimuli from multiple sources that involve different human senses (e.g., 681
tactile, hear, smell, taste, etc.) can result in higher accuracy and new findings. For instance, Marsja et 682
al. (2019) found that changes in bimodal stimuli (both visual and auditory) conveyed a shift in the 683
performance of spatial and verbal short-term memory tasks, while changes in visual or auditory 684
stimuli individually did not lead to a significant shift in the performance of the mentioned tasks [27]. 685
This can be easily achieved by the aid of our proposed system, by sending the markers indicating the 686
onset, offset, and other information related to multiple stimuli in different streams simultaneously. 687
As multimodal behavioral data are interwoven, using methods that enable the fusion of multimodal 688
data would obtain a wide range of new findings in the human brain and behavior research that have 689
never been found before. For this purpose, the state-of-the-art deep learning models are powerful 690
tools that have recently been used for combining and analyzing data from multiple sources together. 691
Gao et al. 2020 conducted a survey study on using deep learning techniques for multimodal data 692
fusion and how they can help find new interpretations of the data [28]. Thus, deep learning models 693
can be beneficial for multimodal data obtained from human studies as well. 694

Appendix 695

Install PsychoPy and pylsl 696

On windows, install the standalone version of PsychoPy from 697
https://www.psychopy.org/download.html. 698

Install pylsl module on PsychoPy 699

In order to install pylsl (version≥1.13) on PsychoPy using pip. To install pylsl on PsychoPy use 700
the command: "C:\Program Files\PsychoPy3\python.exe" -m pip install pylsl --user in Windows 701
command line. 702

 703

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://www.psychopy.org/download.html
https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

 704

Opening .xdf file in Python 705

In order to open .xdf file in Python, first it is required to install pyxdf in python using pip in 706
command line: pip install pyxdf. The .py file in the link: pyxdf_example, is an example of opening 707
.xdf files in Python. It is recommended to use Spyder (https://docs.spyder-ide.org/installation.html) 708
as the Python platform to open the .xdf files, since the Variable Explorer panel in Spyder allows to 709
track the variables. The fields of a .xdf file in Python are shown in shown Figure A1. 710

 711

Figure A1. Fields of a .xdf file in Python 712

Opening .xdf file in MATLAB 713

In order to open .xdf file in MATLAB, first the folder including the load_xdf.m function 714
(download from xdf_importer_GitHub) should be added to MATLAB path (using Set Path in 715
MATLAB Home tab). Then, the .xdf file can be loaded in MATLAB workspace by running 716
load_xdf(“ADDRESS_TO_XDF_FILE.xdf”) in MATLAB command window. The fields of a .xdf file 717
in MATLAB are shown in shown Figure A2. 718

 719

Figure A2. Fields of a .xdf file in MATLAB 720

References 721

1. Otto, T.U.; Dassy, B.; Mamassian, P. Principles of multisensory behavior. J. Neurosci. 2013, 33, 7463–722

7474, doi:10.1523/JNEUROSCI.4678-12.2013. 723

2. Critchley, H.D.; Mathias, C.J.; Josephs, O.; O’Doherty, J.; Zanini, S.; Dewar, B.K.; Cipolotti, L.; Shallice, 724

T.; Dolan, R.J. Human cingulate cortex and autonomic control: Converging neuroimaging and clinical 725

evidence. Brain 2003, 126, 2139–2152, doi:10.1093/brain/awg216. 726

3. Höchenberger, R.; Busch, N.A.; Ohla, K. Nonlinear response speedup in bimodal visual-olfactory 727

object identification. Front. Psychol. 2015, 6, 1–11, doi:10.3389/fpsyg.2015.01477. 728

4. Kittler, J.; Hatef, M.; Duin, R.P.W.; Matas, J. On combining classifiers. IEEE Trans. Pattern Anal. Mach. 729

Intell. 1998, 20, 226–239, doi:10.1109/34.667881. 730

5. Stevenson, R.A.; Ghose, D.; Fister, J.K.; Sarko, D.K.; Altieri, N.A.; Nidiffer, A.R.; Kurela, L.A.R.; 731

Siemann, J.K.; James, T.W.; Wallace, M.T. Identifying and Quantifying Multisensory Integration: A 732

.xdf

fileheader (dict)

fname (str)

streams (list) stream (dict)

footer (dict)

info (defaultdict)

time_series (array)

time_stamps (array)

.xdf (cell) stream (struct)

info (struct)

time_series
(matrix/cell)

time_stamps
(vector)

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://github.com/xdf-modules/xdf-python/blob/d642dbf86f17b8dd94cce56ff339dd57e6d3774a/example/example.py
https://docs.spyder-ide.org/installation.html
https://github.com/xdf-modules/xdf-Matlab/blob/87bf5117edfed420ec728c76f50bb71f3722b41c/load_xdf.m
https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

Tutorial Review. Brain Topogr. 2014, 27, 707–730, doi:10.1007/s10548-014-0365-7. 733

6. Reeves, L.M.; Schmorrow, D.D.; Stanney, K.M. Augmented cognition and cognitive state assessment 734

technology - Near-term, mid-term, and long-term research objectives. Lect. Notes Comput. Sci. (including 735

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 2007, 4565 LNAI, 220–228. 736

7. Jimenez-Molina, A.; Retamal, C.; Lira, H. Using psychophysiological sensors to assess mental 737

workload during web browsing. Sensors (Switzerland) 2018, 18, 1–26, doi:10.3390/s18020458. 738

8. Born, J.; Ramachandran, B.R.N.; Romero Pinto, S.A.; Winkler, S.; Ratnam, R. Multimodal study of the 739

effects of varying task load utilizing EEG, GSR and eye-tracking. bioRxiv 2019, 798496, 740

doi:10.1101/798496. 741

9. Leontyev, A.; Yamauchi, T.; Razavi, M. Machine Learning Stop Signal Test (ML-SST): ML-based Mouse 742

Tracking Enhances Adult ADHD Diagnosis. In Proceedings of the 2019 8th International Conference 743

on Affective Computing and Intelligent Interaction Workshops and Demos, ACIIW 2019; Institute of 744

Electrical and Electronics Engineers Inc., 2019; pp. 248–252. 745

10. Leontyev, A.; Sun, S.; Wolfe, M.; Yamauchi, T. Augmented Go/No-Go Task: Mouse Cursor Motion 746

Measures Improve ADHD Symptom Assessment in Healthy College Students. Front. Psychol. 2018, 9, 747

496, doi:10.3389/fpsyg.2018.00496. 748

11. Leontyev, A.; Yamauchi, T. Mouse movement measures enhance the stop-signal task in adult ADHD 749

assessment. PLoS One 2019, 14, e0225437, doi:10.1371/journal.pone.0225437. 750

12. Yamauchi, T.; Xiao, K. Reading Emotion From Mouse Cursor Motions: Affective Computing 751

Approach. Cogn. Sci. 2018, 42, 771–819, doi:10.1111/cogs.12557. 752

13. Yamauchi, T.; Leontyev, A.; Razavi, M. Assessing Emotion by Mouse-cursor Tracking: Theoretical and 753

Empirical Rationales. In Proceedings of the 2019 8th International Conference on Affective Computing 754

and Intelligent Interaction, ACII 2019; Institute of Electrical and Electronics Engineers Inc., 2019; pp. 755

89–95. 756

14. Yamauchi, T.; Seo, J.; Sungkajun, A. Interactive Plants: Multisensory Visual-Tactile Interaction 757

Enhances Emotional Experience. Mathematics 2018, 6, 225, doi:10.3390/math6110225. 758

15. Chen, F.; Ruiz, N.; Choi, E.; Epps, J.; Khawaja, M.A.; Taib, R.; Yin, B.; Wang, Y. Multimodal behavior 759

and interaction as indicators of cognitive load. ACM Trans. Interact. Intell. Syst. 2012, 2, 760

doi:10.1145/2395123.2395127. 761

16. Lazzeri, N.; Mazzei, D.; De Rossi, D. Development and Testing of a Multimodal Acquisition Platform 762

for Human-Robot Interaction Affective Studies. J. Human-Robot Interact. 2014, 3, 1, 763

doi:10.5898/jhri.3.2.lazzeri. 764

17. Charles, R.L.; Nixon, J. Measuring mental workload using physiological measures: A systematic 765

review. Appl. Ergon. 2019, 74, 221–232. 766

18. Lohani, M.; Payne, B.R.; Strayer, D.L. A review of psychophysiological measures to assess cognitive 767

states in real-world driving. Front. Hum. Neurosci. 2019, 13, 1–27, doi:10.3389/fnhum.2019.00057. 768

19. Gibson, B.E.; King, G.; Kushki, A.; Mistry, B.; Thompson, L.; Teachman, G.; Batorowicz, B.; McMain-769

Klein, M. A multi-method approach to studying activity setting participation: Integrating standardized 770

questionnaires, qualitative methods and physiological measures. Disabil. Rehabil. 2014, 36, 1652–1660, 771

doi:10.3109/09638288.2013.863393. 772

20. Sciarini, L.W.; Nicholson, D. Assessing cognitive state with multiple physiological measures: A 773

modular approach. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes 774

Bioinformatics) 2009, 5638 LNAI, 533–542, doi:10.1007/978-3-642-02812-0_62. 775

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

21. Wang, Z.; Healy, G.; Smeaton, A.F.; Ward, T.E. An investigation of triggering approaches for the rapid 776

serial visual presentation paradigm in brain computer interfacing. 2016 27th Irish Signals Syst. Conf. 777

ISSC 2016 2016, 1–6, doi:10.1109/ISSC.2016.7528466. 778

22. Peirce, J.W. PsychoPy-Psychophysics software in Python. J. Neurosci. Methods 2007, 162, 8–13, 779

doi:10.1016/j.jneumeth.2006.11.017. 780

23. Peirce, J.W. Generating stimuli for neuroscience using PsychoPy. Front. Neuroinform. 2009, 2, 781

doi:10.3389/neuro.11.010.2008. 782

24. Yamauchi, T.; Xiao, K.; Bowman, C.; Mueen, A. Dynamic time warping: A single dry electrode EEG 783

study in a self-paced learning task. In Proceedings of the 2015 International Conference on Affective 784

Computing and Intelligent Interaction, ACII 2015; Institute of Electrical and Electronics Engineers Inc., 785

2015; pp. 56–62. 786

25. Ojeda, A.; Bigdely-Shamlo, N.; Makeig, S. MoBILAB: An open source toolbox for analysis and 787

visualization of mobile brain/body imaging data. Front. Hum. Neurosci. 2014, 8, 1–9, 788

doi:10.3389/fnhum.2014.00121. 789

26. Abiri, R.; Borhani, S.; Sellers, E.W.; Jiang, Y.; Zhao, X. A comprehensive review of EEG-based brain-790

computer interface paradigms. J. Neural Eng. 2019, 16, 011001. 791

27. Marsja, E.; Marsh, J.E.; Hansson, P.; Neely, G. Examining the role of spatial changes in bimodal and 792

uni-modal to-be-ignored stimuli and how they affect short-term memory processes. Front. Psychol. 793

2019, 10, 1–8, doi:10.3389/fpsyg.2019.00299. 794

28. Gao, J.; Li, P.; Chen, Z.; Zhang, J. A survey on deep learning for multimodal data fusion. Neural 795

Comput. 2020, 32, 829–864, doi:10.1162/neco_a_01273. 796

 797

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405795doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.01.405795
http://creativecommons.org/licenses/by-nc-nd/4.0/

	1. Introduction
	1.1. The mind is multimodal
	1.2. Related Work

	2. Multisensory Experiments
	2. 1. Challenges of Implementation

	3. Overview: PsychoPy, Unity, Lab Streaming Layer (LSL), Lab Recorder
	PsychoPy
	Unity
	Lab Streaming Layer
	LabRecorder

	4. Case Study: Building a Multisensory Experiment (PsychoPy)
	4. 1. Software and Plugin Installation
	4. 2. Design
	4. 3. Adding Automatic Data Acquisition to the Experiment

	5. Building a Multisensory Virtual Reality (VR) Experiment (Unity)
	5. 1. Software and Plugin Installation
	5. 2. Create simple interactable objects in VR environment
	5. 3. Synchronize data from VR, user and different devices by LSL

	6. Results and Discussion
	6.1. Results
	6.2. Discussion and Future Work

	Appendix
	Install PsychoPy and pylsl
	Install pylsl module on PsychoPy
	Opening .xdf file in Python
	Opening .xdf file in MATLAB

	References

