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ABSTRACT

Background. To assign structural and functional annotations to the ever increasing amount of
sequenced proteins, the main approach relies on sequence-based homology search methods, e.g.
BLAST or the current state-of-the-art methods based on profile Hidden Markov Models (pHMM),
which rely on significant alignments of query sequences to annotated proteins or protein families.
While powerful, these approaches do not take coevolution between residues into account. Taking
advantage of recent advances in the field of contact prediction, we propose here to represent proteins by
Potts models, which model direct couplings between positions in addition to positional composition,
and to compare proteins by aligning these models. Due to non-local dependencies, the problem of
aligning Potts models is hard and remains the main computational bottleneck for their use.
Results. We introduce here an Integer Linear Programming formulation of the problem and PPalign,
a program based on this formulation, to compute the optimal pairwise alignment of Potts models
representing proteins in tractable time. The approach is assessed with respect to a non-redundant
set of reference pairwise sequence alignments from SISYPHUS benchmark which have lowest
sequence identity (between 3% and 20%) and enable to build reliable Potts models for each sequence
to be aligned. This experimentation confirms that Potts models can be aligned in reasonable time
(1′37′′ in average on these alignments). The contribution of couplings is evaluated in comparison
with HHalign and PPalign without couplings. Although Potts models were not fully optimized for
alignment purposes and simple gap scores were used, PPalign yields a better mean F1 score and finds
significantly better alignments than HHalign and PPalign without couplings in some cases.
Conclusions. These results show that pairwise couplings from protein Potts models can be used to
improve the alignment of remotely related protein sequences in tractable time. Our experimentation
suggests yet that new research on the inference of Potts models is now needed to make them more
comparable and suitable for homology search. We think that PPalign’s guaranteed optimality will be
a powerful asset to perform unbiased investigations in this direction.

Background

Thanks to sequencing technologies, the number of available protein sequences has considerably increased in the past
years, but their functional and structural annotation remains a bottleneck. This task is thus classically performed in silico
by scoring the alignment of new sequences to well-annotated homologs. One of the best-known method is BLAST [1],
which performs pairwise sequence alignments. The main tools for homology search are now based on profile Hidden
Markov Models (pHMMs), which model position-specific composition, insertion and deletion probabilities of each
family of homologous proteins. Two well-known software packages using pHMMs are widely used today: HMMER
[2] aligns sequences to pHMMs and HH-suite [3] takes it further by aligning pHMMs to pHMMs.

Despite their solid performance, pHMMs are innerly limited by their positional nature. Yet, it is well-known that
residues that are distant in the sequence can interact and co-evolve, e.g. due to their spatial proximity, resulting in
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correlated positions. One can cite for instance experiments of Ranganathan et al. on the WW domain who showed by
experimentally testing libraries of artificial sequences of the WW domain that coevolution information is necessary to
reproduce the functional properties of native proteins [4].

There have been a few attempts to make use of long-distance information. Menke, Berger and Cowen introduced a
Markov Random Field (MRF) approach, SMURF [5], where MRFs generalize pHMMs by allowing dependencies
between paired residues in β-strands to recognize proteins that fold into β-structural motifs. Their MRFs are trained
on multiple structure alignments. A model simplification [6] and heuristics [7] have been proposed to speed up the
process. While these methods outperform HMMER[2] in propeller fold prediction, they are limited to sequence-MRF
alignment on β-strand motifs with available structures. Xu et al. [8] proposed a more general method, MRFalign, which
performs MRF-MRF alignments using probabilities estimated by neural networks from amino acid frequencies and
mutual information. Unlike SMURF, MRFalign handles dependencies between all positions and MRFs are built from
multiple sequence alignments. In addition to these inputs, MRFalign relies on complex scoring functions based on
Conditional Neural Fields and Probabilistic Neural Network trained on reference alignments and structural information
to optimize the similarity measures of the positional and coupling potentials of the MRF models to be compared. In
reported results, PSSM-PSSM and HMM-HMM alignment methods are outperformed by MRFalign in terms of both
alignment accuracy and remote homology detection accuracy, notably on mainly beta proteins, showing the potential of
using long-distance information in protein sequence alignment.

Meanwhile, a more interpretable type of MRF grounded in the maximum entropy principle led to a breakthrough in
the field of contact prediction [9]: the Potts model. This model was brought forward by Direct Coupling Analysis
[10], a statistical method to extract direct correlations from multiple sequence alignments. Once inferred on a multiple
sequence alignment (MSA), a Potts model’s nodes represent positional conservation, and its edges represent direct
couplings between positions in the MSA. Unlike mutual information which also captures indirect correlations between
positions, Potts models are global models capturing the collective effects of entire networks of correlations through their
coupling parameters [11], thus tackling indirect effects and making them a relevant means of predicting interactions
between residues. Beyond contact prediction, the positional and the direct coupling information captured by Potts
model’s parameters might also be valuable in the context of protein homology search. The idea of using Potts models
for this purpose was proposed last year at the same workshop by Muntoni and Weigt [12], proposing to align sequences
to Potts models, and by us [13], proposing to align Potts models to Potts models in our generic framework for the
comparison of protein sequences using direct coupling information named ComPotts.

The main computational bottleneck for such approaches is that, due to non-local dependencies, alignment problems
involving Potts models are hard. Muntoni and Weigt [12] proposed an approximate message-passing algorithm to align
a sequence to a Potts model. In this paper, we fully describe PPalign, our method introduced in ComPotts to optimally
align two Potts models representing proteins in tractable time and focus on its performances in terms of alignment
quality on remote homologs. In the following sections, we explain our choices for the inference of Potts models and
describe the method for aligning them, which builds on the work of Wohlers, Andonov, Malod-Dognin and Klau
[14, 15, 16] to propose an Integer Linear Programming formulation for this problem, with an adequate scoring function.
To assess the tractability and the quality of PPalign’s alignments, we extracted 33 non-redundant pairwise reference
alignments with a particularly low identity from the manually curated structural alignments database SISYPHUS [17]
and randomly split it into a training set of 11 pairs to train our hyperparameters and a test set of 22 pairs on which we
compared our results with HHalign’s alignments of pHMMs built on the same input data. On this test set, our method
yielded the exact solutions up to a chosen epsilon in tractable time, and outperformed HHalign in terms of alignment
quality with an F1 score better on average and significantly better for 5 alignments, suggesting that direct couplings can
improve alignment quality of remote homologs.

Methods

Inference of Potts models

Potts models are discrete instances of pairwise Markov Random Fields which originate from statistical physics. They
generalize Ising models by describing interacting spins on a crystalline lattice with a finite alphabet. In the paper
introducing Direct Coupling Analysis, Weigt et al. came up with the idea of applying them to proteins: by building a
multiple sequence alignment of a protein sequence and its close homologs and inferring a Potts model on it, one can
predict contacts between residues by looking at its parameters [10].

The inference of a Potts model from a set of protein sequences can be formally defined as follows:
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Let S = {sn}n=1,··· ,N be a set of N protein sequences of lengths l1, · · · , lN . A multiple sequence alignment (MSA)
of these sequences can be defined as a set of N sequences X = {xn}n=1,··· ,N on the alphabet of S extended with a
new gap character ’−’, which all have the same length L and such that removing all gaps from a sequence xn gives sn.
By extension, L is called the length of the MSA. We denote by q the size of the alphabet.

A Potts model with q states for MSA X can be defined as a statistical model whose probability distribution P over
all sequences of length L maximizes the Shannon entropy H(P ) = −

∑
y∈{1,··· ,q}L P (y) logP (y) and generates the

empirical single and double frequencies of the MSA as marginals:

∀i = 1, · · · , L,∀a = 1, · · · , q,
∑

y∈{1,··· ,q}L
yi=a

P (y) = fi(a) =
1

N

N∑
n=1

δ(xni , a) (1)

∀i, j = 1, · · · , L,∀a, b = 1, · · · , q,
∑

y∈{1,··· ,q}L
yi=a,yj=b

P (y) = fij(a, b) =
1

N

N∑
n=1

δ(xni , a)δ(x
n
j , b) (2)

This probability distribution is unique and has the following form:

P (X = x|v,w) =
1

Z
exp (−H(x|v,w)) (3)

where Z is a normalization constant : Z =
∑

y∈{1,··· ,q}L exp (−H(y|v,w)) andH is an energy function defined as

H(x|v,w) = −

 L∑
i=1

vi(xi) +
L−1∑
i=1

L∑
j=i+1

wij(xi, xj)

 (4)

where the parameters (v,w) that define a Potts model are the ones that maximize the likelihood of the sequences in the
MSA X:

v,w = argmax
v,w

N∏
n=1

P (X = xn|v, w) = argmax
v,w

N∏
n=1

1

Z
exp

 L∑
i=1

vi(x
n
i ) +

L−1∑
i=1

L∑
j=i+1

wij(x
n
i , x

n
j )

 (5)

These parameters can be assigned a practical interpretation:

• v = {vi}i=1,··· ,L are positional parameters termed "fields". Each vi is a real vector of length q where vi(a) is
related to the propensity of letter a to be found at position i.

• w = {wij}i,j=1,··· ,L are pairwise coupling parameters. Each wij is a q × q real matrix where wij(a, b)
quantifies how compatible letters a and b are when found at positions i and j.

An illustration of Potts model is given Figure 1.

In practice, maximizing the likelihood would require the computation of the normalization constant Z at each step,
which is computationally intractable. Among the several approximate inference methods that have been proposed
[18, 19, 20, 21, 11], we opted here for pseudo-likelihood maximization since it was proven to be a consistent estimator
in the limit of infinite data [22, 23] within reasonable time. Furthermore, since our goal is to align Potts models, we
need the inferrence to be geared towards similar models for similar MSAs, which is not what inference methods were
initially designed for. In an effort towards inferring canonical Potts models, we have chosen here to use CCMpredPy
[24], a recent Python-based version of CCMpred [25] which, instead of using the standard L2 regularization prior
R(v, w) = λv ‖v‖22 + λw ‖w‖22, allows us to use a smarter prior on v:

R(v, w) = λv ‖v − v∗‖22 + λw ‖w‖22 (6)

where v∗ obeys
exp(v∗i (a))∑q
b=1 exp(v

∗
i (b))

= fi(a) (7)
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Figure 1: Example of Potts model representing a MSA of length 4. Each column in the MSA is associated with a field
vector vi of length q = 20 where each vi(a) is a real value weighting positively or negatively the occurrence of letter a
at position i. Each pair of positions (i, j) is associated with a q × q coupling matrix wij where wij(a, b) are real values
weigthing positively or negatively the co-occurrence of letters a and b respectively at position i and j.

which yields the correct probability model if no columns are coupled, i.e. P (x|v, w) =
∏L

i=1 P (xi). Our intuition is
that positional parameters should explain the MSA as much as possible and only necessary couplings should be added.

From a protein sequence to a Potts model

To add coupling information to a protein sequence, the first step is to build a MSA of its close homologs to get sufficient
coevolutionary signal. In this paper, based on CCMpred’s recommendations [26], for each sequence we run HHblits [3]
v3.03 with the following parameters:

-maxfilt 100000 -realign_max 100000 -all -B 100000 -Z 100000 -n 3 -e 0.001 on Uniclust30 [27]
(08/2018 release), and then process the output by:

• filtering at 80% identity using HHfilter

• taking the first 1000 sequences

• removing all columns with > 50% gaps using trimal [28]

The resulting MSA is inputted to CCMpredy [24] using default parameters to infer a Potts model, and trimmed positions
i (with > 50% gaps in the input MSA) are re-inserted in the model with positional parameters at position i set to
background fields defined using frequencies f0 given by [29]

v0(a) = log f0(a)−
1

q

q∑
b=1

log f0(b) (8)

and pairwise coupling parameters with position i set to:

∀j, a, b, wij(a, b) = 0 (9)
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Parameter rescaling strategy

Since existing Potts model inference methods were specifically designed for the prediction of co-evolving position
pairs, inferred parameters might not be ideally suited for Potts model comparison. This section describes two strategies
implemented to compensate for these shortcomings.

Lessening the effect of small sample variations on the positional parameters

Since field parameters v are linked to single frequencies through a logarithmic relation (see equation (7)), any noise
in the presence of small probabilities can have a great impact on the model parameters. This has a dramatic effect on
the scoring function we use for pairwise Potts model alignment since the sign of each parameter directly determines
the sign of their similarity score (see next section). To lessen the effects of sampling variations, we apply additive
smoothing to the softmax probability distribution pi associated with each vi.

More formally, a standard softmax probability distribution pi is extracted for each positional parameter vi:

∀a pi(a) =
exp(vi(a))∑q
b=1 exp(vi(b))

(10)

It is then smoothed towards a uniform distribution so that very low probabilities are more homogenized:

p̃i(a) = (1− τv)pi(a) +
τv
q

(11)

where τv is a parameter controlling the amount of additive smoothing used. Final smoothed parameters ṽi(a) are
retrieved by inverting the softmax function using the fact that

∑q
a=1 vi(a) = 0 according to CCMpredPy’s gauge

choice:

ṽi(a) = log p̃i(a)−
1

q

q∑
b=1

log p̃i(b) (12)

Summing up in one formula, each parameter vi(a) of the inferred Potts model is smoothed using the following function:

ṽi(a) = log

(
(1− τv)

exp(vi(a))∑q
b=1 exp(vi(b))

+
τv
q

)
− 1

q

q∑
c=1

log

(
(1− τv)

exp(vi(c))∑q
b=1 exp(vi(b))

+
τv
q

)
(13)

Diminishing contributions of anti-correlations

In theory, coupling values inside a wij matrix are supposed to deviate positively or negatively from 0 to reflect a (direct)
correlation or anti-correlation. In practice however, while input data can be sufficient to assert that two letters a and b
are likely to be found together at positions i and j, deducing that they should not be found together at positions i and j
requires more examples to have sufficient countings on all pairs of a and b. Considering that our data set is limited, a
large number of spurious anti-correlations can arise from a mere lack of data.

Since positive correlations are more likely to be supported by available training sample than negative ones, our approach
here is to skew the coupling value distribution inside each wij matrix to favor higher, positive values.

To do this, we extract each coupling matrix probability distribution as for the fields, only with a different softmax base
βw, chosen so that the extracted distribution is skewed towards higher probabilities:

∀a, b pij(a, b) =
exp(βwwij(a, b))∑q

c=1

∑q
d=1 exp(βwwij(c, d))

(14)

and, as for the fields, smooth it towards a uniform distribution to lessen noise, which gives:

w̃ij(a, b) =
1

βw

(
log

(
(1− τw)

exp(βwwij(a, b))∑q
c=1

∑q
d=1 exp(βwwij(c, d))

+
τw
q2

)

− 1

q2

q∑
e=1

q∑
f=1

log

(
(1− τw)

exp(βwwij(e, f))∑q
c=1

∑q
d=1 exp(βwwij(c, d))

+
τw
q2

) (15)
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Using this smoothing scheme on each input Potts model make them more comparable since the most significant
information stands out while sampling variations are tuned down.

Alignment of Potts models

This section introduces our method for aligning two Potts models. The function we designed to score a given alignment
is described and constraints ensuring that the alignment is proper are added as in Wohlers et al. [16], resulting in an
Integer Linear Programming formulation that can be optimized using their efficient solver.

Scoring function

Basically, the best alignment between two Potts models A = (vA,wA) and B = (vB ,wB) of lengths LA and LB

is defined as the alignment which maximizes the similarity between aligned fields and aligned couplings. Formally,
this means finding the values of the binary variables xik where xik = 1 iff position i in Potts model A is aligned with
position k in Potts model B so as to maximize:

s(A,B) =

LA∑
i=1

LB∑
k=1

sv(v
A
i , v

B
k )xik + αw

LA−1∑
i=1

LA∑
j=i+1

LB−1∑
k=1

LB∑
l=k+1

sw(w
A
ij , w

B
kl)yikjl (16)

where yikjl = xikxjl, sv(vAi , v
B
k ) and sw(wA

ij , w
B
kl) are similarity scores, respectively between positional parameters

vAi and vBk and coupling parameters wA
ij and wB

kl, and αw is a coefficient ensuring proper balance between positional
and coupling score.

To measure the similarity between vectors, the scalar product is a natural candidate. We propose thus to measure the
similarity sv(vAi , v

B
k ) between field parameters using:

〈vAi , vBk 〉 =
q∑

a=1

vAi (a)v
B
k (a) (17)

and to measure the similarity sw(wA
ij , w

B
kl) between coupling parameters by the extension of the scalar product to

matrices, the Frobenius inner product:

〈wA
ij , w

B
kl〉 =

q∑
a=1

q∑
b=1

wA
ij(a, b)w

B
kl(a, b) (18)

Note that this scoring function for two Potts models naturally generalizes the score of a sequence x for a given Potts
model since its energy can be computed as:

H(x|v,w) = −

 L∑
i=1

vi(xi) +

L−1∑
i=1

L∑
j=i+1

wij(xi, xj)

 = −

 L∑
i=1

〈vi, exi〉+
L−1∑
i=1

L∑
j=i+1

〈wij , exixj 〉

 (19)

where :

• exi is the vector defined by ∀a ∈ [1..q], exi(a) = δ(a, xi)

• exixj
is the matrix defined by ∀(a, b) ∈ [1..q]2, exixj

(a, b) = δ(a, xi)δ(b, xj)

Inspired by sequence alignment methods which use log-odds ratios to compute their scores with respect to a background
model, we remove the background field v0 defined in equation (8) to each field vector before computing the scalar
product. The actual similarity score between two positional parameters vAi and vBk used in this paper is thus:

sv(v
A
i , v

B
k ) = 〈vAi − v0, vBk − v0〉 (20)

while the similarity score between two coupling parameters wA
ij and wB

kl remains:

sw(w
A
ij , wkl) = 〈wA

ij , w
B
kl〉 (21)
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Optimizing score with respect to constraints

Naturally, the scoring function should be maximized with respect to constraints ensuring that the alignment is proper.
In that perspective, we build on the work of Wohlers et al. [16], initially dedicated to protein structure alignment, to
propose an Integer Linear Programming formulation for the Potts model alignment problem.

Let us first introduce necessary definitions and notations following [16] to define a proper alignment.

The alignment graph of two Potts models A and B of lengths LA and LB is a LA × LB grid graph where rows (from
bottom to top) represent positions in A and columns (from left to right) represent positions in B. A node i.k in the
alignment graph represents the alignment of node i from Potts model A and node k from Potts model B. Directed
edges (i.k, j.l) are drawn for i < j and k < l. In this framework, an alignment of n positions in the two Potts models is
represented by a set of nodes {i1.k1, · · · , in.kn} where i1 < · · · < in and k1 < · · · < kn, termed increasing path.

In order to properly set constraints on the alignment, two additional node sets are defined: rowik(j) (resp. colik(l)) is
the maximal set of nodes in the alignment graph that are tails of edges with head at i.k or heads of edges with tail at
i.k, that contain at least one node at row j (resp. column l), and that mutually contradict, i.e. no two of them lie on an
increasing path.

To cast the alignment problem into an ILP, binary variables xik are assigned to each node i.k in the alignment graph,
with xik = 1 if position i in Potts model A and position k in Potts model B are aligned, and similarly a binary variable
yikjl is assigned to each edge in the alignment graph where yikjl = 1 if edge (i.k, j.l) is activated.

Given notations above, the alignment of two Potts models A and B of lengths LA and LB and parameters (vA, wA),
(vB , wB) can be formulated as the following Integer Linear Programming problem:

max
LA∑
i=1

LB∑
k=1

sv(v
A
i , v

B
k )xik + αw

LA−1∑
i=1

LA∑
j=i+1

LB−1∑
k=1

LB∑
l=k+1

sw(w
A
ij , w

B
kl)yikjl (22)

s.t. xik ≥
∑

r.s∈rowik(j)

yikrs j ∈ [i+ 1, LA], i ∈ [1, LA − 1], k ∈ [1, LB − 1] (23)

xik ≥
∑

r.s∈colik(l)

yikrs l ∈ [k + 1, LB ], i ∈ [1, LA − 1], k ∈ [1, LB − 1] (24)

xik ≥
∑

r.s∈rowik(j)

yrsik j ∈ [1, i− 1], i ∈ [2, LA], k ∈ [2, LB ] (25)

xik ≥
∑

r.s∈colik(l)

yrsik l ∈ [1, k − 1], i ∈ [2, LA], k ∈ [2, LB ] (26)

xik ≤
∑

r.s∈rowik(j)
s(Ari,Bsk)≤0

(yrsik − xrs) + 1 j ∈ [1, i− 1], i ∈ [2, LA], k ∈ [2, LB ] (27)

k∑
l=1

xil +
i−1∑
j=1

xjk ≤ 1 i ∈ [1, LA], k ∈ [1, LB ] (28)

x, y binary (29)

Constraints (23) and (24) prevent edges from activating if their tails are not activated and ensure that heads of edges
with a common tail do not contradict, and constraints (25) and (26) denote the reverse situation. Constraint (27) ensures
that edges are activated if their heads and tails are activated (this constraint is necessary since similarity scores can be
negative). Finally, constraint (28) ensures that the nodes lie on an increasing path.

A major asset of the solver is that it can yield the exact solution of this ILP, or a solution within a chosen epsilon range
of the exact one, in tractable time. Desired precision of the optimization can be set by the parameter ε, ensuring that

2(UB−LB)
s(A,A)+s(B,B) ≤ ε where UB and LB are the upper and lower bounds guaranteed by the solver for the solution, to
avoid unnecessary optimization steps (the precision can be sufficient for the task) and speed up the search (often the last
optimization steps only contribute to tighten the bounds while the optimal solution is already found).

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.406504doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.406504
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gap cost and offset

As in [16], an affine gap cost function can be added to the score function to account for insertions and deletions in the
sequences, with the appropriate choice of a gap open and a gap extend penalties.

Furthermore, as in most profile-profile methods [30], in order to prevent our method from greedily aligning every
position, we penalize each aligned pair with a fixed negative offset hyperparameter.

Data

To evaluate PPalign and the contribution of distant dependencies, we focused on reference alignments based on
structures with low sequence identity. We opted for SISYPHUS database [17] since it provides manually curated
structural alignments for proteins with non-trivial relationships. Our data set was built as follows:

• From each multiple sequence alignment in SISYPHUS, every possible pairwise sequence alignment with a
sequence identity lower than 20% was extracted (we set a low sequence identity threshold to focus on harder
targets)

• For each sequence in each of these extracted pairwise reference alignments, we attempted to build a Potts model
with the workflow previously described. Sequences that had less than 1000 80% non-redundant homologs were
discarded to focus on sequences with sufficient co-evolution signal. Due to CCMpredPy memory consumption,
trimmed MSAs whose length was longer than 200 also had to be discarded.

• Finally, for each reference multiple sequence alignment in SISYPHUS with more than two of such eligible
sequences, a reference sequence pair was randomly selected. This last steps discards many alignment pairs but
ensures that no multiple sequence alignment biases the results.

This resulted in a set of 33 non-redundant reference pairwise alignments which was randomly split into a train set of 11
alignments on which our hyperparameters were trained (see table 1) and a test set of 22 target alignments (see table 2).

Alignment evaluation metrics

Alignment quality with respect to SISYPHUS’ reference alignments is assessed by computing alignment precision:

P =
# correctly aligned pairs

# aligned pairs in computed alignment
(30)

and recall:
R =

# correctly aligned pairs
# aligned pairs in reference alignment

(31)

using Edgar’s qscore program [31] v2.1, and F1 score:

F1 =
2PR

P +R
(32)

PPalign’s hyperparameters

PPalign’s hyperparameters were optimized on the 11 alignments from the training set using Hyperopt library [32] to
maximize the F1 score. This process showed to be excessively time-consuming, Hyperopt being unable to show a
convergence on the choice of the parameters after one month. In order to reduce the hyperparameter search space and
speed up the convergence of this process, we had to arbitrarily set some parameters after some trials on the training set:
precision ε was set to 0.02, τv and τw from equations (13) and (15) were both set to 0.4 and the gap extend penalty was
set to 0. In accordance with the expected NP-hardness of the problem, time needed to find optimal alignment could
be very long for some sets of parameters and even exceed the 6 hours time-out we set. We observed yet that good
alignments were usually already found in less than 1 minute and decided to set the time-out by alignment to this value
to speed-up more the optimisation of the remaining parameters by Hyperopt, which yielded the following values:

• Gap open penalty: 13
• Coupling contribution coefficient αw: 6
• Softmax base βw: 8.0
• Offset γ: 1.0
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Table 1: Training set.

MSA sequences sequence identity (%)
AL10050464 1r5bA_559_659, 1r5bA_470_549 3.85
AL00053697 1vimA_36_164, 1iatA_334_500 4.04
AL00063412 1bccA_34_201, 1ezvB_236_357 5.59
AL00051306 1ay9A_51_137, 1b12A_81_302 6.28
AL00052113 1kzyC_1731_1838, 1in1A_853_916 8.60
AL10069117 1kncA_13_172, 2gmyA_14_141 9.09
AL00050815 1i4uA_33_167, 1np1A_21_166 10.00
AL00054790 1vig_10_72, 1k1gA_136_223 11.36
AL00054403 4monA_6_47, 1roaA_23_119 13.33
AL00048098 1cmzA_90_199, 1omwA_54_168 13.91
AL00089800 1p6oA_10_147, 1wkqA_2_150 17.88

Table 2: Test set.

MSA sequences sequence identity (%)
AL00050475 1ci0A_43_200, 1uscA_12_145 3.61
AL00050692 1uheA_11_87, 1q16A_1084_1225 4.14
AL10050815 1exsA_17_124, 1qftA_27_139 5.04
AL10050875 1rbp_19_140, 1hms_3_131 5.19
AL00050715 1dfuP_2_94, 1qtqA_340_541 5.22
AL00055723 1tu1A_1_140, 1v2bB_18_186 5.81
AL00050799 1pklA_88_180, 1o65A_12_173 6.02
AL00074653 1tolA_151_213, 1ihrA_172_230 6.15
AL10063410 1qf6A_68_223, 1hr6B_48_215 6.29
AL00053335 1ri5A_51_291, 1nv8A_106_279 7.43
AL10050155 1k32A_764_851, 1lcyA_228_321 9.62
AL10050335 1h9mA_5_141, 1v43A_247_366 10.22
AL10074933 1k32A_763_852, 1te0A_257_349 10.68
AL00052141 1mwiA_9_163, 1oe4A_87_277 11.48
AL20089447 1z0rA_8_48, 1n0gA_33_142 12.93
AL00047241 1tjoA_29_171, 1lb3A_15_153 13.01
AL00054814 1egaB_197_282, 1hh2P_199_275 13.40
AL00050021 1jm1A_57_211, 1nykA_54_191 14.61
AL00047861 1m12A_3_74, 1n69B_2_73 15.38
AL00052441 1c30A_7_127, 1w93A_59_184 15.38
AL00054407 1eqkA_11_95, 2ch9A_38_144 15.74
AL00052787 5pnt_5_155, 1jl3A_3_137 17.72

Other methods to be compared

In this experiment, we compared the results of PPalign with:

• PPalign without coupling score, i.e. αw = 0 (termed PPalign positional)

• HHalign v3.0.3, run with default options to align pHMMs built with HHmake with default options from the
MSAs used to infer Potts models (except for the trimming of the positions with > 50% gaps since pHMMs
handle well insertions and deletions)

• BLASTp v2.9.0+ without E-value cutoff, run on the sequences truncated as in our training MSAs, to provide
an indication on the sequences’ similarity
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Results

Tractable computation time

We examined the computation times of PPalign, PPalign positional and HHalign, considering the time they took to
align the models (and not the steps to build them, that can be done offline) of the sequence pairs from the test set.
Experiments were run on a Debian9 virtual machine with 4 VCPUs (2.3 GHz) and 8 GB RAM. The timeout for each
alignment was set to 6 hours.

The first result is that all the alignments could be computed by PPalign in running times ranging from 5 seconds to 6
minutes, with an average of 1 min 36. Figure 2a plots the running times with respect to the lengths of the models to
align. It shows that most problems (17/22) are easily solved and that running time for these problems increases gently
with the lengths of the models, while a few (5/22) other problems stand out from this majority trend but are still solved
in a few minutes.

When couplings are not considered, the problem is fundamentally easier and running times of HHalign and PPalign
positional are significantly faster than PPalign: both programs were able to compute each optimal positional alignment
in less than 1 second. The running times of HHalign and PPalign positional are plotted in Figure 2b and Figure 2c.
The two plots are not completely comparable since time needed to load the models is here included for HHalign and
not for PPalign positional, but they illustrate the difference between the dynamic programming approach of HHalign,
with a steady running time increment with the length of the models, and the Integer Linear Programming optimization
approach of PPalign positional, showing here 2 outliers with respect to the general tendency.

Alignment quality

Alignment quality was assessed by comparing the alignment obtained by the different methods for the 22 sequences
pairs in the test set to their reference alignment.

Overall, PPalign achieves a better F1 score than HHalign (0.600 versus 0.578) with a better recall (0.613 vs 0.533) but
a lower precision (0.587 vs 0.661), outperforming it in 12 out of the 22 alignments. BLAST only aligned 4 out of the
22 pairs, yielding an average F1 score of 0.113.

Results for each sequence pair of the test set are displayed in Figure 3.

In most cases, PPalign and HHalign yield similar F1 scores (with less than 0.1 difference), except for 8 sequence pairs.
5 of them, marked by blue dots in the Figure 3a, are significantly better aligned by PPalign: AL00050475, AL00050692,
AL10050875, AL00050715 and AL00050799 which are among the 7 alignments with the smallest percentage of
sequence identity with respectively 3.61%, 5.04%, 5.19%, 5.22% and 6.02%. AL10050875 and AL00050715 are part
with AL10063410 of the three sequence pairs that HHalign fails completely to align, yielding small and incorrect
alignments with an F1 score of 0. On AL10063410, PPalign also failed, but on AL10050875 and AL00050715 it was
able to do a bit better than HHalign by correctly aligning in each case roughly a fifth of the target alignment while still
being wrong on the four other fifths. On AL00050475 and AL00050692, PPalign successfully retrieves about half
of the target alignments when HHalign was retrieving only respectively a fifth and a third of it. The contribution of
the coupling parameters is particularly noticeable for AL00050799, PPalign correctly retrieving almost 70% of the
alignment while HHalign retrieves only 20% of it (see detailed analysis in Figure 4).

PPalign is significantly outperformed by HHalign on 3 pairs, marked by yellow dots in Figure 3a. On AL00053335
(7.43% sequence identity), PPalign suffers from its tendency to align too many positions: like HHalign it correctly aligns
half of the target alignment, but it proposes a longer alignment than HHalign, making its precision drop to around 40%
when HHalign stays around 60%. The two other pairs are AL00050021 and AL00052441 with respectively 14.61% and
15.38% sequence identity allowing HHalign to correctly align 60% of the target alignment. On AL00052441, PPalign
correctly aligns more than 50% of the target alignment but the main difference comes here again from the precision
(0.58 vs 0.81). Results on AL00050021 are clearly in favour of HHalign with an F1 score of 0.6 compared to 0.4 for
PPalign and can be explained by the extremely gappy MSAs used to build the models (more than 1

3 positions in the
reference alignment were trimmed).

Interestingly, PPalign without coupling score (PPalign positional) achieves an F1 score comparable to HHalign (0.580
vs 0.578) despite a poor handling of gaps by Potts models as opposed to pHMMs. Besides, while PPalign’s alignment
is most of the time better with the coupling score, 2 sequence pairs were yet significantly better aligned by PPalign
positional than by PPalign with couplings: on already discussed AL10050875, where it improves a bit the poor quality of
the alignment by PPalign, but also on AL00089447 (12.93% sequence identity) where it improves over the improvement
of HHalign on PPalign.
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Discussion

Although the problem is very likely to be NP-hard since the threading problem is NP-hard [33], these experiments
demonstrate that PPalign yields optimal Potts to Potts alignments up to a precision ε in tractable time. These results
have to be confirmed on bigger instances. For now, experimentation is limited by memory handling in CCMpredPy,
which is currently the only inference method offering the features we require to infer comparable Potts models, but the
current implementation of CCMpred [25] shows that this type of inference can be optimized to handle significantly
larger models. This should enable us to test larger alignments in the future. Based on our experimentation, we expect
these alignments to be also tractable. This is surprising with respect to the NP-complete nature of the problem, but it
seems that alignments of Potts models are not the hardest instances when they properly represent homologous proteins.
We think that this depends yet on the choice of the parameters shaping the inference of Potts models and the similarity
of the models to align: these questions deserve further studies to better understand the application scope of this method.

Regarding alignment quality, our results for the alignment of Potts models inferred using a pseudo-likelihood method
designed for co-evolution prediction purposes are overall better than for the alignment of pHMMs by HHalign, with
significant examples demonstrating how taking couplings into account can improve the alignment of remote homologous
proteins, especially for lowest similarity alignments. There is still room for improvement in our method. We have
noticed a tendency to align too many positions that can be corrected and our worst score with respect to HHalign is
associated with very gappy train MSAs, indicating that augmenting Potts models with an appropriate gap handling
strategy would undoubtedly improve our results. Above all, it is worth noting that PPalign positional finds sometimes
a better alignment than PPalign, coupling matrices bringing more noise than assistance in these cases. To get better
alignments, the priority is now is to work on more robust inference of Potts models, to make them more comparable
and informative for homology search despite the relatively small size of training samples. We proposed here some
ideas towards the inference of more canonical Potts models, with only the necessary couplings, as well as some
post-processing steps, notably to smooth weights by simulated uniform pseudocounts. We are now searching for
an efficient Potts model inference method that can be geared towards canonicity, providing the possibility to add
pseudo-counts on the single and double amino acid counts – thus excluding methods based on pseudo-likelihood
maximization – and would extend Potts models with an appropriate gap handling strategy.

Conclusion

While Potts models have been successfully used for contact prediction and other tasks on protein sequences, using
coevolutionary information captured by direct coupling analysis to improve homology search by sequence alignment
seems promising, but challenging. The main computational bottleneck is the hardness of alignments involving Potts
models.

We presented here PPalign, our method for Potts model to Potts model alignment based on the introduction of an Integer
Linear Programming formulation of the problem with an implementation relying on an efficient solver able to yield the
optimal solution in tractable time. This initiates a new approach for remote homology search by alignment of Potts
models inferred from close homologs, similarly to HHalign with the alignment of pHMMs but with the addition of
long distance sequence correlations reflecting the 3D structure of proteins. In this approach, Potts models need to be
comparable. As a basic principle for building canonical Potts models, we proposed to infer models with as much weight
as possible on the positional parameters and to add only necessary weight on pairwise couplings. We also proposed a
scheme for lessening the effects of small sample variations on the Potts model’s parameters.

To experimentally assess the feasibility and interest of the approach, we carefully selected a set of non-redundant
reference pairwise alignments with low sequence identity and with enough close homologs for each aligned sequence
to infer a Potts models. We carried out rigorous experimentation with a strict separation of data used to train
hyperparameters of the method and data used to test its performances. Results on test alignments confirm that Potts
models can be aligned in reasonable time (1′37′′ in average) and that taking into account direct coupling information
can improve sequence alignments, especially for remote homologs with lowest sequence identity.

Our experiments suggest that new research on the inference of Potts models could improve their usefulness for homology
search. The approach would undoubtedly benefit from extending to Potts models the insertion/deletions modeling
capacities as well as the efficient pseudocount schemes of pHMMs. Maybe a more difficult issue is to have guarantees
on a canonical form or at least some robustness of inferred Potts models to make them more comparable. We hope that
PPalign’s efficiency and optimality will help to perform unbiased investigations in these directions.
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(a) PPalign.

(b) HHalign.

(c) PPalign positional.

Figure 2: Time for aligning models of lengths LA and LB for sequence pairs from test set.
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(a) F1 measure

(b) Recall

(c) Precision

Figure 3: Quality of the alignments computed by PPalign, PPalign positional, HHalign and BLAST with respect to
target reference alignments in test set (ordered by increasing percentage of sequence identity).
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(a) Alignments. Alignment R is the reference alignment from SISYPHUS. Alignment P, obtained by PPalign positional, and
Alignment C, obtained by PPalign (with positional and coupling scores), are shown using green color for properly aligned positions
and red color for misaligned positions with respect to Alignment R. It can be seen that alignment C improves over alignement P by
aligning properly 31 new positions in addition to the 30 positions properly aligned in P. Since it still misaligns 28 positions with
respect to the 89 positions to be aligned in R, precision and a recall are then both equal to 0.69. Alignment by HHalign, not shown
here, aligns only 17 positions (the segments V152-A168 and Q159-R175 near the right-ends of the sequences) which are all correct,
resulting on a precision of 1, but with a recall of 0.19.

(b) Positional and coupling scores of aligned positions for P and C. At each aligned position (i, k), the v row shows sv(vAi , v
B
k ) while

w row shows the sum of coupling similarities sw(wA
ij , w

B
kl) between (i, k) and the other aligned positions (j, l), A and B denoting

the Potts models inferred for sequences 1o56A_12_173 and 1pklA_88_180. Coupling scores were not used to find alignment P, but
if we compute them on this alignment we can see many negative coupling scores. Introducing coupling scores in the optimization
enables to find a better alignment C with lower positional similarities compensated by higher coupling similarities. The maximum
positive contribution of couplings is on aligned positions 164 and 171, mainly due to a high similarity of wA

44,164 with wB
101,171 that

makes positions 44 and 101 be the second highest coupling score contribution among aligned positions and helps aligning them
properly in C.

(c) Visualisation a posteriori on pdb structures. Positions correctly aligned by PPalign positional and PPalign are in deepteal, new
positions correctly aligned by PPalign are in green, misaligned positions by PPalign are in red and correctly unaligned positions are
in grey. The top 50 position pairs (i, j) with highest ‖wij‖ are linked by yellow sticks, except (44, 164)A and (101, 171)B colored
in blue. Although these pairs do not have not the strongest norm, they are those with the highest similarity helping to anchor correctly
the alignment on L44 and M101 beta strands.

Figure 4: Illustration of the contribution of couplings for the alignment of 1o65A_12_173 and 1pklA_88_180 sequences.
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