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 23 

Abstract 24 

 25 

Looking for objects within complex natural environments is a task everybody 26 

performs multiple times each day. In this study, we explore how the brain uses the 27 

typical composition of real-world environments to efficiently solve this task. We 28 

recorded fMRI activity while participants performed two different categorization tasks 29 

on natural scenes. In the object task, they indicated whether the scene contained a 30 

person or a car, while in the scene task, they indicated whether the scene depicted 31 

an urban or a rural environment. Critically, each scene was presented in an “intact” 32 

way, preserving its coherent structure, or in a “jumbled” way, with information 33 

swapped across quadrants. In both tasks, participants’ categorization was more 34 

accurate and faster for intact scenes. These behavioral benefits were accompanied 35 

by stronger responses to intact than to jumbled scenes across high-level visual 36 

cortex. To track the amount of object information in visual cortex, we correlated multi-37 

voxel response patterns during the two categorization tasks with response patterns 38 

evoked by people and cars in isolation. We found that object information in object- 39 

and body-selective cortex was enhanced when the object was embedded in an intact, 40 

rather than a jumbled scene. However, this enhancement was only found in the object 41 

task: When participants instead categorized the scenes, object information did not 42 

differ between intact and jumbled scenes. Together, these results indicate that 43 

coherent scene structure facilitates the extraction of object information in a task-44 

dependent way, suggesting that interactions between the object and scene 45 

processing pathways adaptively support behavioral goals. 46 

 47 

Keywords 48 

 49 

object perception, natural scene categorization, real-world structure, functional 50 

magnetic resonance imaging, multivariate pattern analysis  51 
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 52 

1 Introduction 53 

 54 

Despite the complexity of our everyday environments, perceiving objects embedded 55 

in natural scenes is remarkably efficient. This efficiency is illustrated by studies that 56 

require participants to categorize objects under conditions of limited visual exposure: 57 

For instance, participants can tell whether a scene contains an animal or not from just 58 

a single glance (Thorpe et al., 1996; Potter, 1975, 2012), and even when only limited 59 

attentional resources are available (Li et al., 2002). 60 

The ability to effortlessly make such categorization responses is underpinned 61 

by the efficient extraction of object information in visual cortex. Neuroimaging 62 

research has shown that the category of task-relevant objects can be reliably 63 

decoded from fMRI activity patterns in visual cortex, even when the objects are 64 

embedded in complex natural scenes (Peelen et al., 2009; Peelen & Kastner, 2011; 65 

Seidl et al., 2012) or movies (Cukur et al., 2013; Nastase et al., 2017; Shahdloo et al., 66 

2020). M/EEG studies demonstrate that object category is represented well within the 67 

first 200ms of vision, even when the object is shown under such naturalistic 68 

conditions (Cauchoix et al., 2014; Kaiser et al., 2016; VanRullen & Thorpe, 2001; 69 

Thorpe et al., 1996). Together, these results highlight that the cortical processing of 70 

objects appearing within rich real-world environments is surprisingly efficient. 71 

This processing efficiency becomes less surprising if scene context is not just 72 

considered as a nuisance that puts additional strain on our visual resources. Indeed, 73 

contextual information can facilitate object processing (Bar, 2004): For instance, 74 

scene context allows for efficient allocation of attention (Torralba et al., 2006; Wolfe 75 

et al., 2011; Võ et al., 2019), or for disambiguating object information under 76 

uncertainty (Brandmann & Peelen, 2017; Oliva & Torralba, 2007). Such findings 77 

demonstrate that object and scene processing mechanisms interact with each other 78 

to enable the efficient processing of object information. 79 

Here, we investigated how the coherent spatial structure of the scene context 80 

aids the extraction of object information from the scene. To this end, we used a 81 

jumbling paradigm, in which we disrupted the scenes’ coherent structure by dividing 82 

them into multiple rectangular pieces and shuffling those pieces. Classical studies 83 
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suggest that jumbling drastically impairs participants’ ability to categorize both the 84 

scene itself (Biederman et al., 1974), and the object embedded within the scene 85 

(Biederman et al., 1972, 1973). Such impairments can be linked to changes in cortical 86 

scene processing: We have recently shown that scene-selective brain responses are 87 

less pronounced and contain less scene category information when the scene is 88 

jumbled (Kaiser et al., 2020a, 2020b). However, it is unclear how these changes in 89 

scene-selective activations modulate the representation of objects within the scene. 90 

In the current study, we thus set out to characterize how the presence of an 91 

intact – versus a jumbled – scene context modulates object representations in visual 92 

cortex. First, we asked whether cortical object processing is indeed facilitated by the 93 

presence of a coherent scene context. Second, we asked whether such facilitation 94 

effects depend on the objects being relevant or irrelevant for current behavioral goals.  95 

To answer these questions, we recorded fMRI activity while participants 96 

categorized objects contained in intact or jumbled scenes. We found that fMRI 97 

responses across high-level visual cortex were generally higher for intact scenes than 98 

for jumbled scenes, revealing widespread sensitivity to scene structure. When 99 

analyzing object category information in multi-voxel response patterns, we found that 100 

coherent scene structure enhanced object information in object-selective visual 101 

cortex. However, this enhancement was task-specific: When participants categorized 102 

the scenes instead of the objects, we found no such enhancement of object 103 

information. These results suggest that the visual brain uses coherent real-world 104 

structure to more efficiently extract task-relevant object information from complex 105 

scenes.  106 
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2 Materials and Methods 107 

 108 

2.1 Participants  109 

Twenty-five healthy adults (mean age 26.4 years, SD=5.3; 15 female, 10 male) 110 

participated. All participants had normal or corrected-to-normal vision. They all 111 

provided informed written consent and received either monetary reimbursement or 112 

course credits. Procedures were approved by the ethical committee of the 113 

Department of Psychology at Freie Universität Berlin and were in accordance with the 114 

Declaration of Helsinki. 115 

 116 

2.2 Stimuli 117 

The stimulus set consisted of colored natural scene photographs (640×480 pixels 118 

resolution). Scenes were selected to cover three independent manipulations. First, 119 

each scene contained one of two object categories: half of the scenes contained a 120 

person (or multiple people), whereas the other half contained a car (or multiple cars). 121 

Second, the person or car appeared equally often in each of the quadrants of the 122 

scene. Third, each scene belonged to one of two scene categories: half of the scenes 123 

depicted urban environments, the other half depicted rural environments. For each 124 

possible combination of these factors (e.g., a person appearing in the bottom left 125 

quadrant of a rural scene), 10 unique scene exemplars were available, yielding 160 126 

scenes in total (2 object categories × 4 object locations × 2 scene categories × 10 127 

exemplars). During the experiment, the scenes could be presented in their original 128 

orientation or mirrored along their vertical axis (as in Kaiser et al., 2016), yielding a 129 

total of 320 different scene stimuli. Example scenes are shown in Figure 1a. 130 

To manipulate scene structure, we either presented the scenes in a coherent, 131 

“intact” condition or in an incoherent, “jumbled” condition. Jumbled scenes were 132 

generated by shuffling the four quadrants of the image in a crisscrossed way (Figure 133 

1b). This manipulation solely affected the scene’s structure, but not the people or 134 

cars contained in the scene: First, as the objects never straddled the boundary 135 

between quadrants, the objects themselves always remained unaltered. Second, as 136 

the objects appeared equally often in each quadrant before jumbling the scenes, they 137 

also appeared equally often in each quadrant after jumbling them.  138 
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In total, 640 scene images were used, which covered 320 intact scenes and 139 

320 jumbled scenes. Additionally, 200 colored texture masks (Kaiser et al., 2016) were 140 

used to visually mask the scenes during the experiment (see below). 141 

 142 

 143 

Figure 1. Stimuli, paradigm, and behavioral results. a) Stimuli consisted of natural 144 

scene images from two categories: urban or rural environments. Each of the scenes 145 

contained one of two object categories: people or cars. b) During the experiment, 146 

these scenes were shown in an unaltered way (“intact” condition) or with their 147 

quadrants intermixed (“jumbled” condition). The jumbled scenes were created by 148 

shuffling the quadrants in a crisscrossed way, as illustrated. c) Participants viewed 149 

each scene briefly, followed by a visual mask. In separate runs, they performed two 150 

different tasks: They were either asked to indicate whether the scene contained a 151 

person or a car (“object task”) or whether the scene depicted an urban or a rural 152 

environment (“scene task”). d) In both tasks, scene structure impacted behavioral 153 

performance: Participants were significantly more accurate and faster for the intact 154 

scenes than for the jumbled scenes. Error bars represent standard errors of the mean.  155 

 156 

2.3 Experimental Paradigm 157 

Each participant completed four experimental runs of 17 minutes each. Each run 158 

contained 320 experimental trials, corresponding to 320 unique scene stimuli. For 159 
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half of the participants, the even runs only contained the original scenes, while the 160 

odd runs only contained the horizontally mirrored scenes; for the other half of the 161 

participants, the odd runs only contained the original scenes, while the even runs only 162 

contained the horizontally mirrored scenes. Each of the scenes was presented once 163 

during the run, with order fully randomized. 164 

On each trial, the scene was presented for 83ms, immediately followed by a 165 

visual mask (chosen randomly from the 200 available masks) for 800ms. Images were 166 

shown within a black rectangle (10deg X 7.5deg visual angle). After an inter-trial 167 

interval of 1,617ms, during which a pink fixation dot was shown, the next trial started. 168 

An example trial is illustrated in Figure 1c. In addition to the experimental trials, each 169 

run contained 80 fixation-only trials, during which only the fixation dot was displayed. 170 

Runs started and ended with a brief fixation period. 171 

In two of the four runs, participants were asked to categorize the object 172 

contained in each scene as either a person or a car (“object task”). In the other two 173 

runs, participants were asked to categorize the scene as either a rural or an urban 174 

environment (“scene task”). Participants were instructed to respond as accurately 175 

and quickly as possible, with an emphasis on accuracy. Button-press responses were 176 

recorded during the whole inter-trial interval (i.e., until 2,500s after stimulus onset). 177 

The four runs were alternating between the object and scene tasks. The task in the 178 

first run was counter-balanced between participants. Notably, physical stimulation 179 

was completely identical across the object and scene tasks. 180 

All stimuli were back-projected onto a translucent screen mounted to the head 181 

end of the scanner bore. Participants viewed the stimulation through a mirror 182 

attached to the head coil. Stimulus presentation was controlled using the 183 

Psychtoolbox (Brainard, 1997). 184 

 185 

2.4 Benchmark Localizer Paradigm 186 

In addition to the experimental runs, each participant completed a benchmark 187 

localizer run, which was designed to obtain “benchmark” patterns in response to 188 

people and cars in isolation (Peelen et al., 2009; Peelen & Kastner, 2011). During this 189 

run, participants viewed images of bodies, cars, and scrambled images of bodies and 190 

cars. For each of the three categories, 40 images were used. All images were different 191 
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than the ones used in the main experiment. These images were presented in a block 192 

design. Each block lasted 20 seconds and contained 20 images of one of the three 193 

categories, or only a fixation cross. Images were presented for 500ms (5deg × 5deg 194 

visual angle), separated by a 500ms inter-stimulus interval. The benchmark localizer 195 

run consisted of a total of 24 blocks (6 blocks for each of the three stimulus 196 

categories, and 6 fixation-only blocks). Four consecutive blocks always contained the 197 

four different conditions in random order. Participants were instructed to respond to 198 

one-back image repetitions (i.e., two identical images back-to-back), which 199 

happened once during each non-fixation block. The benchmark localizer run lasted 200 

8:30 minutes and was completed halfway through the experiment, after two of the 201 

four experimental runs. 202 

 203 

2.5 fMRI recording and preprocessing 204 

MRI data was acquired using a 3T Siemens Tim Trio Scanner equipped with a 12-205 

channel head coil. T2*-weighted gradient-echo echo-planar images were collected 206 

as functional volumes (TR=2s, TE=30ms, 70° flip angle, 3mm3 voxel size, 37 slices, 207 

20% gap, 192mm FOV, 64×64 matrix size, interleaved acquisition). Additionally, a T1-208 

weighted anatomical image (MPRAGE; 1mm3 voxel size) was obtained. 209 

Preprocessing and hemodynamic response modelling was performed using 210 

SPM12 (www.fil.ion.ucl.ac.uk/spm/). Functional volumes were realigned and 211 

coregistered to the anatomical image. Further, the T1 image was segmented to obtain 212 

transformation parameters to standard MNI-305 space. 213 

Functional data from each experimental run were modelled in a general linear 214 

model (GLM) with 16 experimental predictors (2 object categories × 4 object locations 215 

× 2 scene categories). Additionally, we included the six movement regressors 216 

obtained during realignment. Data from the benchmark localizer run were modelled 217 

in a GLM with three experimental predictors (person, car, scrambled) and six 218 

movement regressors. 219 

 220 

2.6 Region of interest definition 221 

We restricted fMRI analyses to five regions of interest (ROIs): early visual cortex (V1), 222 

object-selective lateral occipital cortex (LO), body-selective extrastriate body area 223 
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(EBA), scene-selective occipital place area (OPA), and scene-selective 224 

parahippocampal place area (PPA). ROIs masks were defined using group-level 225 

activation masks from functional brain atlases (for V1: Wang et al., 2015; for LO, EBA, 226 

OPA, and PPA: Julian et al., 2012). ROIs were defined separately for each 227 

hemisphere. All ROI masks were inverse-normalized into individual-participant space 228 

using the parameters obtained during T1 segmentation. Voxel counts in individual-229 

participant space amounted to 248/271 (V1; left/right), 929/947 (LO), 402/443 (EBA), 230 

26/47 (OPA), and 140/105 (PPA). Notably, the LO and EBA ROIs overlapped to some 231 

extent (300/406 voxels overlap, left/right); the inclusion of the EBA allowed us to see 232 

whether the results hold in a smaller cortical region with a narrower category 233 

preference for bodies. As we did not have any hypothesis related to hemispheric 234 

differences, all results for the left- and right-hemispheric ROIs were averaged before 235 

statistical analysis. 236 

 237 

2.7 Univariate analysis 238 

Response magnitudes during the experimental runs were analyzed separately for 239 

each ROI. We first averaged beta values across the two object-task and scene-task 240 

runs, respectively. We then averaged beta values across object categories, object 241 

locations, and scene categories. This way, we obtained response magnitudes for four 242 

conditions: (1) responses to intact scenes in the object task, (2) responses to jumbled 243 

scenes in the object task, (3) responses to intact scenes in the scene task, and (4) 244 

responses to jumbled scenes in the scene task. These four conditions allowed us to 245 

separately estimate the effects of task (object task versus scene task) and scene 246 

structure (intact versus jumbled) on neural responses across the five ROIs. 247 

 248 

2.8 Multivariate pattern analysis 249 

Multivariate pattern analysis (MVPA) was carried out in CoSMoMVPA (Oosterhof et 250 

al., 2016). Our MVPA approach closely followed similar fMRI studies that investigated 251 

the representation of objects in natural scenes (Peelen et al., 2009; Peelen & Kastner, 252 

2011). We first computed a one-sample t-contrasts for every condition against 253 

baseline. In the benchmark localizer run, there were 2 such t-contrasts (one for people 254 

versus baseline, and one for cars versus baseline). In the object task and scene task 255 
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runs, there were 16 t-contrasts each (one contrast for each experimental condition 256 

against baseline, reflecting 2 object categories × 4 object locations × 2 scene 257 

categories). For each of the three tasks (benchmark localizer, object task, and scene 258 

task), the resulting t-values were normalized for each voxel by subtracting the average 259 

t-value across conditions. For each ROI, multi-voxel response patterns were 260 

constructed by concatenating the t-values across all voxels belonging to the ROI.  261 

To obtain an index of object discriminability (i.e., how discriminable people and 262 

cars in scenes are based on multi-voxel response patterns), we performed a cross-263 

correlation MVPA. The goal of this analysis was to quantify how “person-like” or “car-264 

like” the cortical representation of each of the scenes was, thereby isolating the 265 

amount of object category information in visual cortex. To this end, we correlated 266 

multi-voxel response patterns evoked by people and cars in isolation (from the 267 

benchmark localizer) with response patterns evoked by people and cars contained in 268 

a scene (from one of the experimental tasks). These correlations were Fisher-269 

transformed. To quantify object discriminability, we then subtracted the correlations 270 

between different categories (e.g., person in isolation and car within a scene) from 271 

correlations between the same categories (e.g., person in isolation and person within 272 

a scene). This yielded an index of category-discriminability, with values greater than 273 

zero indicating that the two categories are represented differently (Haxby et al., 2001). 274 

Before performing this analysis, response patterns in the main experiment 275 

were averaged across object locations and scene categories. This way, we obtained 276 

an index of object category-discriminability for four separate conditions: (1) category-277 

discriminability for intact scenes in the object task, (2) category-discriminability for 278 

jumbled scenes in the object task, (3) category-discriminability for intact scenes in 279 

the scene task, and (4) category-discriminability for jumbled scenes in the scene task. 280 

The resulting four conditions allowed us to estimate the effects of scene structure on 281 

the quality of object representations in visual cortex, both when the objects were 282 

task-relevant and task-irrelevant. 283 

 284 

2.9 Statistical testing 285 
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To compare behavioral performance, univariate responses, and multi-voxel pattern 286 

information across conditions, we used repeated-measures ANOVAs and paired-287 

sample t-tests. 288 

 289 

2.10 Data availability 290 

Data are publicly available on OSF (doi.org/10.17605/osf.io/gs2t5). Other materials 291 

are available from the corresponding author upon request. 292 

  293 
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 294 

3 Results 295 

 296 

3.1 Coherent scene structure facilitates the perception of objects within scenes 297 

We first analyzed participants’ behavioral performance in the object and scene tasks, 298 

separately for the intact and jumbled scenes (Figure 1d). In the object task, 299 

participants’ categorization (person versus car) of objects within the intact scenes 300 

was more accurate, t(24)=8.28, p<.001, and faster, t(24)=3.26, p=.0033, compared to 301 

the jumbled scenes. In the scene task, participants’ categorization (rural versus urban) 302 

of the intact scenes was more accurate, t(24)=4.77, p<.001, and faster, t(24)=3.26, 303 

p=.0033, compared to the jumbled scenes. These results are in line with classical 304 

findings on object and scene categorization in jumbling paradigms (Biederman, 1972; 305 

Biederman et al., 1973, 1974), showcasing that scene jumbling has a profound impact 306 

on perception.  307 

Further, when directly comparing the two tasks, we did not find differences in 308 

accuracy, F(1,24)=3.13, p=.090, or response times, F(1,24)=0.04, p=.84. Any 309 

differences in neural responses are therefore unlikely to reflect differences in task 310 

difficulty, and therefore attentional engagement, between the two tasks. 311 

Together, these results demonstrate that jumbling similarly impairs the 312 

perception of the scene and the objects contained in it, demonstrating a cross-313 

facilitation between scene and object vision that can be observed on the behavioral 314 

level.  315 

 316 

3.2 Scene structure impacts univariate responses across object- and scene-317 

selective cortex 318 

To quantify the effects of scene jumbling on the neural level, we first ran univariate 319 

analyses. In these analyses, we compared fMRI response magnitudes across the 320 

intact and jumbled scenes and across the two tasks (Figure 2). To do so, we 321 

performed a 2×2 repeated measures ANOVA with the factors scene structure (intact 322 

versus jumbled) and task (object task versus scene task). The analysis was performed 323 

separately and in turn for each of the five ROIs: V1, LO, EBA, OPA, and PPA. Detailed 324 

results for these analyses can be found in Table 1. 325 
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In V1, responses were comparable across all conditions, all F<1.25, p>.27, 326 

suggesting that V1 is not sensitive to typical scene composition. 327 

In all extrastriate ROIs, we found a main effect of scene structure, which 328 

indicated stronger responses to intact than to jumbled scenes, all F(1,24)>7.95, 329 

p<.010. Comparing this effect across regions, we found that it was more pronounced 330 

in the scene-selective regions, OFA versus LO/EBA, both F(1,24)>31.17, p<.001, and 331 

PPA versus LO/EBA, both F(1,24)>35.55, p<.001. This finding confirms our previous 332 

fMRI results, which revealed particularly strong effects of scene jumbling in scene-333 

selective areas of visual cortex (Kaiser et al., 2020a).  334 

 335 

Table 1: Univariate responses, analyzed in a 2×2 repeated measures ANOVA with the 336 

factors scene structure (intact versus jumbled) and task (object task versus scene 337 

task). Significant effects are highlighted in bold.  338 

 
ROI 

Main Effect 
Scene Structure 

Main Effect 
Task 

Interaction Effect 
Structure × Task 

V1 F(1,24)=1.25, p=.28 F(1,24)<0.01, p=.98 F(1,24)=0.09, p=.76 

LO F(1,24)=9.74, p=.005 F(1,24)=0.04, p=.85 F(1,24)=0.97, p=.33 

EBA F(1,24)=7.95, p=.009 F(1,24)=0.21, p=.65 F(1,24)=2.46, p=.13 

OPA F(1,24)=27.18, p<.001 F(1,24)=0.09, p=.77 F(1,24)=0.97, p=.34 

PPA F(1,24)=48.02, p<.001 F(1,24)=6.51, p=.017 F(1,24)=0.51, p=.48 

 339 

In all ROIs, scene structure affected univariate responses similarly across the 340 

two tasks, as indexed by no significant interaction effects, all F<2.46, p>0.12. This 341 

pattern of results mirrors the pattern observed in behavior, where scene jumbling 342 

produced comparable effects in the object and scene tasks. 343 

PPA was the only region that additionally showed an effect of task, 344 

F(1,24)=6.51, p=.017, with stronger responses in the scene task compared to the 345 

object task. This suggests an increased importance of computations in higher-level 346 

scene-selective cortex when scene attributes were behaviorally relevant.  347 

Having established that scene structure enhanced cortical responses across 348 

object- and scene-selective cortex, and similarly for both tasks, we next asked how 349 

scene structure contributes to the extraction of object information – both when the 350 

objects are behaviorally relevant and when they are not.  351 
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 352 

 353 

Figure 2. Univariate results. In all extrastriate regions, but not in V1, we found a 354 

significant main effect of scene structure: Intact scenes led to significantly stronger 355 

responses than jumbled scenes. This effect was comparable across the two tasks and 356 

most pronounced in scene-selective ROIs. PPA was the only region that additionally 357 

showed a modulation by task, with significantly stronger responses when participants 358 

were categorizing the scenes, compared to when they were categorizing the objects 359 

within them. For illustration purposes, ROI masks are shown on the right hemisphere 360 

of a standard-space template using MRIcroGL (Li et al., 2016); the displayed results 361 

are averaged across ROIs in both hemispheres. Error bars represent standard errors 362 

of the mean. 363 

 364 

3.2 Coherent scene structure enhances task-relevant object information in 365 

multi-voxel response patterns 366 

To understand how the coherent spatial structure of the scene impacts cortical object 367 

processing, we performed a cross-correlation multivariate pattern analysis (MVPA). 368 

In this analysis, we correlated the multi-voxel response patterns evoked by objects 369 

embedded in scenes (from the object and scene tasks) with the patterns evoked by 370 

the objects in isolation (from the benchmark localizer) (Figure 3a). This approach 371 

allowed us to quantify how “person-like” or “car-like” the cortical representation of 372 

each of the scenes was, thereby isolating the amount of object information present 373 

in visual cortex. When object information is operationalized in this way, it can be 374 

separated from differences in the scene context (as in the benchmark localizer no 375 
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scene context is presented) and task-related differences (as in the benchmark 376 

localizer participants perform a different task). 377 

To quantify object information, we computed a cross-correlation measure by 378 

subtracting correlations between different categories (e.g., person in isolation and car 379 

within a scene) from correlations between the same categories (e.g., person in 380 

isolation and person within a scene) (Figure 3a). This measure was computed 381 

separately for each the object and scene tasks, the intact and jumbled scenes, and 382 

all ROIs. 383 

To test whether multi-voxel response patterns contained any information at all 384 

about the object contained in the scenes, we first averaged the cross-correlation 385 

measure across all conditions. We then tested whether the average category 386 

information was significantly different from zero, separately for each ROI. As 387 

expected, people and cars could be reliably discriminated from response patterns in 388 

the object-selective LO, t(24)=7.56, p<.001, and body-selective EBA, t(24)=8.00, 389 

p<.001, but not from response patterns in V1, t(24)=0.80, p=.43, or scene-selective 390 

OPA, t(24)=0.49, p=.63, and PPA, t(24)=0.70, p=.49. 391 

Given that we only found robust object information in LO and EBA, we only 392 

performed further analyses for these two regions (Figure 3b). Data were again 393 

analyzed in a 2×2 ANOVA with factors scene structure (intact vs jumbled) and task 394 

(object task vs scene task), separately for LO and EBA. 395 

When analyzing the amount of object information contained in LO response 396 

patterns, we found a significant interaction between task and scene structure, 397 

F(1,24)=5.63, p=.026: When participants performed the object task, object 398 

information in LO was more pronounced for objects embedded in intact compared to 399 

jumbled scenes, t(24)=2.65, p=.014. This effect was absent when participants 400 

performed the scene task, t(24)=1.22, p=.24. A similar interaction effect was found in 401 

the EBA, F(1,24)=5.19, p=.032: Object information was again enhanced for intact 402 

scenes during the object task, t(24)=2.30, p=.030, but not during the scene task, 403 

t(24)=0.92, p=.37. These results demonstrate that coherent scene structure indeed 404 

enhances object representations in visual cortex. However, this enhancement 405 

depends on the behavioral relevance of the object: When scene category, rather than 406 

object category, was task-relevant, no such enhancement was observed. 407 
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 408 

 409 

Figure 3. Cross-correlation MVPA logic and results. a) To measure object 410 

discriminability, we extracted multi-voxel response patterns for each ROI, separately 411 

for objects in isolation (from the benchmark localizer) and objects appearing within 412 

the scenes (from the main experiment). We then computed within- and between-413 

category correlations. By subtracting the between-category from the within-category 414 

correlations, we obtained an index of category information (Δr). b) In both LO and 415 

EBA, category information was significantly higher for objects that were embedded in 416 

intact scenes than for objects embedded in jumbled scenes. However, this was only 417 

true when participants performed the object task; when they performed the scene 418 

task, no significant difference in object category information was observed when 419 

comparing intact and jumbled scenes. For illustration purposes, ROI masks are shown 420 

on the right hemisphere of a standard-space template using MRIcroGL (Li et al., 2016); 421 

the displayed results are averaged across ROIs in both hemispheres. Error bars 422 

represent standard errors of the mean. 423 

  424 
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 425 

4 Discussion 426 

 427 

4.1 Coherent scene structure facilitates task-relevant object processing 428 

In this study, we shed light on neural object processing in situations where the object 429 

is either embedded within a coherent, intact scene or an incoherent, jumbled scene. 430 

Consistent with classical studies (Biederman, 1972; Biederman et al., 1973, 1974), 431 

our participants were more accurate and faster in perceiving intact, compared to 432 

jumbled scenes, both when performing an object categorization task and a scene 433 

categorization task. Consistent with our own recent fMRI work (Kaiser et al., 2020a), 434 

intact scenes yielded stronger neural responses than jumbled scenes across high-435 

level visual cortex. Importantly, our current results show that scene structure also 436 

matters when it comes to the neural representation of objects within the scene: When 437 

analyzing the amount of object information contained in multi-voxel response 438 

patterns in object and body-selective visual cortex, we found an enhancement of 439 

object information when the objects were embedded within intact scenes, compared 440 

to jumbled scenes. Critically, this enhancement only emerged in the object 441 

categorization task, suggesting that coherent scene structure facilitates the 442 

extraction of object information only when the objects are relevant for current 443 

behavioral goals. 444 

 445 

4.2 Interactions between object and scene processing are mediated by scene 446 

structure 447 

Our findings support the view that the scene and object processing pathways are not 448 

functionally separate, but that scene information can aid the extraction of object 449 

information (Brandmann & Peelen, 2017). Theories of contextual facilitation propose 450 

that scene structure is analyzed rapidly, potentially based on coarse low-spatial 451 

frequency information (Bar, 2004; Bar et al., 2006). This idea is consistent with the 452 

observation that an initial representation of scene meaning – the scene’s “gist” – can 453 

be extracted from just a single glance (Greene & Oliva, 2009; Oliva & Torralba, 2006, 454 

2007). Contextual facilitation theories argue that detailed object analysis is facilitated 455 

by this more readily available information about scene gist (Bar, 2004; Hochstein & 456 
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Ahissar, 2002). Informing object analysis through the analysis of coarse scene 457 

properties may be particularly useful when perception is challenged by the presence 458 

of many distracter items and limited visual exposure. Probing perception with such a 459 

challenging task, our study shows that the cross-facilitation between object and 460 

scene processing is mediated by the scene’s structural coherence: When the analysis 461 

of scene gist is disrupted by jumbling the scene, contextual information cannot 462 

amplify object processing in the same way as it can for intact scenes.  463 

The enhanced extraction of object information from the intact scenes suggests 464 

that useful information about scene gist is extracted less efficiently from the jumbled 465 

scenes. Indeed, the rapid analysis of scene gist depends on our priors about typical 466 

scene composition (Csathó et al., 2015; Greene et al., 2015). Neuroimaging studies 467 

suggest that the cortical scene processing network is tuned to these priors (Kaiser et 468 

al., 2020a; Torralbo et al., 2013), and that the early extraction of properties like the 469 

scene’s basic-level category depends on the structural coherence of the scene 470 

(Kaiser et al., 2020b). Jumbling is a strong manipulation in the sense that is disrupts 471 

multiple aspects of the scene’s spatial coherence at the same time: it disrupts the 472 

spatial positioning of individual pieces of information in visual space (Kaiser et al., 473 

2018; Mannion, 2015), the positioning of objects relative to each other (Kaiser et al., 474 

2019; Kaiser & Peelen, 2018), as well as the typical geometry of the scene (Dillon et 475 

al., 2018; Spelke & Lee, 2012). Future research is needed to disentangle these 476 

different factors, and how much they each contribute to the facilitation of object 477 

representation.  478 

Although jumbling is a strong manipulation that conflates multiple factors of 479 

scene structure, it preserves critical characteristics of the objects: First, the objects 480 

remain completely unaltered across the intact and jumbled scenes. Second, the 481 

objects’ absolute positions in visual space were matched across the intact and 482 

jumbled scenes. Finally, each object’s local visual context remains constant across 483 

the intact and jumbled scenes. These properties allow us to attribute differences in 484 

object representations to facilitates effects from cortical scene analysis: If the visual 485 

brain would not take global scene context into account and would only analyze the 486 

objects in their local visual surroundings, our paradigm should yield comparable 487 

results for structurally coherent, intact scenes and incoherent, jumbled scenes.   488 
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 489 

4.2 Attention mediates contextual facilitation effects  490 

Unlike task-relevant objects, task-irrelevant objects were not processed differently as 491 

a function of scene coherence. This finding shows that contextual facilitation of object 492 

processing is not an automatic process. On the contrary, interactions between the 493 

object and scene processing systems seem to be mediated by attention. This 494 

observation fits well with previous results from studies on object detection in natural 495 

scenes. Compared to task-relevant objects, multi-voxel response patterns in visual 496 

cortex contain far less information about unattended objects (Peelen et al., 2009; 497 

Peelen & Kastner, 2011). Further, MEG decoding results suggest strong differences 498 

in the representation of attended and unattended object categories (Kaiser et al., 499 

2016): Particularly at early stages of processing, within the first 200ms after stimulus 500 

onset, the category of unattended objects is represented less accurately. Beyond the 501 

visual brain, differences in task demands also affect more widespread activations 502 

across the cortex (Cukur et al., 2013; Harel et al., 2014; Hebart et al., 2018; Nastase 503 

et al., 2017), potentially causing substantial task-related changes in processing 504 

dynamics. One such change may be an alteration of the crosstalk between 505 

representations in different visual domains. Our data indeed suggests that the 506 

exchange of information between the object and scene processing pathways is not 507 

mandatory, but rather constitutes an adaptive mechanism for improving task 508 

performance. Under this view, interactions between the scene and object processing 509 

pathways may be specifically “switched on” when objects are part of current 510 

attentional templates (Battistoni et al., 2017; Peelen & Kastner, 2011). The specific 511 

mechanism underlying this adaptive control of the crosstalk between scene and 512 

object processing needs further investigation.  513 

How does the apparent importance of attention tie in with previous studies that 514 

reported a cross-facilitation between the object and scene-processing systems 515 

(Brandmann & Peelen, 2017, 2019)? While these studies did not use object 516 

categorization tasks, they still explicitly asked participants to attend to the objects 517 

appearing within the scene (either by asking them to memorize them or through one-518 

back tasks). In our scene categorization task, the situation was entirely different, as 519 

the objects were completely irrelevant for solving the task. In fact, this orthogonality 520 
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of object and scene category in our design may have introduced an active 521 

suppression of object information when participants performed the scene 522 

categorization task. Previous studies suggest that task-irrelevant distracter objects 523 

can be suppressed effectively and quickly (Seidl et al., 2012; Hickey et al., 2019). 524 

During the scene task, we indeed found numerically better object representations for 525 

jumbled scenes. This tentative reversal of the facilitation effect could hint at a more 526 

efficient suppression of object information when the object is embedded in a 527 

structurally coherent scene. Although largely speculative at this point, this assertion 528 

could be tested in future experiments that include additional conditions in which the 529 

scene and the objects are similarly task-relevant. 530 

 531 

4.4 Conclusion 532 

In conclusion, our results show that the object and scene processing pathways can 533 

interact to facilitate the processing of task-relevant object information embedded in 534 

coherent scenes. However, such interactions are not mandatory. They rather seem 535 

to be guided by current behavioral goals. Our findings therefore suggest that the 536 

visual brain adaptively exploits coherent scene context to resolve object perception 537 

in challenging real-world situations.  538 
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