1	TITLE: Temperature effects on individual-level parasitism translate into predictable effects on
2	parasitism in populations
3	
4	
5 6	ABSTRACT
7	Parasitism is expected to change in a warmer future, but the direction and magnitude of this
8	change is uncertain. One challenge is understanding whether warming effects will be similar on
9	parasitism within or on individual hosts (e.g., parasite load) compared to on population-level
10	parasitism (e.g., prevalence, R_0). We adapted a simple temperature-dependent model and
11	simulated several scenarios for individual- and population-level parasitism. Our model found that
12	small differences in the underlying biology of host-parasite systems can substantially alter the
13	expected relationship between the thermal optima of parasitism across levels of organization. In
14	thirteen empirical host-parasite systems, we found a strong positive correlation between the
15	thermal optima of individual- and population-level parasitism, suggesting that the effects of
16	warming on parasitism may often be in the same direction across levels. We also found that
17	parasitism thermal optima were close to host performance thermal optima in mosquito-parasite
18	systems but not in non-mosquito-parasite systems. Generally, our results suggest that
19	information on the temperature-dependence, and specifically the thermal optima, of a host-
20	parasite system at either the individual- or population-level should provide a useful-though not
21	quantitatively exact—baseline for predicting temperature-dependence at the other level in a
22	variety of host-parasite systems.
23	
24	

20

INTRODUCTION

27	Climate change is causing organisms to increasingly face temperatures warmer than their
28	optima for physiological performance. These changes in temperature can alter species
29	interactions (Thomas & Blanford 2003; Kordas et al. 2011), and there is now growing evidence
30	that climate change has impacted interactions between individual hosts and their parasites as well
31	as parasite dynamics and outbreaks in host populations (Koelle et al. 2005; Bruno et al. 2007;
32	Rohr et al. 2011; Ben-Horin et al. 2013; Lafferty & Mordecai 2016; Harvell et al. 2019; Claar &
33	Wood 2020). Predicting the effects of temperature and changing climate on infectious disease is
34	an urgent priority (Altizer et al. 2013), yet research tends to focus on the level of either an
35	individual host's biology or of host populations, but rarely both.
36	Understanding how individual-level per capita interactions in host-parasite systems scale
37	to the population level is key for mitigating disease (Fenton 2008). Indeed, the many biological
38	processes that occur in host-parasite systems occur across more than one level of biological
39	organization, and bridging these levels is an important research area (Handel & Rohani 2015).
40	These processes include those that affect individual host performance, individual parasite
41	performance, host population dynamics, parasite population dynamics within a host, and parasite
42	population dynamics among hosts within a population. Crucially, each of these processes and the
43	traits that underlie them may be temperature dependent. However, whether we should expect the
44	effects of temperature on individual-level parasitism (e.g., on parasite load or on within-host
45	parasite population growth rate) to match the effects of temperature on population-level
46	parasitism (e.g., on parasite prevalence or on the basic reproduction number R ₀) remains an open
47	research gap, as does whether small differences in the underlying host-parasite interaction or
48	thermal biology should affect how thermal effects scale between levels. Understanding the

3

effects of temperature on both individuals and populations is critical for disease mitigation
efforts as the world warms because if the effects are similar across levels of organization, we can
leverage observations of the thermal dependence of parasitism at one level to inform predictions
in more complex systems. However, if effects differ across levels, using observations on the
thermal dependence at one level to extrapolate to the other could provide erroneous predictions
for how warming will affect disease in a system.

55 Obtaining, summarizing, and comparing entire thermal responses can be difficult and 56 sometimes unfeasible. Fortunately, most thermal response curves have a characteristic non-linear 57 shape with a single thermal optimum at which performance is maximized (T_{opt}) (Huey & Stevenson 1979; Huey & Kingsolver 1989; Angilletta 2006). In this study, we therefore focus on 58 and compare thermal optima, as this data is more widely available for many host-parasite 59 60 systems than full thermal response curves. Though it does not represent the complete thermal 61 response, T_{opt} is a useful metric for comparison both across levels of organization and among 62 taxa because it determines the range of temperatures at which warming has a positive effect on parasitism (for $T < T_{opt}$) versus a negative effect (for $T > T_{opt}$). Other metrics, such as thermal 63 64 breadth and the critical thermal minimum and maximum, would provide additional information 65 about how climate change could affect host-parasite interactions at the margins of thermal 66 tolerance.

The thermal optima of parasitism could either match or differ across biological levels of organization. First, we may expect the optimal temperature for parasitism at the individual level to reflect the optimal temperature of parasitism in populations because processes across the two levels can be linked (Ewald 1983; Frank 1996; Mideo *et al.* 2011; Handel & Rohani 2015). For example, if the rate-limiting or rate-determining process for population-level parasitism is

4

72 directly related to individual-level parasitism, the effects of temperature on individual-level 73 parasitism may propagate directly to the population level. From this perspective, the thermal 74 optima of parasitism at the two levels are unlikely to be independent in many systems. This could occur if the number of parasites within a host (i.e., individual-level parasitism) is the rate-75 determining process affecting the rate of parasite transmission (Ben-Ami et al. 2008; McCallum 76 77 et al. 2017) or the rate at which hosts are killed by the parasite (Day 2001), both of which 78 subsequently affect population-level parasitism metrics such as R_0 or prevalence (Anderson & 79 May 1979).

80 On the other hand, temperature may not have the same effects across levels even in cases 81 where population-level parasitism is dependent on the dynamics of individual-level parasitism. 82 Indeed, when considering the effects of anti-parasite treatments instead of temperature, models 83 and field experiments have shown that the effects of treatments on individual hosts do not 84 necessarily lead to equivalent effects in host populations (Fenton 2013; Pedersen & Antonovics 85 2013). The process of parasite transmission among hosts can potentially decouple population dynamics of hosts and parasites from dynamics within host individuals, particularly if the traits 86 87 that shape the transmission process are temperature dependent. For example, individual activity 88 rate can vary with temperature (Casey 1976), thereby modifying the contact rate between 89 susceptible and infected individuals and the overall transmission rate. If the thermal optima of 90 traits that affect transmission are much warmer or much cooler than that of individual-level 91 parasitism, we may expect the thermal optimum of population-level parasitism to be pulled away 92 from the individual-level optimum towards that of these traits.

93 Beyond exploring correlations between the thermal optima of parasitism across levels,
94 considering how the optima for parasitism are related to the optima for their uninfected potential

5

95	hosts can provide a more holistic view of how warming should affect a host-parasite system.
96	One potential framework for doing this is the thermal mismatch hypothesis (Cohen et al. 2017).
97	This hypothesis predicts that parasitism is maximized at temperatures away from the host's
98	optimum-i.e., at cool temperatures for warm-adapted species and at warm temperatures for
99	cold-adapted species-at both the host individual and host population levels (i.e., individual- and
100	population-level parasitism thermal responses should peak at temperatures offset from the host
101	optimum in what is called a thermal mismatch)(Cohen et al. 2017, 2019a, b). Thermal
102	mismatches were first documented in amphibian-chytrid fungus (Batracochytrium
103	dendrobatidis, Bd) systems at both the individual and population levels (Cohen et al. 2017).
104	More recently, Cohen et al. (2020) analyzed >2000 host-parasite combinations at the population
105	level and found evidence for population-level thermal mismatches: hosts from cool climates had
106	increased disease prevalence at warm temperatures and vice versa. However, outside of
107	amphibian-Bd systems, it is unclear if systems with thermal mismatches at the population level
108	will also exhibit thermal mismatches at the individual level. How the optimal temperatures for
109	individual- and population-level parasitism compare to the optimal temperature for the host may
110	mediate how climate change will affect host-parasite interactions: decreased host performance at
111	warmer temperatures could either be compounded by increasing parasitism or mitigated by
112	decreased parasitism.
113	Here, we first develop simple temperature-dependent models for individual-level

parasitism and population-level parasitism to examine the temperature dependence of parasitism across levels. We then simulate several different scenarios—in which thermal responses of population-level processes are or are not related to the thermal responses of individual-level parasitism—to investigate how changes in the underlying processes and thermal biology of a

440	
118	host-parasite system can alter the expected relationship between parasitism T _{opt} across levels.
119	Next, after using our model to explore possible relationships between parasitism T_{opt} across
120	levels, we sought to describe the observed relationship in nature. We identify thirteen systems
121	that match our data requirements and re-analyze the data to investigate if the thermal optimum of
122	population-level parasitism is positively related to the thermal optimum of individual-level
123	parasitism across empirical host-parasite systems. Finally, we compare thermal optima of
124	individual- and population-level parasitism to the thermal optimum of host performance in the
125	thirteen systems to test if the thermal mismatch hypothesis holds across levels in these systems.
126	Our findings provide a first step towards finding general rules for how warming temperatures
127	will affect parasitism across biological levels of organization.
128 129	
130 131	METHODS
131	
131 132	Model
131	
131 132	Model
131 132 133	<i>Model</i> To formalize our intuitive arguments for why we may or may not expect the thermal
131 132 133 134	<i>Model</i> To formalize our intuitive arguments for why we may or may not expect the thermal optimum of parasitism in individual hosts to occur at the same temperature as the thermal
131 132 133 134 135	<i>Model</i> To formalize our intuitive arguments for why we may or may not expect the thermal optimum of parasitism in individual hosts to occur at the same temperature as the thermal optimum for parasitism in host populations, we adapted a simple temperature-dependent model
131 132 133 134 135 136	<i>Model</i> To formalize our intuitive arguments for why we may or may not expect the thermal optimum of parasitism in individual hosts to occur at the same temperature as the thermal optimum for parasitism in host populations, we adapted a simple temperature-dependent model for disease spread in a population that can be related to the thermal response for parasitism in an
131 132 133 134 135 136 137	<i>Model</i> To formalize our intuitive arguments for why we may or may not expect the thermal optimum of parasitism in individual hosts to occur at the same temperature as the thermal optimum for parasitism in host populations, we adapted a simple temperature-dependent model for disease spread in a population that can be related to the thermal response for parasitism in an individual host. Here, we define host individual-level parasitism as parasite load, or the number
 131 132 133 134 135 136 137 138 	<i>Model</i> To formalize our intuitive arguments for why we may or may not expect the thermal optimum of parasitism in individual hosts to occur at the same temperature as the thermal optimum for parasitism in host populations, we adapted a simple temperature-dependent model for disease spread in a population that can be related to the thermal response for parasitism in an individual host. Here, we define host individual-level parasitism as parasite load, or the number of parasites within or on the host.

7

142 constant, T_{min} and T_{max} are the minimum and maximum temperatures, respectively, T is

143 temperature, and B(T) is set to 0 when $T > T_{max}$ or $T < T_{min}$.

144
$$B(T) = cT(T - T_{min})(T_{max} - T)^{1/2}$$
 Eq. 1

145 Next, we developed a simple trait-based model of population-level parasitism by 146 modeling the basic reproduction number of the parasite (R_0 ; Eq. 2):

147
$$R_0 = \frac{\chi(T) \cdot \sigma(T) \cdot S(T)}{\mu(T) + \alpha(T) + \gamma(T)}$$
 Eq. 2

Here, $\boldsymbol{\chi}$ is the contact rate between susceptible and infected hosts, σ is the probability of 148 149 infection after contact, S is the density of susceptible hosts, μ is the background mortality rate, α 150 is the parasite-induced mortality rate, and γ is the host recovery rate. We modeled all six 151 parameters as temperature-dependent, and for all parameters except $\mu(T)$ we assumed thermal responses described by the Brière function (the same functional form used to describe the 152 153 thermal response of individual-level parasitism; Eq. 1). We modeled the thermal response of 154 background mortality rate using a concave-up quadratic function where mortality is minimized at 155 the thermal optimum and increases at cooler and warmer temperatures, as mortality often shows relatively symmetrical responses across temperature (van der Have 2002; Angilletta 2009). 156

157 We simulated the model by randomly drawing different thermal response function 158 parameters $\{c, T_{min}, T_{max}\}$ for each temperature-dependent trait (individual-level parasitism and 159 parameters in Eq. 2). For each of 1000 simulations, T_{min} was drawn from a uniform distribution 160 between 0-15, T_{max} was equal to T_{min} plus a value drawn from a uniform distribution between 10-161 20, and the rate constant c was drawn from a uniform distribution between 0.5-1.3. Similarly, for 162 the concave-up quadratic function that describes background mortality rate, in each of the 1000 163 simulations we drew parameter a from a uniform distribution between 0.0008-0.0009, b from a 164 uniform distribution between 0.02-0.03, and c from a uniform distribution between 0.1-1.

8

165 Thermal responses were scaled to realistic magnitudes for each temperature-dependent trait (e.g., 166 all thermal responses for the contact rate parameter were scaled by a factor of 0.001), and we set 167 background mortality rate to a minimum of 0.005 (see Supporting Information for more detail). 168 To explore if changes in the underlying biology of the host-parasite systems can alter the 169 expected relationship between parasitism T_{opt} across levels, we modeled four main scenarios: (1) 170 all temperature-dependent traits were independent; (2) parasite-induced mortality rate was 171 proportional to parasite load (Anderson & May 1978); (3) per-contact infection probability was 172 proportional to parasite load (McCallum et al. 2017); and (4) both parasite-induced mortality and 173 per-contact infection probability were proportional to parasite load. We also explored seven 174 additional model scenarios to determine the sensitivity of our results to our assumptions 175 regarding both thermal response shape and the structure of the mechanistic model for population 176 disease spread. These scenarios included changes to how thermal response function parameters 177 were drawn, the breadth of the thermal response functions, the minimum parasite load across the 178 temperature range, and the model used to describe population-level disease spread (see 179 Supporting Information for more details). While the model scenarios explored in the main text 180 and the Supporting Information represent only a small subset of the possible relationships 181 between the thermal dependence of parasitism across levels, our aim was to investigate whether small changes to the underlying biology can result in qualitatively different patterns in the 182 183 relationship of thermal optima in parasitism across levels, rather than to exhaustively explore 184 potential outcomes. 185

186

9

188

Empirical systems

189 After using our model to investigate potential relationships for the thermal optima of 190 parasitism across levels, we sought to describe the observed relationship in empirical systems. 191 We searched for systems for which measures of host performance (e.g., lifetime reproduction), 192 individual-level parasitism (e.g., parasite load, parasite reproduction within the host, time spent 193 infected), and population-level parasitism (e.g., R₀, prevalence) were documented across 194 temperatures, allowing us to identify T_{opt} for each of the measures. While not an exhaustive list, 195 we identified thirteen systems that matched these requirements (Table 1): four mosquito-virus 196 systems (Mordecai et al. 2013; Shocket et al. 2018a; Tesla et al. 2018; Mordecai et al. 2019; 197 Shocket et al. 2020), four mosquito-malaria parasite systems (Villena et al. 2020), two 198 Daphnia-parasite systems (D. magna-O. colligata, Kirk et al. 2018, 2020; D. dentifera-M. 199 bicuspidata, Shocket et al. 2018b), two amphibian-B. dendrobatidis (Bd, the causative agent of 200 chytridiomycosis) systems (Cohen et al. 2017), and one crab-rhizocephalan barnacle parasite 201 system (E. depressus–L. Panopaei, Gehman et al. 2018). While the mosquito systems are mainly 202 studied with respect to human disease, here we leverage the rich data on their thermal 203 dependence to explore thermal scaling of the mosquito-parasite interaction, which in turn affects 204 transmission to humans.

Host performance, individual-level parasitism, and population-level parasitism were measured using different metrics in different systems (Table 1; Supporting Information). We report a single host T_{opt} value for eleven of the systems, but two host T_{opt} values (individual and population) for the amphibian systems. This is because individual-level parasitism for coldadapted and warm-adapted amphibians was measured in the lab across one and two host species, respectively (Cohen *et al.* 2017), but the thermal response of population-level parasitism was

10

211 reported as Bd prevalence in the field as a function of environmental temperature for 235 212 surveyed species, where cold- and warm-adapted amphibians were categorized as those at 213 locations where 50-year mean temperature was $<15^{\circ}$ C or $>20^{\circ}$ C, respectively (Cohen *et al.* 214 2017). We therefore used separate T_{opt} values for our individual-level host performance 215 (measured as thermal preference in the lab) and population-level host performance (measured as 216 the mean climatic temperature experienced in the field across surveyed species). 217 While we were generally constrained to use whichever metric of parasitism or host 218 performance was reported for a study, we had access to thermal response data for several 219 different metrics in the mosquito-parasite systems. We chose to use infected days as our measure 220 of individual-level parasitism in these eight systems because it is a composite metric using 221 thermal performance data on parasite development rate within the mosquito, vector competence 222 (the mosquito's ability to acquire and transmit the parasite), and mosquito survival. We were also 223 interested in how this choice affected our findings of how closely T_{opt} of individual-level 224 parasitism matched T_{opt} of population-level parasitism and T_{opt} of host performance. Generally, 225 using vector competence as a metric of individual-level parasitism gave similar results to our 226 main metric of infected days, but parasite development rate tended to exhibit higher T_{opt} values 227 than the other two metrics (Fig. S10). The Supporting Information contains further details on 228 both our model and the methods used to analyze the empirical systems. 229 Using these thirteen systems, we tested for a significant correlation by comparing 230 population-level parasitism T_{opt} to individual-level parasitism T_{opt} using the *cor.test* function in 231 the R package *stats* (R Core Team 2020; method = *pearson*). In some of these systems, metrics 232 used to calculate individual-level parasitism Topt are also a subset of the metrics used to calculate

233 population-level parasitism T_{opt}. For example, the thermal response of mosquito mortality rate is

234	one of several components used to calculate individual-level parasitism in mosquito-parasite
235	systems, and also one of many components used to calculate population-level parasitism in the
236	same systems. As a result, observed thermal optima for population-level parasitism are not
237	independent from observed thermal optima for individual-level parasitism. While this can affect
238	the interpretation of the observed correlation across systems and whether or not it should be
239	considered statistically significant, we argue that the partial dependence of population-level
240	parasitism on what occurs at the individual-level is biologically realistic for many systems.
241	Finally, using the same systems, we compared T _{opt} for individual- and population-level
242	parasitism to T _{opt} of host performance to determine if parasitism generally peaked at
243	temperatures away from host thermal optima as predicted by the thermal mismatch hypothesis
244	(Cohen et al. 2017, 2019a, b), and if so, whether these thermal mismatches at the individual level
245	corresponded with thermal mismatches at the population level.
246	

12

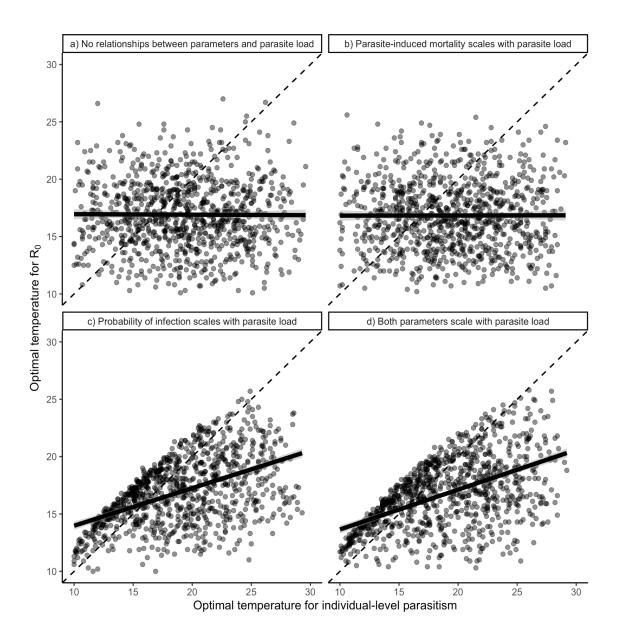
248 TABLE 1. Thermal optima of parasitism and host performance for thirteen host – parasite

250

Host – parasite system	Measure of host performance	Measure of individual- level parasitism	Measure of population- level parasitism	Host performance T _{opt} (°C)	Individual- level parasitism T _{opt} (°C)	Population- level parasitism T _{opt} (°C)	Reference
Culex pipiens – West Nile virus	Adult reproduction weighted by lifespan	Infected days	Ro	15.9	23.5	24.5	Shocket et al. 2020
Aedes aegypti - dengue virus	Adult reproduction weighted by lifespan	Infected days	R ₀	27.6	29.3	29.1	Mordecai et al. 2017
Aedes aegypti - Zika virus	Adult reproduction weighted by lifespan	Infected days	R ₀	27.7	28.9	28.9	Tesla et al. 2018
Culex annulirostris – Ross River virus	Adult reproduction weighted by lifespan	Infected days	R ₀	25.6	24.0	26.4	Shocket et al. 2018a
Anopholes gambiae - Plasmodium vivax	Adult reproduction weighted by lifespan	Infected days	Transmission suitability	24.4	23.6	25.0	Villena et al. 2020
Anopholes gambiae - Plasmodium falciparum	Adult reproduction weighted by lifespan	Infected days	Transmission suitability	24.4	23.4	25.0	Villena et al. 2020
Anopholes stephensi - Plasmodium vivax	Adult reproduction weighted by lifespan	Infected days	Transmission suitability	24.0	23.0	24.6	Villena et al. 2020
Anopholes stephensi - Plasmodium falciparum	Adult reproduction weighted by lifespan	Infected days	Transmission suitability	24.0	22.9	24.8	Villena et al. 2020
Cold-adapted amphibians - Batrachochytrium dendrobatidis	Temperature preference for individuals; mean climatic temperature for populations †	Parasite growth rate on host	Prevalence	17.9 (10.5) †	26.0	20.5	Cohen et al. 2017
Warm-adapted amphibians - Batrachochytrium dendrobatidis	Temperature preference for individuals; mean climatic temperature for populations †	Parasite growth rate on host	Prevalence	23.5 (23.9) †	12.0	15.9	Cohen et al. 2017
Eurypanopeus depressus - Loxothylacus panopaei	Uninfected host survival	Parasite lifetime reproduction	Ro	18.3	15.9	14.7	Gehman et al. 2018
Daphnia dentifera - Metschnikowia bicuspidata	Uninfected intrinsic growth rate	Spore load	Ro	26.0*	20.0*	26.0	Shocket et al. 2018b
Daphnia magna – Ordospora colligata	Lifetime reproduction	Spore load	R ₀	16.2*	11.8*	18.8	Kirk et al. 2018, 2020

251 * T_{opt} for these values was determined as the temperature at which the measure was maximized
 252 along a range of discrete experimental temperatures, rather than the temperature maximizing the
 253 measure along a fitted continuous curve, as is the case for each other value in the table. For
 254 discrete temperature range used, see Supporting Information.

255 † The first number listed is individual-level host T_{opt} . The number in parentheses is population-256 level T_{opt} .


257

259	RESULTS
260	Differences in host–parasite biology and the expected relationship between parasitism T_{opt}
261	across levels
262	As hypothesized, the model showed that T _{opt} for individual- and population-level
263	parasitism may be correlated or uncorrelated, depending on the relationships among the trait
264	thermal responses. When the thermal responses of all parameters in the population-level
265	parasitism model were independent from each other and from the thermal response of individual-
266	level parasitism, we did not observe any relationship between the thermal optima of parasitism
267	across levels (Fig. 1a). Similarly, there was no relationship between thermal optima in the
268	scenario in which the thermal response of parasite-induced mortality was proportional to the
269	thermal response of parasite load (Fig. 1b). This means that in this scenario, even though a
270	parameter that partially determined the thermal response of population-level parasitism was
271	directly dependent on the thermal response of individual-level parasitism, we still did not
272	observe a relationship between the thermal optima. Conversely, when the probability of infection
273	after contact was proportional to parasite load across the thermal range, we observed a strong,
274	positive relationship between the thermal optima for parasitism across levels (Fig. 1c). Though
275	the relationship was significant and positive, it does not fall upon the 1:1 line (95% confidence
276	interval; Fig. 1c). Additionally, while many simulated host-parasite systems are observed below
277	the 1:1 line (i.e., individual-level parasitism T _{opt} was greater than population-level parasitism
278	T_{opt}), there were no systems in which population-level parasitism T_{opt} greatly exceeded
279	individual-level parasitism T _{opt} under these model conditions. Finally, when both probability of
280	infection after contact and parasite-induced mortality were proportional to parasite load across
281	the thermal range, the correlation between individual-level parasitism T_{opt} and population-level

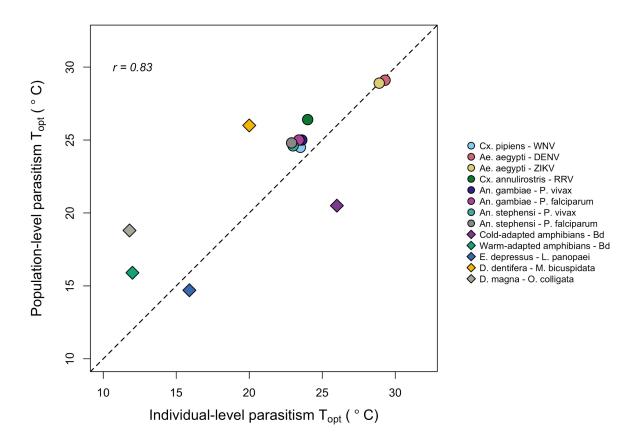
14

- 282 parasitism T_{opt} was strongly positive (Fig. 1d), closely resembling the scenario in which only
- 283 probability of infection after contact was proportional to parasite load (Fig. 1c).

287 Figure 1. Thermal optima of individual parasite burden may be either uncorrelated (top 288 panels) or positively correlated (bottom panels) with thermal optima of R₀ at the 289 population level. The thermal optima of parasitism in 1000 simulated host-parasite systems at 290 both the population level (R₀) and individual level (parasite load) for four different modeled 291 scenarios: a) no relationship between any parameters in the R_0 model (Eq. 2) and parasite load 292 (Eq. 1); b) parasite-induced mortality in the R_0 model is proportional to parasite load; c) 293 probability of infection after contact in the R₀ model is proportional to parasite load; d) both 294 parasite-induced mortality and probability of infection after contact in the R₀ model are 295 proportional to parasite load. Dashed black lines represent the 1:1 lines. Solid black lines and 296 shaded bands represent the best fit linear regressions and 95% confidence intervals, respectively. 297

16

298	We found qualitatively similar results for several of our additional model scenarios.
299	Specifically, we found similar results when thermal response parameters were drawn from
300	normal distributions (Fig. S2), when parameter thermal breadth was larger (Fig. S3), when peak
301	contact rates occurred at warmer temperatures (Fig. S4), and when the population-level
302	parasitism model (Eq. 1) was altered to allow for chronic infections (Fig. S7) or for
303	environmentally-transmitted parasites (Fig. S8). However, we found that adding a baseline level
304	of individual-level parasitism across the temperature range, such that individual-level parasitism
305	(and probability of infection when it is modeled as proportional to individual-level parasitism) is
306	low but not zero when $T < T_{min}$ and $T > T_{max}$, led to qualitatively different results when
307	probability of infection was proportional to individual-level parasitism. In this case, a number of
308	systems exhibited population-level parasitism T _{opt} much warmer than individual-level parasitism
309	T _{opt} (Fig. S5c-d), a pattern we did not observe in Figs. 1c-d. Allowing for individual-level
310	parasitism to have a baseline level and for peak contact rates to occur at warmer temperatures led
311	to even more systems with population-level parasitism $T_{opt} >>$ individual-level parasitism T_{opt}
312	(Fig. S6c-d).
313	
314	Relationship between parasitism T_{opt} across levels in empirical systems
315	The thirteen empirical systems we analyzed demonstrated a range of thermal optima for


individual-level parasitism (11.8°C – 29.3°C) and population-level parasitism (14.7°C – 29.1°C). We found that population-level parasitism T_{opt} was significantly correlated with individual-level parasitism (Fig. 2; Pearson correlation = 0.83, p = 0.0005, n = 13). Of the thirteen systems, nine exhibited thermal optima at individual and population levels that were within 2.5°C of each other. The largest difference across levels appeared in the *D. magna–O. colligata* system in

17

321 which individual-level parasitism peaked at a temperature that is 7°C cooler than the peak for

322 population-level parasitism. Nine of the thirteen systems exhibited higher thermal optima for

- 323 population-level parasitism than individual-level parasitism, though in most cases this difference
- 324 was small (Fig. 2; points above the dashed 1:1 line).

325

Figure 2. The thermal optima of population-level parasitism are positively correlated with
 the thermal optima of individual-level parasitism in empirical systems. Points show

328 estimates of the optimal temperature (T_{opt}) for population-level parasitism versus T_{opt} of

individual-level parasitism for thirteen host–parasite systems. We found a significant positive

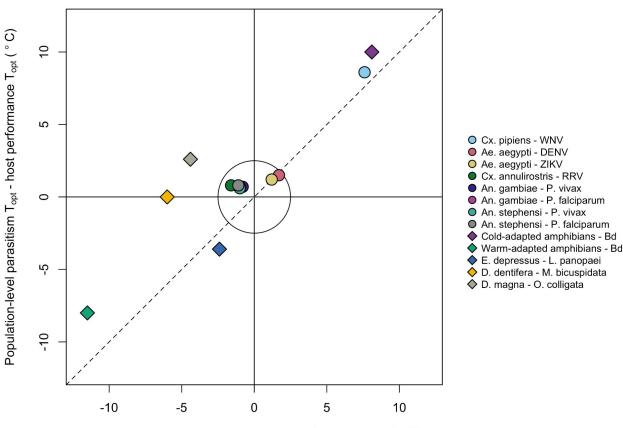
 $330 \quad \text{correlation between } T_{opt} \text{ of population-level parasitism and } T_{opt} \text{ of individual-level parasitism}$

331 (Pearson correlation = 0.83, p = 0.0005, n = 13), and found that nine of the thirteen systems 332 exhibited higher thermal optima for population-level parasitism than for individual-level

parasitism (i.e., fall above the dashed 1:1 line). Circles represent mosquito – parasite systems and

diamonds indicate non-mosquito – parasite systems.

335


18

Relationship between parasitism T_{opt} and host performance T_{opt} in empirical systems 337 338 Next, we compared the thermal optima of parasitism at both levels to T_{opt} for host 339 performance (Fig. 3). If a system was situated at the origin in Fig. 3, it would have individual-340 level parasitism, population-level parasitism, and host performance maximized at the same temperature (i.e., no thermal mismatches exist). Displacement from the origin represents 341 342 parasitism peaking at temperatures away from where host performance peaks (i.e., thermal 343 mismatches at one or both levels). We found that over half (7/13) of the systems were situated 344 close to the origin (arbitrarily defined here as within Euclidian distance of 2.5°C, represented by 345 the circle in Fig. 3). However, all seven of these are mosquito-parasite systems, with the only 346 mosquito system exhibiting strong thermal mismatches being Cx. pipiens–West Nile virus, in 347 which both infected days and R_0 peak at temperatures nearly 10°C higher than host performance 348 (Fig. 3). The cold adapted amphibian-B. dendrobatidis system was also situated in the far upper-349 right quadrant (Fig. 3), showing strong thermal mismatches at both levels of parasitism, as 350 shown in Cohen *et al.* (2017). Two systems showed cold-temperature mismatches at both levels: 351 the crab *E. depressus–L. panopaei* and warm-adapted amphibian–*B. dendrobatidis* host–parasite 352 systems. The zooplankton D. dentifera–M. bicuspidata system exhibited a thermal mismatch at 353 cold temperatures at the individual level but no mismatch at the population level. Finally, the 354 zooplankton D. magna-O. colligata system showed a distinct pattern of differing thermal 355 mismatches across levels (Fig. 3): individual-level parasitism was maximized at a lower 356 temperature than host performance while R_0 peaked at a higher temperature than host 357 performance. None of the thirteen systems showed positive individual-level mismatches but 358 negative population-level mismatches; therefore, the lower-right quadrant of Fig. 3 is empty. The 359 six systems that experienced thermal mismatches generally supported our hypothesis that if

19

- 360 mismatches occured they would be at both levels and in the same direction, as more of these
- 361 systems were situated in the upper-right or lower-left quadrants of Fig. 3 compared to the upper-
- 362 left or lower-right quadrants.

363

Individual-level parasitism T_{opt} - host performance T_{opt} (° C)

364

365 Figure 3. Thermal matches and mismatches tended to be correlated across levels of

biological organization. The difference between T_{opt} of population-level parasitism and host
 performance (y-axis) is plotted against the difference between T_{opt} of individual-level parasitism

- and host performance (x-axis) for thirteen host-parasite systems. Systems situated at the origin
 had population-level parasitism, individual-level parasitism, and host performance all maximized
- at the same temperature (i.e., no thermal mismatches exist), while displacement from the origin
- 371 represents parasitism peaking at temperatures away from where host performance peaks (i.e.,
- 372 thermal mismatches at individual or population levels). All seven of the systems situated close to
- the origin (within Euclidian distance of 2.5°C, represented by the black circle) were mosquito –
- 374 parasite systems (circles; in contrast to systems with non-mosquito hosts: diamonds).
- 375

20

3	7	6

DISCUSSION

377 If we are to best predict how warming temperatures will affect host-parasite systems, we 378 need to understand if effects on parasitism at one level of organization correspond with similar 379 effects at another level. Moreover, understanding how these effects on parasitism compare to 380 thermal effects on uninfected hosts can offer a more complete lens into how climate change will 381 affect hosts. Our model found that small differences in the underlying biology of host-parasite 382 systems can substantially alter the expected relationship between the thermal optima of 383 parasitism in individual hosts and host populations, ranging from strong positive correlations to 384 no correlation of T_{opt} across levels (Fig. 1). In our examination of thirteen empirical systems, we 385 found a significant positive relationship between T_{opt} for parasitism at the two levels (Fig. 2). 386 Additionally, while individual- and population-level parasitism both peaked at temperatures 387 away from the host optimum in some systems, supporting the thermal mismatch hypothesis, this 388 was not the case in seven of the eight mosquito-parasite systems (Fig. 3), suggesting thermal 389 mismatches may be more common in certain types of host-parasite systems. Generally, our 390 results show that information on the temperature-dependence, and specifically the thermal 391 optimum, of a host-parasite system at either the individual- or population-level should provide a 392 useful—though not quantitatively exact—baseline for predicting temperature dependence at the 393 other level in a variety of host-parasite systems.

We found a significant positive correlation between T_{opt} of population-level parasitism and T_{opt} of individual-level parasitism, suggesting that the effects of warming on parasitism may often be in the same direction across levels. However, we also found that population-level parasitism tended to peak at slightly warmer temperatures than individual-level parasitism in the majority of systems (Fig. 2), meaning that these systems may experience small temperature ranges in which warming leads to increases in population-level parasitism but decreases in

21

400 individual-level parasitism. The greatest differences in T_{opt} were observed in the zooplankton D. 401 magna-O. colligata system, the cold-adapted amphibians-B. dendrobatidis system, and the 402 zooplankton D. dentifera-M. bicuspidata system (Fig. 2, Table 1). It is difficult to definitively 403 parse out the causes of T_{opt} differences in the two amphibian systems since individual-level Bd 404 parasitism was measured on either one or two frog species in the lab while population-level 405 prevalence by the same parasite was synthesized across many field studies encompassing 235 406 host species (Cohen et al. 2017). However, the D. magna-O. colligata system can provide an 407 illuminating example. Contact rate in this host-microsporidian parasite system is maximized at 408 30.1°C (Kirk et al. 2019). This is nearly 20°C warmer than T_{opt} for individual-level parasitism 409 (11.8°C) and is thus one of the key factors that pulls the thermal optimum of R_0 away from 410 individual-level parasitism T_{opt} to a warmer temperature (18.8°C). Moreover, in the mosquito-411 parasite systems, which tended to have high population-level parasitism T_{opt} (Fig. 2), biting 412 rate—a driver of host contact—usually has one of the highest optimal temperatures of all 413 measured traits (Mordecai et al. 2013, 2017, 2019; Shocket et al. 2018a; Villena et al. 2020). 414 These few systems represent only a small slice of the diversity of host–parasite systems that 415 exist; however, they may represent a relatively greater portion of the diversity in thermal trait 416 biology and temperature-dependent metabolic rates because these rates are often conserved 417 across systems (Brown et al. 2004; Dell et al. 2011; Molnár et al. 2017). More empirical work 418 measuring thermal responses of traits related to parasite transmission in other types of host-419 parasite systems, such as those with helminth or bacterial parasites—both of which have been 420 shown to be affected by climate (Ben-Haim et al. 2003; Ben-Horin et al. 2013; Mignatti et al. 421 2016)—can help broaden our perspective on the scaling of parasitism from individuals to 422 populations in light of climate change.

423	The positive relationship observed for T _{opt} across levels in the thirteen empirical systems
424	qualitatively matched the positive relationship observed in the two modeled scenarios in which
425	probability of infection was proportional to parasite load (Fig. 1c-d). However, this should not be
426	taken as evidence that these empirical systems follow the same described dynamics or meet the
427	same assumptions of these modeled scenarios, as the underlying biology differs greatly between
428	many of these systems, and the models that have been used to describe their dynamics differ both
429	between the systems and from the simple model developed here (e.g., Briggs et al. 2010;
430	Mordecai et al. 2017; Gehman et al. 2018; Shocket et al. 2018b; Kirk et al. 2020). Taken
431	together, this means that the model results (Figs. 1, S2-S8) are useful for our understanding of
432	how different T _{opt} relationships are possible under different plausible scenarios, but should not be
433	used as statistical null hypotheses for our thirteen empirical systems. The contribution of this
434	approach—pairing mechanistic models and thermal responses across biological levels under
435	different assumptions—is that we can observe how different systems or thermal biology can lead
436	to different patterns in T _{opt} across levels. Indeed, while our additional model scenarios generally
437	supported our main finding that individual- and population-level parasitism can be correlated or
438	uncorrelated and showed that this is qualitatively robust across different model structures and
439	assumptions regarding thermal response shape, they also illustrated how changes to thermal
440	biology can alter these patterns. For example, if peak contact rates tend to occur at warmer
441	temperatures than other traits, we may observe more systems that have population-level
442	parasitism T_{opt} > individual-level parasitism T_{opt} (Fig. S4). Also, despite not observing systems
443	in the far upper-left space (where population-level parasitism $T_{opt} >>$ individual-level parasitism
444	T _{opt}) for our model simulations when probability of infection scaled with individual-level

445	parasitism (Fig. 1c-d), additional scenarios showed that this is possible if individual-level
446	parasitism does not decrease completely to zero when $T < T_{min}$ and $T > T_{max}$ (Figs. S5-S6).
447	The thermal mismatch hypothesis (Cohen et al. 2017, 2019a, b, 2020) has been proposed
448	as an approach for understanding the effects of climate change on host-parasite systems,
449	predicting that T_{opt} for parasitism should occur at temperatures away from host T_{opt} (i.e., a
450	thermal mismatch) due to larger organisms (hosts) generally having narrower thermal breadth
451	than smaller organisms (parasites; Rohr et al. 2018). While empirical evidence shows that
452	thermal mismatches do occur at the population level across many systems (Cohen et al. 2020),
453	the novel hypothesis we tested here is that thermal mismatches at the individual level will
454	correspond with similar thermal mismatches at the population level. Of the five non-mosquito
455	systems we explored—including the two amphibian–Bd systems investigated previously—
456	parasitism tended to peak at temperatures away from the host's optimum in each, meaning that
457	these systems experience thermal mismatches at one or both levels. If our hypothesis was to be
458	supported, we would expect most systems experiencing thermal mismatches to fall in the upper-
459	right or lower-left quadrants of Fig. 3, rather than the upper-left or lower-right. We found that
460	this was generally the case, with two systems experiencing thermal mismatches at warmer
461	temperatures at both levels (Fig. 3; upper-right) and two systems experiencing thermal
462	mismatches at cooler temperatures at both levels (Fig. 3; lower-left). The major exception was
463	the D. magna-O. colligata system, in which host T _{opt} occurs at a temperature intermediate to the
464	relatively cool T_{opt} for individual-level parasitism and relatively warm T_{opt} population-level
465	parasitism (Fig. 3; upper-left). The other zooplankton host system we explored, <i>D. dentifera–M.</i>
466	bicuspidata, exhibited a thermal mismatch at cooler temperatures at the individual level but no
467	mismatch at the population level.

468	Evidence for thermal mismatches occurring at either level was weak in the mosquito-
469	parasite systems. Seven of eight mosquito-parasite systems were situated close to the origin (Fig.
470	3), suggesting that parasitism and host performance are maximized at close to the same
471	temperatures and that no thermal mismatches are occurring at either level. Notably, when testing
472	for thermal mismatches at the population level, (Cohen et al. 2020) also found that thermal
473	mismatch effects were strongest in systems without vectors (or intermediate hosts). The
474	exception in our study, Cx. pipiens-West Nile virus, in which parasitism at both levels peaks at
475	temperatures much higher than host performance because Cx. pipiens adult lifespan is much
476	longer at low temperatures (Shocket et al. 2020), is a system with a predominantly temperate
477	distribution in North America, compared to the more sub-tropical and tropical distributions of
478	malaria, dengue, Zika, Ross River virus, and their respective mosquito vectors. Why we
479	observed this pattern in mosquito systems will require further investigation in different vector-
480	borne systems across biological levels, including those systems with non-mosquito vectors such
481	as ticks or sandflies.
482	We propose that situating host-parasite systems along both individual- and population-
483	level axes as in Fig. 3 can provide a diagnostic framework for looking for thermal mismatches
484	across biological levels. While our results do not conclusively address how general thermal
485	mismatches at both levels may be, our finding that individual- and population-level T_{opt} are
486	strongly related (Fig. 2) provides a general rule of thumb that, if a host-parasite system does
487	experience thermal mismatches, they are likely to occur at both levels and in the same direction
488	(though note the exception of <i>D. magna–O. colligata</i> ; Fig. 3). This has major implications for
489	our understanding of the effects of climate change on host-parasite systems, because if T_{opt} for
490	both individual- and population-level parasitism is at a higher temperature than T_{opt} for host

25

491 performance, warming may not only decrease host performance itself, but also lead hosts to 492 experience increasing effects of parasitism (Fig. 3; upper-right quadrant). Alternatively, if T_{opt} 493 for parasitism is at temperatures cooler than host performance optima, decreased host 494 performance at warmer temperatures may be partially offset by decreased effects of parasitism 495 (Fig. 3; lower-left quadrant). This is in line with recent projections that climate change may lead 496 to hosts from cooler climates to experience increased parasitism, and hosts from warmer climates 497 to experience decreased parasitism (Cohen et al. 2020). 498 To better understand how temperature affects parasitism and to make better predictions 499 for how climate change will affect host-parasite systems across biological levels, we highlight 500 two important research directions. First, when possible, studies that use experiments to 501 investigate effects of temperature at the individual level can also be used to parameterize simple 502 models of population-level parasitism (a 'bottom-up' approach). Second, field studies 503 investigating population-level parasitism under different climate or weather conditions, often 504 undertaken by measuring the proportion of individuals infected, should also aim to record 505 measures of individual-level parasitism (a 'top-down' approach). The best direct measure would 506 be to record the parasite load or an analogous metric measuring the parasite on or within the host, 507 but in cases where this is not possible, indirect measures such as host condition may still be 508 informative.

509 Overall, after our model illustrated that either positive or flat relationships between T_{opt} 510 across levels were plausible, we found a strong positive relationship in the thirteen systems we 511 analyzed, suggesting that the effects of warming on individual-level outcomes may beget similar 512 outcomes at the population level in various host–parasite systems. Many studies have 513 investigated the effects of temperature on parasitism (reviewed, for example, in Marcogliese

26

514 2008; Lafferty 2009; Rohr et al. 2011; Altizer et al. 2013; Lafferty & Mordecai 2016; Claar & 515 Wood 2020), though often at only one of either the individual or population levels. Our findings 516 build upon these studies by emphasizing that how temperature affects individual-level parasitism 517 can scale up to affect parasite transmission, prevalence, and the potential for epidemics in host 518 populations, though not always in a 1:1 manner. While this is an important first step toward 519 predicting the effects of climate change on systems by allowing researchers to primarily focus on 520 parasitism at one level when necessary, future empirical work that investigates the thermal 521 dependence of a wider range of host-parasite systems across levels, including in systems with 522 different types of hosts (e.g., plants, non-amphibian vertebrates) and other types of parasites 523 (e.g., helminths, bacterial parasites), will be necessary for investigating the generality of this 524 result. More broadly, tying together more theory and empirical results to provide general 525 predictions for how climate change will affect parasitism from individuals to ecosystems in a 526 diverse range of hosts and parasites remains an urgent priority as accelerating climate change 527 makes potentially catastrophic temperature increases of $> 2^{\circ}$ C increasingly likely by 2050. 528

529	LITERATURE CITED
530	
531 532 533	Altizer, S., Ostfeld, R.S., Johnson, P.T.J., Kutz, S. & Harvell, C.D. (2013). Climate Change and Infectious Diseases: From Evidence to a Predictive Framework. <i>Science</i> , 341, 514–519.
534	Anderson, R.M. & May, R.M. (1978). Regulation and Stability of Host-Parasite Population Interactions: I. Regulatory Processes. <i>The Journal of Animal Ecology</i> , 47, 219.
535 536	Anderson, R.M. & May, R.M. (1979). Population biology of infectious diseases: part 1. <i>Nature</i> , 280, 361–367.
537 538	Angilletta, M.J. (2006). Estimating and comparing thermal performance curves. <i>Journal of Thermal Biology</i> , 31, 541–545.
539	Angilletta, M.J. (2009). Thermal adaptation: a theoretical and empirical synthesis. Oxford
540	University Press.
541	Ben-Ami, F., Regoes, R.R. & Ebert, D. (2008). A quantitative test of the relationship between
542 543	parasite dose and infection probability across different host–parasite combinations. <i>Proc. R. Soc. B</i> , 275, 853–859.
543 544	Ben-Haim, Y., Zicherman-Keren, M. & Rosenberg, E. (2003). Temperature-regulated bleaching
545 546	and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. <i>AEM</i> , 69, 4236–4242.
547	Ben-Horin, T., Lenihan, H.S. & Lafferty, K.D. (2013). Variable intertidal temperature explains
548	why disease endangers black abalone. <i>Ecology</i> , 94, 161–168.
549	Briere, JF., Pracros, P., Le Roux, AY. & Pierre, JS. (1999). A Novel Rate Model of
550	Temperature-Dependent Development for Arthropods. Environ Entomol, 28, 22–29.
551	Briggs, C.J., Knapp, R.A. & Vredenburg, V.T. (2010). Enzootic and epizootic dynamics of the
552	chytrid fungal pathogen of amphibians. Proceedings of the National Academy of
553	Sciences, 107, 9695–9700.
554	Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. & West, G.B. (2004). TOWARD A
555	METABOLIC THEORY OF ECOLOGY. <i>Ecology</i> , 85, 1771–1789.
556	Bruno, J.F., Selig, E.R., Casey, K.S., Page, C.A., Willis, B.L., Harvell, C.D., <i>et al.</i> (2007).
557	Thermal Stress and Coral Cover as Drivers of Coral Disease Outbreaks. <i>PLoS Biol</i> , 5,
558	e124. Casey T.M. (1076) Activity Batterna, Body Temperature and Thermal Faclory in Two Depart
559 560	Casey, T.M. (1976). Activity Patterns, Body Temperature and Thermal Ecology in Two Desert Caterpillars (Lepidoptera: Sphingidae). <i>Ecology</i> , 57, 485–497.
561	Claar, D.C. & Wood, C.L. (2020). Pulse Heat Stress and Parasitism in a Warming World. <i>Trends</i>
562	in Ecology & Evolution, 35, 704–715.
563	Cohen, J.M., Civitello, D.J., Venesky, M.D., McMahon, T.A. & Rohr, J.R. (2019a). An interaction
564	between climate change and infectious disease drove widespread amphibian declines.
565	Glob Change Biol, 25, 927–937.
566	Cohen, J.M., McMahon, T.A., Ramsay, C., Roznik, E.A., Sauer, E.L., Bessler, S., et al. (2019b).
567	Impacts of thermal mismatches on chytrid fungus Batrachochytrium dendrobatidis
568	prevalence are moderated by life stage, body size, elevation and latitude. Ecol Lett, 22,
569	817–825.
570	Cohen, J.M., Sauer, E.L., Santiago, O., Spencer, S. & Rohr, J.R. (2020). Divergent impacts of
571	warming weather on wildlife disease risk across climates. Science, 370, eabb1702.
572	Cohen, J.M., Venesky, M.D., Sauer, E.L., Civitello, D.J., McMahon, T.A., Roznik, E.A., et al.
573	(2017). The thermal mismatch hypothesis explains host susceptibility to an emerging
574	infectious disease. <i>Ecol Lett</i> , 20, 184–193.
575 576	Day, T. (2001). Parasite transmission modes and the evolution of virulence. <i>Evolution</i> , 55, 2389–2400.
576	Dell, A.I., Pawar, S. & Savage, V.M. (2011). Systematic variation in the temperature
578	dependence of physiological and ecological traits. <i>Proceedings of the National Academy</i>

579	of Sciences, 108, 10591–10596.
580	Ewald, P.W. (1983). Host-Parasite Relations, Vectors, and the Evolution of Disease Severity.
581	Annu. Rev. Ecol. Syst., 14, 465–485.
582	Fenton, A. (2008). Worms and germs: the population dynamic consequences of microparasite-
583	macroparasite co-infection. Parasitology, 135, 1545–1560.
584	Fenton, A. (2013). Dances with worms: the ecological and evolutionary impacts of deworming
585	on coinfecting pathogens. <i>Parasitology</i> , 140, 1119–1132.
586	Frank, S.A. (1996). Models of Parasite Virulence. The Quarterly Review of Biology, 71, 37–78.
587	Gehman, AL.M., Hall, R.J. & Byers, J.E. (2018). Host and parasite thermal ecology jointly
588	determine the effect of climate warming on epidemic dynamics. Proc Natl Acad Sci USA,
589	115, 744–749.
590	Handel, A. & Rohani, P. (2015). Crossing the scale from within-host infection dynamics to
591	between-host transmission fitness: a discussion of current assumptions and knowledge.
592	Phil. Trans. R. Soc. B, 370, 20140302.
593	Harvell, C.D., Montecino-Latorre, D., Caldwell, J.M., Burt, J.M., Bosley, K., Keller, A., et al.
594	(2019). Disease epidemic and a marine heat wave are associated with the continental-
595	scale collapse of a pivotal predator (Pycnopodia helianthoides). Sci. Adv., 5, eaau7042.
596	van der Have, T.M. (2002). A proximate model for thermal tolerance in ectotherms. <i>Oikos</i> , 98,
597	141–155.
598	Huey, R.B. & Kingsolver, J.G. (1989). Evolution of thermal sensitivity of ectotherm performance.
599	Trends in Ecology & Evolution, 4, 131–135.
600	Huey, R.B. & Stevenson, R.D. (1979). Integrating Thermal Physiology and Ecology of
601	Ectotherms: A Discussion of Approaches. American Zoologist, 19, 357–366.
602	Kirk, D., Jones, N., Peacock, S., Phillips, J., Molnár, P.K., Krkošek, M., et al. (2018). Empirical
603	evidence that metabolic theory describes the temperature dependency of within-host
604	parasite dynamics. <i>PLoS Biol</i> , 16, e2004608.
605	Kirk, D., Luijckx, P., Jones, N., Krichel, L., Pencer, C., Molnár, P., et al. (2020). Experimental
606	evidence of warming-induced disease emergence and its prediction by a trait-based
607	mechanistic model. Proc. R. Soc. B., 287, 20201526.
608	Kirk, D., Luijckx, P., Stanic, A. & Krkošek, M. (2019). Predicting the Thermal and Allometric
609	Dependencies of Disease Transmission via the Metabolic Theory of Ecology. The
610	American Naturalist, 193, 661–676.
611	Koelle, K., Pascual, M. & Yunus, M. (2005). Pathogen adaptation to seasonal forcing and
612	climate change. Proc. R. Soc. B, 272, 971–977.
613	Kordas, R.L., Harley, C.D.G. & O'Connor, M.I. (2011). Community ecology in a warming world:
614	The influence of temperature on interspecific interactions in marine systems. Journal of
615	Experimental Marine Biology and Ecology, 400, 218–226.
616	Lafferty, K.D. (2009). The ecology of climate change and infectious diseases. <i>Ecology</i> , 90, 888–
617	900.
618	Lafferty, K.D. & Mordecai, E.A. (2016). The rise and fall of infectious disease in a warmer world.
619	F1000Res, 5, 2040.
620	Marcogliese, D.J. (2008). The impact of climate change on the parasites and infectious
621	diseases of aquatic animals. Rev. scii. tech. Off. init. Epiz., 27, 467–484.
622	McCallum, H., Fenton, A., Hudson, P.J., Lee, B., Levick, B., Norman, R., et al. (2017). Breaking
623	beta: deconstructing the parasite transmission function. Phil. Trans. R. Soc. B, 372,
624	20160084.
625	Mideo, N., Nelson, W.A., Reece, S.E., Bell, A.S., Read, A.F. & Day, T. (2011). Bridging scales
626	in the evolution of infectious disease life histories: application. <i>Evolution</i> , 65, 3298–3310.
627	Mignatti, A., Boag, B. & Cattadori, I.M. (2016). Host immunity shapes the impact of climate
628	changes on the dynamics of parasite infections. Proc Natl Acad Sci USA, 113, 2970-
629	2975.

- Molnár, P.K., Sckrabulis, J.P., Altman, K.A. & Raffel, T.R. (2017). Thermal Performance Curves
 and the Metabolic Theory of Ecology—A Practical Guide to Models and Experiments for
 Parasitologists. *Journal of Parasitology*, 103, 423.
- 633 Mordecai, E.A., Caldwell, J.M., Grossman, M.K., Lippi, C.A., Johnson, L.R., Neira, M., *et al.* 634 (2019). Thermal biology of mosquito-borne disease. *Ecol Lett*, 22, 1690–1708.
- Mordecai, E.A., Cohen, J.M., Evans, M.V., Gudapati, P., Johnson, L.R., Lippi, C.A., *et al.*(2017). Detecting the impact of temperature on transmission of Zika, dengue, and
 chikungunya using mechanistic models. *PLoS Negl Trop Dis*, 11, e0005568.
- Mordecai, E.A., Paaijmans, K.P., Johnson, L.R., Balzer, C., Ben-Horin, T., de Moor, E., *et al.*(2013). Optimal temperature for malaria transmission is dramatically lower than
 previously predicted. *Ecol Lett.* 16, 22–30.
- Pedersen, A.B. & Antonovics, J. (2013). Anthelmintic treatment alters the parasite community in
 a wild mouse host. *Biol. Lett.*, 9, 20130205.
- R Core Team. (2020). R: A language and environment for statistical computing. R Foundation
 for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- Rohr, J.R., Civitello, D.J., Cohen, J.M., Roznik, E.A., Sinervo, B. & Dell, A.I. (2018). The
 complex drivers of thermal acclimation and breadth in ectotherms. *Ecol Lett*, 21, 1425–
 1439.
- Rohr, J.R., Dobson, A.P., Johnson, P.T.J., Kilpatrick, A.M., Paull, S.H., Raffel, T.R., *et al.*(2011). Frontiers in climate change–disease research. *Trends in Ecology & Evolution*,
 26, 270–277.
- 651 Shocket, M.S., Ryan, S.J. & Mordecai, E.A. (2018a). Temperature explains broad patterns of 652 Ross River virus transmission. *eLife*, 7, e37762.
- Shocket, M.S., Strauss, A.T., Hite, J.L., Šljivar, M., Civitello, D.J., Duffy, M.A., *et al.* (2018b).
 Temperature Drives Epidemics in a Zooplankton-Fungus Disease System: A TraitDriven Approach Points to Transmission via Host Foraging. *The American Naturalist*, 191, 435–451.
- Shocket, M.S., Verwillow, A.B., Numazu, M.G., Slamani, H., Cohen, J.M., El Moustaid, F., *et al.*(2020). Transmission of West Nile and five other temperate mosquito-borne viruses
 peaks at temperatures between 23°C and 26°C. *eLife*, 9, e58511.
- Tesla, B., Demakovsky, L.R., Mordecai, E.A., Ryan, S.J., Bonds, M.H., Ngonghala, C.N., *et al.*(2018). Temperature drives Zika virus transmission: evidence from empirical and
 mathematical models. *Proc. R. Soc. B*, 285, 20180795.
- Thomas, M.B. & Blanford, S. (2003). Thermal biology in insect-parasite interactions. *Trends in Ecology & Evolution*, 18, 344–350.
- Villena, O.C., Ryan, S.J., Murdock, C.C. & Johnson, L.R. (2020). Temperature impacts the
 transmission of malaria parasites by Anopheles gambiae and Anopheles stephensi
 mosquitoes. *bioRxiv*, https://doi.org/10.1101/2020.07.08.194472.