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ABSTRACT 1 

The simple task of walking up a sidewalk curb is actually a dynamic prediction task. The curb is a disturbance that 2 
causes a loss of momentum, to be anticipated and compensated for. A compensation strategy might regain momen-3 
tum and ensure undisturbed time of arrival. But there are infinite ways to accomplish this unless there is a selection 4 
criterion. Here we show that humans compensate with an anticipatory pattern of forward speed adjustments, with 5 
a criterion of minimizing mechanical energy input. This is predicted by optimal control for a simple model of walking 6 
dynamics, with each leg’s push-off work as input. Optimization predicts a tri-phasic trajectory of speed (and thus 7 
momentum) adjustments, including an anticipatory, feedforward phase. In experiment, human subjects successfully 8 
regain time relative to undisturbed walking, with the predicted tri-phasic trajectory. They also scale the pattern with 9 
up- or down-steps, and inversely with average speed, as also predicted by model. Humans can reason about the 10 
dynamics of walking to plan anticipatory and economical control, even with a sidewalk curb in the way. 11 
 12 
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INTRODUCTION 1 

There are indeterminate control choices to be made during walking, not least when steady gait is interrupted by a 2 
surface perturbation such as a sidewalk curb. One solution is to do nothing until gait has actually been disrupted, 3 
and to rely on feedback control to restore stasis, similar to stabilizing standing balance after a perturbation. But an 4 
alternative possibility is to plan and act ahead with anticipatory, feedforward adjustments. For example, a ball, once 5 
sighted, may be caught by predicting its dynamics and planning and executing an interception course. A sidewalk 6 
curb may similarly be intercepted, albeit with most of the dynamics within the person rather than the object, and 7 
with a less clearly defined objective. This raises the question of what criteria govern the interception, whether by 8 
feedback or feedforward. If an objective advantage could be identified, it might also be sufficient to predict a single, 9 
optimal response. Thus, the seemingly simple task of dealing with an uneven step may yield insight on whether 10 
humans perform predictive, dynamical planning while they walk. 11 
 12 
Both feedback and feedforward control could contribute to walking. Feedback control is important for balance dur-13 
ing walking, for example to adjust foot placement in response to perturbations (Bauby and Kuo, 2000; O’Connor and 14 
Kuo, 2009; Wang and Srinivasan, 2014). In both standing and walking, feedback could be regarded as a means to 15 
control the body’s dynamical state (Kuo, 1995; Park et al., 2004). In contrast, feedforward is clearly used to plan the 16 
body’s location, for example to negotiate around obstacles or through doorways (Arechavaleta et al.; Brown et al., 17 
2020). Motion must also be planned, with the help of vision, to step over upcoming obstacles (Patla, 1998), and to 18 
adjust foot placement (Matthis and Fajen, 2013). Thus, feedforward could be considered as planning of the body’s 19 
path, but not necessarily its dynamical state. But there may also be advantages to planning state, particularly speed 20 
or momentum. After all, it may help to speed up before jumping over a puddle. Indeed, runners do load the leg 21 
differently just before a drop (Müller et al., 2012), perhaps as a way to regulate momentum. The negotiation of 22 
uneven terrain might therefore benefit from feedforward planning of state. However, there currently lacks a mech-23 
anistic explanation or prediction for such planning. 24 
 25 
Any systematic control strategy, regardless if feedforward or feedback, should also be driven by objective criteria to 26 
select among infinite options. An example is metabolic energy economy, which determines the preferred step length 27 
and step width of steady walking, as governed by the pendulum-like dynamics of the legs. Perhaps similar dynamics 28 
and similar economy apply to walking over uneven terrain as well. We previously explored this question with a simple 29 
model of human walking (Kuo, 2002), for the task of negotiating a single uneven step (termed Up-step or Down-30 
step) during otherwise steady walking (Darici et al., 2020). An uncompensated Up-step would normally cause a loss 31 
of momentum, and thus a loss of time compared to walking the same distance uninterrupted. We used optimal 32 
control to determine the most economical strategy to regain lost time and momentum. The objective was to mini-33 
mize a crude indicator of energy expenditure, the mechanical work performed in the step-to-step transition from 34 
one pendulum-like stance leg to the next (Donelan et al., 2002; Kuo et al., 2005). This yielded a strategy for negoti-35 
ating an Up-step by modulating forward momentum over multiple steps, starting with a speed-up before the per-36 
turbation, and continuing the modulation for several steps after the perturbation. The model predicted a substantial 37 
economic advantage to the anticipatory speed-up, compared to post-hoc compensation alone. The optimal control 38 
was highly systematic, with an almost opposite strategy for negotiating a Down-step. This suggests that humans 39 
might also gain advantage from a feedforward, anticipatory strategy, which could allow a perturbation to be nego-40 
tiated with no loss of time and good economy. 41 
 42 
The criteria by which humans compensate for ground perturbations is unknown, as is whether they use feedforward 43 
or feedback. And even if energy expenditure were a concern, it might have minor import relative to other conceiva-44 
ble criteria. It is also quite possible that humans do not care about minor perturbations, and simply lose momentum 45 
to an Up-step. And even if momentum were regained through feedback control, they might still lose considerable 46 
time to the perturbation. We therefore sought to determine whether humans regulate their momentum, whether 47 
they can also regain lost time, and whether they use feedforward control in their compensatory strategy. The pre-48 
sent study was therefore to experimentally test whether humans optimally compensate for a perturbation to step 49 
height and determine how that compensation is performed. 50 
 51 
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 1 
 2 
Figure 1. Dynamics of walking over a single Up- (or Down-) step. (a) Humans walk with the body center of mass 3 
(COM) moving up and down atop the stance leg behaving like an inverted pendulum. Momentum fluctuates in each 4 
step (numbered 𝑖), and is particularly disrupted by an uneven step (at 𝑖 = 0). In experiment, human subjects walked 5 
in a walkway (30 m long) with level ground or a single Up- or Down-step (height 𝑏 = 7.5 cm) at mid-point. Subjects 6 
were asked to walk this distance in roughly similar time, regardless of the perturbation, and without receiving feed-7 
back about time. Outcomes were quantified by the trajectory of speed fluctuations 𝑣𝑖  at the discrete mid-stance 8 
instance (for 15 steps). (b) Dynamic walking model has a point mass 𝑀 at pelvis, supported by an inverted pendulum 9 
stance leg (massless, length 𝐿, gravitational acceleration 𝑔, fixed step length 𝑆, fixed inter-leg angle 2𝛼). (c) Level 10 
nominal walking has step-to-step transition where COM velocity (dark arrow) is redirected from forward-and-down-11 
ward to forward-and-upward by an active, impulsive trailing leg push-off (PO), immediately before an inelastic, im-12 
pulsive, leading leg collision (CO). Both PO and CO are directed along the corresponding leg. (d, e) The model walks 13 
Up or Down a step by modulating the sequence of push-offs surrounding and including the uneven step.  14 
 15 

METHODS 16 

Model of walking  17 

We summarize predictions from an optimal control model of walking (Fig. 1; Darici et al., 2020), with details in Ap-18 
pendix. The task is to walk down a walkway interrupted by a single Up- or Down-step (numbered step 𝑖 = 0; Fig. 1a), 19 
with adjustments to the forward speed 𝑣𝑖  of each step. The model has rigid, pendulum-like legs supporting a point-20 
mass pelvis of mass 𝑀 (Fig. 1b; Kuo, 2002). The dynamics of the single stance phase are those of a simple inverted 21 
pendulum, which conserves mechanical energy and therefore loses speed stepping on an Up-step. As a simplifica-22 
tion, the previous model’s (Kuo, 2002) swing phase dynamics are ignored, and the legs are constrained to fixed step 23 
lengths, similar to the “rimless wheel” model (McGeer, 1990). A level, nominal step (Fig. 1c) is punctuated by a step-24 
to-step transition, where the trailing leg pushes off (PO) impulsively just before the leading leg’s dissipative collision 25 
(CO) impulse. This redirects the center-of-mass (COM) velocity to a new pendular arc described by the leading leg. 26 
The push-off and collision impulses are performed along the axis of the corresponding legs, with push-off as the only 27 
powered actuation, and (perfectly inelastic) collision the only dissipation. Experiments show that it explains how 28 
mechanical work and human metabolic energy expenditure increase as a function of step length (Donelan et al., 29 
2002) or step width (in 3D model; Donelan et al., 2001) on level ground. Here we modeled uneven terrain as a small, 30 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.407023doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.407023
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 
 

vertical height discrepancy 𝑏 in step height, where additional push-off can help compensate for momentum lost to 1 
an Up-step (Fig. 1d), and collision for momentum gained to a Down-step (Fig. 1e).  2 
 3 
We formulated an optimal control problem for compensating for a single step height change (Darici et al., 2020). 4 
The objective was to minimize total push off work for multiple (𝑁 compensatory) steps while compensating for the 5 
terrain unevenness. The model was governed by the walking dynamics and constrained to start and end its compen-6 
sation at steady, nominal speed, with the 𝑁 steps distributed equally before and after the Up-step. It was also con-7 
strained to match the total time for nominal level, steady walking, thus making up for time lost to the Up-step. The 8 
decision variables were the push-off work 𝑢𝑖  for each step (where 𝑖 = 0 for the push-off onto the Up-step), causing 9 
changes in the forward speed 𝑣𝑖  of each step, discretely sampled at the mid-stance instance when the stance leg 10 
passed through vertical, prior to the step-to-step transition. The control policy refers to the push-off sequence 𝑢𝑖  11 
(including 𝑖 over a range of steps), or equivalently the sequence of speeds 𝑣𝑖.  12 

Model Predictions 13 

Our model predicted that there is considerable advantage of anticipation (Fig. 2). Considerable momentum and time 14 
are lost to an uncompensated Up-step (Fig. 2a). In contrast, the optimal policy is to speed up in advance of the Up-15 
step (thereby reducing the loss of momentum and time atop it), and then regain momentum afterwards (Fig. 2b; 16 
Darici et al., 2020). For stepping down Fig. 2c), the optimal policy is almost exactly the opposite: slow down in ad-17 
vance, gain speed and time atop the Down-step, and then slow down again toward nominal speed. These strategies 18 
are executed through modulation in push-of work (Fig. 2d), with a peak in work when stepping onto the Up-step 19 
(and a minimum for Down-step). As a result, time (Fig. 2e) is first gained prior to the Up-step (and lost prior to Down-20 
step), such that the cumulative time gain eventually reaches zero.  21 
 22 
 23 

 24 
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Figure 2. Model predictions for walking over an Up-step or Down-step. (a) Walking speed fluctuations vs. time, for 1 
level walking interrupted by a single Up-step (at time 0 and step 𝑖 = 0) with no compensation (constant push-off), 2 
resulting in loss of momentum and time. Speeds 𝑣𝑖  are sampled at mid-stance of each step (prior to step-to-step 3 
transition), and denoted by filled symbols. (b) Speed fluctuations for optimal Up-step compensation that minimizes 4 
push-off work. Model anticipates the perturbation with feedforward adjustment to speed up ahead of time, then 5 
loses momentum atop the perturbation, and then regains speed thereafter. (c) Speed fluctuations for optimal Down-6 
step compensation (blue symbols) is nearly opposite in sign to the Up-step compensation (red): Slow down in ad-7 
vance, gain momentum, then slow down again. (d) Optimal control inputs are sequence of push-off work, shown for 8 
Up- and Down-step. Up-step requires more work, and Down-step less work, to walk same distance in same time. (e) 9 
Cumulative time gained for Up- and Down-step compensations. (f.) Self-similarity of Up-step compensations for 10 
three different nominal speeds and two different step lengths. All trajectories (see inset) are also scaled and super-11 
imposed to illustrate self-similarity. For model predictions, conditions are similar to a human walking at 1.5 m/s with 12 
a 7.5 cm Up-step (nominal mid-stance velocity 𝑉 = 0.44𝑔−0.5𝐿0.5, 𝑆 = 0.79 𝐿, 𝑏 = 0.075𝐿); described in detail by 13 
Darici et al. (2020). 14 
  15 
An interesting feature of the optimal policy is self-similarity with respect to overall walking speed and step length 16 
(Fig. 2e). The pattern remains almost the same, only scaling in amplitude and time for different overall walking 17 
speeds or step lengths. The amplitude of speed fluctuations also scales inversely with speed, meaning slightly smaller 18 
fluctuations for faster speeds. This is because a step of fixed height (and thus gravitational potential energy) has a 19 
relatively smaller effect on the greater momentum (and thus kinetic energy) of faster walking. In addition, the timing 20 
scales such that the optimal strategy would be elongated in time with shorter step lengths, but in about the same 21 
number of steps. Thus, we expect similar fluctuation patterns regardless of an individual’s self-selected speed and 22 
step length, and slightly smaller fluctuations for faster overall speeds. 23 

Experiment 24 

We measured speed fluctuations as humans walked down a level walkway (about 30 m) with a single, raised step 25 
onto a second level of 7.5 cm (Fig. 1A). The subjects were healthy adult subjects (N = 12; 7 male, 5 female, all under 26 
30 yrs age), whose steps and walking speed were measured with inertial measurement units (IMUs) on both feet. 27 
There were three conditions: Up-step, Down-step, and Control on level ground. Both Up- and Down-step used the 28 
same walkway except in opposite directions, and Control took place on level floor directly alongside the walkway. 29 
The raised section, commencing about halfway down, was assembled from fairly rigid, polystyrene insulation foam. 30 
In all conditions, subjects walked at comfortable speed from a start line through and past a finish line. Trials took 31 
place in alternating direction, with a brief delay for the subject to turn around and stand briefly before starting the 32 
next trial. There were at least five (and up to eight) trials of each condition, usually with Up- and Down-step alter-33 
nating with each other, except with occasional Control conditions inserted at random and interrupting that pattern. 34 
Before data collection, subjects were given opportunity to try the conditions and gain familiarity with the walkway 35 
and the location of the Up-step. For brevity, all mentions of the Up-step apply equally to the Down-step, unless 36 
explicitly stated.  37 
 38 
The experiment was minimally governed, aside from instructing subjects which conditions to perform. To establish 39 
a subjective “normal” walking speed, and walking time, subjects first performed two to four Control trials at the 40 
beginning of the experiment. They were then encouraged to walk in roughly similar time throughout the experiment. 41 
But they were never received feedback of their timing, even though such data were recorded by stopwatch. This 42 
was in part to mimic the unconstrained nature of daily living, and because the model’s predictions do not depend 43 
on a particular speed. We thus expected a range of speeds across trials and across subjects. To help subjects to step 44 
onto the Up-step without stutter steps, there was a visual cue (a paper sticker) on the floor, approximately 5 m from 45 
the Up-step. Subjects were informed that they could use this cue to line up their steps for the Up-step, although 46 
they were not required to use it, and no trials were excluded even if there was a stutter step. Anecdotally, most 47 
subjects appeared to pay little attention to the sticker, especially after the first few trials.  48 
 49 
We measured walking speed trajectories with Inertial Measurement Units (IMUs) on each foot (Rebula et al., 2013). 50 
Each foot’s trajectory was determined by integrating inertial data, subject to an assumption that each foot comes 51 
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briefly to rest at each footfall, approximately in the middle of stance. We estimated stride length and time from the 1 
forward distance and time between an IMU’s footfalls, respectively. Each foot’s speed was sampled discretely at 2 
each footfall instant as stride length divided by stride time. Individual distances traveled by the two feet were cor-3 
rected for integration drift so that they both agreed on overall distance, using linear de-trending. Walking speed was 4 
estimated from the interlaced data from the two feet, in a discrete sequence termed IMU speed, with each sample 5 
assigned to the preceding mid-stance instance. To focus on speed fluctuations, data were analyzed for a central, 8.5 6 
m segment of the walkway, or about 15 steps surrounding the Up-step. To compare between trials, the time 𝑡 = 0 7 
was defined as the instant of the footfall onto the Up-step (or Down-step, or step next to it for Control). This yielded 8 
a trajectory of walking speed for each trial. Each subject’s trials within a condition were averaged at discrete step 9 
numbers, as were the times for those steps, to yield an individual’s average trajectory per condition. These trajecto-10 
ries were compared against the average trajectory for all individuals with a Pearson correlation coefficient 𝜌, as a 11 
measure of self-similarity. As a test of the model, they were also correlated against the model’s predicted trajecto-12 
ries. Finally, a linear regression was performed to test for fluctuation amplitudes scaling negatively with walking 13 
speed, as predicted by the model.  14 

Results 15 

We first examine overall walking speeds, as a basis for comparing speed fluctuations. For the central segment of the 16 
walkway, the overall average self-selected speed was 1.38 m/s on level ground (±0.10 m/s s.d. across subjects). Each 17 
individual typically had a small amount of variation in self-selected speed between trials, with about 5% c.v., coeffi-18 
cient of variation across control trials. Subjects were thus fairly consistent in their own walking speed, despite re-19 
ceiving no feedback regarding walking durations or speeds. 20 
 21 
We next examine fluctuations in speed within each trial of level Control walking (Fig. 3, top row). The speed fluctu-22 
ations were small in magnitude and noise-like, with variability 0.031 ± 0.007 m/s (root-mean-square variation within 23 
trial, reported as mean ± s.d. across subjects), or about 2.2% c.v. These fluctuations exhibited a small amount of 24 
systematic behavior, as demonstrated by correlating each individual’s average Control trial against the average Con-25 
trol across all subjects. The correlation 𝜌 was 0.47 ± 0.31 (𝑃 = 2.5e-04), suggesting a degree of non-random system-26 
aticity between subjects, albeit of small amplitude within the 2.2% fluctuations.   27 

1. Humans compensated for Up- and Down-steps to conserve walking duration 28 

Subjects walked at similar overall speeds whether or not there was an uneven step (see Table 1). There were no 29 
significant differences in overall speed, step length, or segment duration due to condition (all 𝑃 > 0.05, repeated 30 
measures ANOVA). Speeds were also fairly consistent across trials within Up- or Down-step conditions (2 – 3% c.v.). 31 
This compensation contrasts with what would be expected for a no-compensation strategy. The model, if performing 32 
constant push-offs instead of compensating, would lose about 1 s on the Up-step compared to the Down-step (Fig. 33 
2a), compared to level walking. Alternatively, a particle sliding on frictionless ground at human-like speed, would be 34 
expected to lose about 0.7 m/s and 8 s to an upward ramp of equivalent height. Thus, both a walking model and a 35 
sliding particle lose substantial speed and time due to a change in height, if not for some form of active compensa-36 
tion. In contrast, human subjects maintained almost the same walking speed and duration, as expected of successful 37 
compensation for an Up- or Down-step.  38 
 39 

2. Up- and Down-step compensatory speed fluctuations were systematic and self-similar 40 

There was also a clear pattern in compensations for an uneven step, with consistent fluctuations in walking speed 41 
(Fig. 3). The fluctuations within these trials were greater than those of Control, about 3.0% and 3.4% c.v. for Up- and 42 
Down-steps (Fig. 3 middle and bottom), respectively. The compensation strategies, in terms of walking speed trajec-43 
tory over time, appeared qualitatively similar between multiple trials for an individual (Fig. 3 left column), and be-44 
tween different individuals (Fig. 3 middle column), to yield a single representative trajectory for all Up-step compen-45 
sations (Fig. 3 right column).  46 
 47 
The basic response could be summarized in terms of a triphasic pattern centered about the Up-step: (1) Speed up in 48 
the two steps prior, (2) then lose speed during the two steps onto the Up-step and immediately thereafter, and (3) 49 
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then regain speed over the following one or two steps. The peak speed just prior to the Up-step (𝑖 =  −1) was about 1 
5.7% greater than average speed, and the minimum after the Up-step (𝑖 = 1) was about 3.4% slower. Similar obser-2 
vations were the case for Down-step compensations (Fig. 3 bottom row), except that fluctuations were in nearly the 3 
opposite direction, with a basic pattern of slow down, speed up, slow down. The timing was slightly different, with 4 
the initial slow-down being clearest for only one step immediately before the Down-step (𝑖 = −1), then speed-up 5 
occurring for about three steps, and the return to normal walking in only about one step.  6 
 7 
The systematic behavior was quantified as follows. The Up-step and Down-step conditions were either not corre-8 
lated or very weakly correlated with Control (𝜌 = -0.016 ± 0.21 and 0.184 ± 0.193, respectively, correlating each 9 
subject against Control average across subjects, 𝑃 = 0.78, 𝑃 = 0.007). But the patterns were similar between each 10 
individual’s Up-steps, with a positive correlation coefficient between Up-step trials (𝜌 = 0.82 ± 0.1252; correlating 11 
each subject against Up-step average across subjects, 𝑃 = 1.26e-10 paired t-test of correlations). The same was true 12 
for Down-step patterns, with positive correlation (𝜌 = 0.68± 0.27, 𝑃 = 3.0e-06). Moreover, the two fluctuations for 13 
the two conditions were somewhat opposite to each other, with a negative correlation between individual Up-steps 14 
and average Down-step pattern and vice versa (respectively 𝜌 =-0.34 ± 0.16, 𝑃 = 1.6e-05; 𝜌 =-0.27 ± 0.22, 𝑃 = 15 
0.0016).  16 
 17 
 18 
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 1 
Figure 3. Human walking speed trajectories vs. time, for (A.) Control and (B.) Up- and (C.) Down-step conditions. 2 
Plots are arranged in columns: (left:) All individual trials of three representative test subjects (thin lines connecting 3 
small dots), along with per-subject average trajectories (across trials, thick lines) and standard deviations (shaded 4 
regions ±1 s.d.; dashed line indicates average speed). (Middle:) Speed fluctuations of each test subject (N = 12, indi-5 
vidual colors) walking over the step, averaging all trials within each subject. (Right:) Average speed trajectories across 6 
all test subjects (solid line), with standard deviation across all subjects (light shaded region), and standard deviation 7 
ignoring subject-dependent speed (darker shaded region). Speed is defined as step length divided by step time, 8 
assigned to the middle-stance instant of each step (indicated by dot symbols). All trials are aligned to zero time, 9 
defined as middle-stance instant after landing on the Up- or Down-step (both 7.5 cm high).   10 
 11 
 12 
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3. Step lengths and times also fluctuated 1 

Step lengths and times also appeared to have fluctuation patterns (Fig. 4), reported descriptively here. For Up-steps 2 
(Fig. 4 left/top row), step lengths were about +3.1%, +18.5%, and -7% for the three steps surrounding the perturba-3 
tion (𝑖 = −1, 0, +1), respectively, compared to overall walking speed. For Down-steps, the corresponding step length 4 
differences were .24%   2.29%   -2.58% (Fig. 4 bottom row). As for step times (Fig. 4 bottom), the Up-step difference-5 
swere-5.8%, +15%, -2.7%, and Down-steps differences were +2.5%, +2.5%, and -3.5%, compared to average step 6 
period. No statistical tests were performed, as the model made no specific predictions about these fluctuations. 7 
 8 

 9 
Figure 4. Human (left column:) step time and (right column:) step length fluctuations versus time, for (a.) Up-step 10 
and (b.) Down-step. Shown are step times and step lengths for each step (line denotes mean across subjects, shaded 11 
area denotes ±1 s.d.; 𝑁 = 12) vs. time, with vertical line denoting the step onto the perturbation.  12 
 13 
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4. Optimization model predicts humans walking speed compensations 1 

The human compensation strat-2 
egies agreed reasonably well 3 
against model predictions (Fig. 4 
5a, b for model; c, d for human). 5 
Both exhibited a general re-6 
sponse of speeding up before 7 
the Up-step, then slowing down 8 
on and after, and finally regain-9 
ing speed toward nominal speed. 10 
Down-step responses also 11 
agreed, with approximately op-12 
posite pattern to Up-step. This 13 
agreement was quantified by a 14 
positive correlation coefficient 15 
between human and model fluc-16 
tuations for both Up-steps and 17 
Down-steps (𝜌 = 0.50 ± 0.21 18 
and 0.59 ± 0.17, respectively, 19 
both 𝑃 < 0.05). And in keeping 20 
with the model’s prediction of 21 
opposing fluctuations for Up- vs. 22 
Down-steps, there was also a 23 
negative correlation between 24 
human Up-steps and model 25 
Down-steps, and vice-versa (𝜌 =26 
−0.42 ± 0.21 and -0.54 ± 0.15, 27 
respectively; both 𝑃 < 0.05). We 28 
also verified that human control 29 
responses were not correlated 30 
with model predictions for either 31 
Up- or Down-steps, with correla-32 
tion coefficients not significantly 33 
different from zero (both 𝑃 > 34 
0.05).  35 
 36 
Human responses also exhibited 37 
negative scaling with respect to 38 
walking speed, as predicted by 39 
model. A linear regression of 40 
normalized speed fluctuation 41 
amplitudes vs. overall speed re-42 
vealed a negative coefficient (-1.64 ± 0.58 s/m2, mean ± c.i., 𝑃 = 2.6e-12), meaning that a 1 m/s increment in overall 43 
speed was accompanied by an approximately 12.3% reduction in fluctuation magnitude for a 7.5 cm step. 44 
 45 

Discussion 46 

We examined how humans anticipate and compensate for a step change in the height of an otherwise flat walking 47 
surface. The compensatory response was characterized by a systematic, tri-phasic pattern in walking speed fluctua-48 
tions, from which we draw three notable observations. First, the response exhibited self-similarity, in that the same 49 
basic pattern could describe behavior at a variety of average walking speeds and step lengths. Second, the response 50 
also exhibited an anticipatory component, meaning that it partially occurred prior to physically encountering the 51 

 
Figure 5. Comparison of model and human walking speed fluctuations vs. 
time, compensating for (left column:) Up- and (right column:) Down-steps. 
(Top row:) Model speed fluctuations predicted to minimize push-off me-
chanical work (Bottom row:) Experimentally measured compensation strat-
egies for humans (N = 12), showing average speed pattern across subjects 
(shaded regions denote ±1 s.d. after eliminating variations in average 
speed). Each data point corresponds to speed measred by inertial measure-
ment unit (IMU speed), defined as step distance divided by step time, and 
assigned to the instance when the stance leg is upright. The first step onto 
the Up- or Down-step is indicated by vertical dashed line, also at middle 
stance instant. The average walking speed is denoted by horizontal solid 
line. Model trajectories are converted from mid-stance speed for simula-
tion into the equivalent experimental IMU speed, plotted in dimensionless 

speed and time, equivalent to units of √𝑔𝐿 = 3.13 m/s and √𝐿/𝑔 =

0.32 s, respectively (using gravitational acceleration 𝑔 and human leg 
length 𝐿 = 1 m). 
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step. Finally, the response was consistent with predictions from a simple walking model, optimizing for least me-1 
chanical work. We next discuss these findings with regard to implications for feedforward human control. 2 
 3 
Human speed fluctuations were quite systematic. They exhibited a similar basic pattern across different trials of an 4 
individual, across different individuals, and at a variety of average walking speeds and step lengths (Figs. 3 & 4). Part 5 
of the systematicity could be attributed to dynamics, with a pendulum-like exchange of speed for height atop the 6 
Up-step (𝑖 = 0, Fig. 3), along with a loss of time (Fig. 4). But some of the systematicity is attributable to active control, 7 
because speed was then quickly regained toward nominal, considerably faster than expected if there were no active 8 
compensation (Fig. 2a; see also Darici et al., 2020). And more telling was the speed-up prior to the perturbation, 9 
which cannot be attributed to a feedback response to perturbation, but rather indicates intentional, anticipatory 10 
control. In addition, the speed fluctuations were lower in amplitude for higher speeds, as predicted for step-to-step 11 
transition dynamics. The compensatory strategies therefore reflect pendulum-like dynamics, and systematic, central 12 
nervous system control with feedback and feedforward (anticipatory) components. 13 
 14 
The result of this active control was successful compensation for time lost to the perturbation. Overall walking du-15 
ration was conserved across experimental conditions, demonstrating an ability to correct for uneven terrain. This 16 
cannot be explained by post hoc, feedback regulation of instantaneous speed, which would restore nominal speed 17 
but with a loss (gain) of time from the Up-step (Down-step). Nor can it be explained by learned adaptation during 18 
the experiment, because subjects never received feedback about their walking duration, and were only loosely ad-19 
vised to keep that time consistent. The control, particularly the anticipatory component, instead appears to be based 20 
on prior knowledge or experience. In daily living, humans regularly make decisions regarding walking route and 21 
speed, and seem able to estimate what path may take less time or effort. They may accumulate considerable expe-22 
rience, perhaps equivalent to an internal model of walking dynamics, sufficient to plan anticipatory compensations. 23 
Learning and anticipatory planning have mainly been addressed by the separate field of neuromotor control, which 24 
has theorized that upper extremity reaching movements are planned with CNS internal models of dynamics, and 25 
driven by an objective of movement accuracy (Franklin et al., 2008; Sharp et al., 2011). The present study borrows 26 
from that approach in its use of dynamical modeling and optimal control computations. 27 
 28 
This compensatory strategy is consistent with a simple, optimal control model of walking. There are infinite ways to 29 
walk over an up-step perturbation without suffering a loss of time. But minimization of work for step-to-step transi-30 
tions predicts the particular triphasic pattern observed here. A small (7.5 cm high) step might seem too trivial to 31 
compensate for, but our model suggests that considerable time could be lost (Darici et al., 2018), and substantial 32 
energy lost without anticipation (Darici et al., 2020). Humans seem well able to gauge a relatively small surface 33 
irregularity, plan a dynamical course of action, and then execute that plan for several steps before and after the 34 
perturbation. They appear capable of reasoning about the dynamics of walking.  35 
 36 
This raises the question how the control is implemented by the central nervous system. The human’s ability to reason 37 
about surface perturbations could be regarded as equivalent to performing optimal control with an internal model 38 
of walking dynamics. But its neural representation need not resemble optimal control. For example, reinforcement 39 
learning suggests that an objective function such as ours could be optimized iteratively, and expressed as a function 40 
of body state and terrain, starting from a visual terrain image as input (Heess et al., 2017). The resulting control 41 
policy is a mapping from vision and state to action, which might be considered an inverse internal model of dynamics 42 
(Kawato, 1999). Our results raise the possibility that such a mapping could be simple and scalable. A single Up-step 43 
response could be learned, and then merely scaled in amplitude for other walking speeds or step heights, due to the 44 
systematic nature of the dynamics. Thus, the control policy might be stored in quite compact form, a possibility 45 
raised but yet to be tested. Also needed for learning is a means to evaluate the objective cost function. Our cost of 46 
mechanical work could be evaluated by body somatosensors, but information might also be gained from physiolog-47 
ical sensors of metabolic cost. In fact, the work of step-to-step transitions exacts an approximately proportional 48 
metabolic cost in steady state walking (Adamczyk et al., 2006; Donelan et al., 2001; Donelan et al., 2002; Kuo et al., 49 
2005). It remains to be tested whether the same holds true for the transient conditions examined here, but meta-50 
bolic energy is compelling for its physiological relevance and importance for animal life  (Alexander, 1996). Thus, the 51 
optimal compensation could be learned from feedback of physiologically relevant information. 52 
 53 
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This study highlights a less-appreciated aspect of vision-based path planning. It is clear that humans use vision to 1 
plan paths for the body (Arechavaleta et al.; Brown et al., 2020), including adjustment of COM height (Müller et al., 2 
2012) and foot placement (Matthis and Fajen, 2013; Patla, 1998). But we found that humans plan not just positions, 3 
but also momentum. They make quick, dynamically sensible decisions to overcome quite minor obstacles, appar-4 
ently for energetic benefit. Such planning might also explain the leg loading preceding a Down-step in human running 5 
(Müller et al., 2012). It is also consistent with how birds run over an obstacle, with an anticipatory vault in the step 6 
beforehand (𝑖 = −1), perhaps for economy (Birn-Jeffery et al., 2014). Path planning may therefore be for more than 7 
just body location, but also dynamical state, and for the purpose of energy economy.   8 
 9 
The present model has a number of limitations. One is that Down-step responses were predicted less well than Up-10 
steps (Fig. 5). We suspect that the inverted pendulum analogy is less predictive for stepping down, when humans 11 
may allow the trailing knee to flex, perhaps to reduce the rate of fall. Our model might be improved by inclusion of 12 
a knee (e.g., Dean and Kuo, 2009) and feet (Zelik et al., 2014), which would better reflect the fore-aft asymmetries 13 
of the human, active lifting of the foot when needed (Wu and Kuo, 2016), and perhaps predict the asymmetries 14 
observed in Up- vs. Down-steps. We also modeled only fixed step lengths, but inclusion of variable step lengths or 15 
foot placements (Bhounsule, 2014; Kuo, 2001; Ojeda et al., 2015) might help to predict the variations in step length 16 
observed experimentally (Fig. 4). It is also possible that humans couple their sagittal and frontal plane motions for a 17 
change in step height, which might be accommodated in a three-dimensional model (Kim and Collins, 2017; Kuo, 18 
1999). Additional degrees of freedom might help to predict the multi-joint actions of humans, given hypotheses 19 
regarding the attendant costs. As a simplification, we also examined only single terrain disturbances. But we consider 20 
it relatively straightforward to predict and test compensation strategies for more complex terrain disturbances over 21 
multiple steps. Fortunately, the dynamical modeling approach is amenable to inclusion of more degrees of freedom, 22 
and to more rigorous experimental testing.  23 
 24 
Another limitation was that the human speed fluctuations were simply noisy. There was significant variability be-25 
tween trials of a single individual and between different individuals. This was due in part to the relatively small step 26 
height perturbations, which resulted in relatively small speed fluctuations compared to the noisy intrinsic variability 27 
of humans. We intentionally selected small perturbations to remain within the realm of pendulum-like walking. We 28 
would expect relatively less noise with larger step height changes, which would likely necessitate more human-like 29 
features in the model, such as the knees mentioned above. 30 
 31 
Despite these limitations, we showed here that humans perform anticipatory speed adjustments on uneven terrain. 32 
A simple model minimizing the mechanical work of step-to-step transitions can predict these adjustments. The ad-33 
justments start several steps before, extend after the perturbation, in a tri-phasic pattern of speed fluctuations. Such 34 
a pattern is consistent with metabolic energy expenditure as a criterion for optimal control and shows that humans 35 
perform feedforward control before a perturbation is directly encountered. The central nervous system appears to 36 
anticipate the effects of disturbances on the dynamics of the body and exploit these dynamics for active and eco-37 
nomical control. 38 
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Appendix 1 

Dynamic walking model 2 

The model dynamics are briefly summarized as follows (detailed previously by Darici et al., 2018). Each of 𝑁 steps 3 
has index 𝑖 with the Up- or Down-step disturbance located at 𝑖 = 0 (Fig. 1c). Negative 𝑖 therefore refer to the pre-4 
paratory steps beforehand, and positive to recovery steps thereafter. Each step has a pendulum-like single stance 5 
phase with passive dynamics, and a costly step-to-step transition. Mechanical work is only performed during that 6 
transition, starting with COM velocity 𝑣𝑖

− directed forward and downward at the end of each stance phase. For 7 
brevity, the equations presented here use dimensionless versions of quantities, with 𝑀, 𝑔, and 𝐿 as base units. The 8 
step-to-step transition starts with pre-emptive push-off work 𝑢𝑖  (in units of mass-normalized work) performed im-9 
pulsively along the trailing leg to redirect the COM velocity. This is followed immediately by the heel-strike collision 10 
along the leading leg, to yield post-collision velocity 𝑣𝑖

+. Again applying impulse-momentum (Kuo, 2002), 11 
 12 

 𝑣𝑖
+ = 𝑣𝑖

− cos 2𝛼 + √2𝑢𝑖 sin 2𝛼 .  (1) 13 

 14 
Another single stance phase follows the step-to-step transition, and is modeled as an underactuated, simple inverted 15 
pendulum. As a discrete indicator of overall forward momentum, we use the mid-stance velocity 𝑣𝑖  (no superscript; 16 
see Fig. 1) following step-to-step transition 𝑣𝑖

−, sampled when the leg is vertical and the COM velocity is purely 17 
forward.  18 
 19 
We treat steady, level walking as the nominal condition (Fig. 1c). The nominal push-off work 𝑢𝑖  offsets the collision 20 
work (Kuo, 2002), so that 21 
 22 

  𝑢𝑖 =
1

2
(𝑣𝑖

−)2 tan2 𝛼   (2) 23 

 24 
and 𝑣𝑖

+ = 𝑣𝑖
−. The uneven step disturbs steady walking (Fig. 1d). Its height 𝑏 (positive for up-steps, negative for 25 

down-steps) causes the preceding stance phase to end with a different stance leg angle from nominal. For a given 26 
height 𝑏 and step length 𝑆, we define the angular disturbance as 𝛿𝑖,  27 
 28 

 𝛿0 = sin−1 𝑏

𝑆
, 𝛿𝑖 = 0 for 𝑖 ≠ 0 ,  (4) 29 

 30 
where the angle is zero for all non-disturbance steps. 31 
 32 
An inverted pendulum stance phase follows each step-to-step transition. A step time 𝜏𝑖  defined as the time for the 33 
stance leg angle 𝜃 to move between successive step-to-step transitions, from 𝑣𝑖

+ to 𝑣𝑖+1
+  and passing through mid-34 

stance speed 𝑣𝑖.  35 
 36 
Using the linearized dynamics, the dimensionless step time 𝜏𝑖  of step 𝑖 is  37 
 38 

 𝜏𝑖 = log
𝛼−𝛿𝑖+1+√(𝑣𝑖

+)
2

−2𝛼(𝛿𝑖+𝛿𝑖+1)+𝛿𝑖+1
2 −𝛿𝑖

2

𝑣𝑖
+−𝛼−𝛿𝑖

 . (6) 39 

 40 
 41 
Solving the equation of motion with the step time, the velocity at end of stance 𝑣𝑖+1

− , or equivalently the beginning 42 
of the next step-to-step transition can be found as: 43 
 44 

 𝑣𝑖+1
− =

1

2
(𝑒−𝜏𝑖(𝑣𝑖

+ + 𝛼 + 𝛿𝑖) + 𝑒𝜏𝑖(𝑣𝑖
+ − 𝛼 − 𝛿𝑖)) . (7) 45 

 46 
 47 
Mid-stance time 𝜏𝑖

′ for step 𝑖 can also be found using the linearized dynamics: 48 
 49 
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 1 

 𝜏𝑖
′ = log (

√ (𝑣𝑖
+)

2
−𝛼2−2𝛼𝛿𝑖−𝛿𝑖

2

𝑣𝑖
+−𝛼−𝛿𝑖

) (8) 2 

 3 
Solving for mid-stance speed 𝑣𝑖, 4 
 5 

 𝑣𝑖 =
1

2
(𝑒−𝜏𝑖

′
(𝑣𝑖

+ + 𝛼 + 𝛿𝑖) + 𝑒𝜏𝑖
′
(𝑣𝑖

+ − 𝛼 − 𝛿𝑖)) . (9) 6 

 7 
 8 
We chose nominal parameters to correspond to typical human walking. A person with leg length 𝐿 of 1 m may 9 
typically walk at 1.5 m/s, with step length of 0.79 m and step time of 0.53 s (from anecdotal observations). Using 10 
dynamic similarity, parameters and results may be expressed in terms of body mass 𝑀, gravitational acceleration 𝑔, 11 
and 𝐿 as base units. The corresponding model parameters treated as dimensional are angle 𝛼 = 0.41, push-off 𝑈 =12 
0.0342 𝑀𝑔𝐿, step time 𝑇 = 1.665 𝑔−0.5𝐿0.5, and pre-collision speed 𝑉∗ = 0.601 𝑔0.5𝐿0.5, where capital letters indi-13 

cate nominal values for 𝑢𝑖, 𝜏𝑖, and 𝑣𝑖
−, respectively. We also refer to a nominal speed 𝑉 = 0.44 𝑔0.5𝐿0.5  for mid-14 

stance speed 𝑣𝑖. We considered a range of up-step heights, for example 𝑏 = 0.075𝐿, equivalent to about 7.5 cm for 15 
a human. 16 
 17 

Optimization problem  18 

 19 
The optimization is formulated as follows, with policy 𝜋 denoting the set of push-offs 𝑢𝑖:  20 
 21 

𝜋∗ = arg min
𝜋

∑ 𝑢𝑖

(𝑁−1)/2

𝑖=−(𝑁−1)/2

  

 

subject to:  
 Speed:  𝑣−(𝑁−1)/2 = 𝑉, 𝑣(𝑁−1)/2 = 𝑉  

 Time:   ∑ 𝜏𝑖

(𝑁−1)/2

𝑖=−(𝑁−1)/2

= 𝑇 ⋅ 𝑁  

 Dynamics:  Model dynamics (above)  
 22 
 23 
where 𝑁 is the total (odd) number of steps and step 𝑖 = 0 is the first step on the Up-/Down-step. Thus 𝑁 adjusts 24 
how far in advance and or after the perturbation for which the model can modulate its momentum or speed. The 25 
speed constraints are such that the initial and final conditions are equal to the nominal, steady speed 𝑉. The time 26 
constraint makes up for lost time, so that the total time is equal to the nominal time to walk 𝑁 steps on level ground. 27 
By the end of the control sequence, the model must walk at the same speed as nominal and must have caught up 28 
with the nominal model on level ground. We chose 𝑁 large enough to cover the speed adjustments that humans 29 
made in the experiments. Note that, because human speeds are most conveniently measured from footfall to foot-30 
fall, we converted the model speeds to a similar footfall definition (stride length divided by stride time, footfall to 31 
footfall) for purposes of comparison between model and human (Fig. 5).  32 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.407023doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.407023
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

15 
 

References 1 

Adamczyk, P. G., Collins, S. H. and Kuo, A. D. (2006). The advantages of a rolling foot in human walking. Journal of 2 
Experimental Biology 209, 3953–3963. 3 

Alexander, R. M. (1996). Optima for Animals. Princeton, NJ: Princeton University Press. 4 

Arechavaleta, G., Laumond, J., Member, S., Hicheur, H. and Berthoz, A. An optimality principle governing human 5 
walking. Robotics, IEEE Transactions on 1–5. 6 

Bauby, C. E. and Kuo, A. D. (2000). Active control of lateral balance in human walking. J Biomech 33, 1433–1440. 7 

Bhounsule, P. (2014). Control of a compass gait walker based on energy regulation using ankle push-off and foot 8 
placement. Robotica 33, 1–11. 9 

Birn-Jeffery, A. V., Hubicki, C. M., Blum, Y., Renjewski, D., Hurst, J. W. and Daley, M. A. (2014). Don’t break a leg: 10 
running birds from quail to ostrich prioritise leg safety and economy on uneven terrain. Journal of Experi-11 
mental Biology 217, 3786–3796. 12 

Brown, G. L., Seethapathi, N. and Srinivasan, M. (2020). Energy optimality predicts curvilinear locomotion. 13 

Darici, O., Temeltas, H. and Kuo, A. D. (2018). Optimal regulation of bipedal walking speed despite an unexpected 14 
bump in the road. PLOS ONE 13, e0204205. 15 

Darici, O., Temeltas, H. and Kuo, A. D. (2020). Anticipatory Control of Momentum for Bipedal Walking on Uneven 16 
Terrain. Scientific Reports 10, 540. 17 

Dean, J. C. and Kuo, A. D. (2009). Elastic coupling of limb joints enables faster bipedal walking. J R Soc Interface 6, 18 
561–573. 19 

Donelan, J. M., Kram, R. and Kuo, A. D. (2001). Mechanical and metabolic determinants of the preferred step width 20 
in human walking. Proc. Biol. Sci 268, 1985–1992. 21 

Donelan, J. M., Kram, R. and Kuo, A. D. (2002). Mechanical work for step-to-step transitions is a major determinant 22 
of the metabolic cost of human walking. Journal of Experimental Biology 205, 3717–27. 23 

Franklin, D. W., Burdet, E., Peng Tee, K., Osu, R., Chew, C.-M., Milner, T. E. and Kawato, M. (2008). CNS Learns 24 
Stable, Accurate, and Efficient Movements Using a Simple Algorithm. J Neurosci 28, 11165–11173. 25 

Heess, N., Tb, D., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez, T., Wang, Z., Eslami, S. M. A., et al. 26 
(2017). Emergence of Locomotion Behaviours in Rich Environments. arXiv:1707.02286v2. 27 

Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology 9, 28 
718–727. 29 

Kim, M. and Collins, S. H. (2017). Once-Per-Step Control of Ankle Push-Off Work Improves Balance in a Three-Di-30 
mensional Simulation of Bipedal Walking. IEEE Transactions on Robotics 33, 406–418. 31 

Kuo, A. D. (1995). An optimal control model for analyzing human postural balance. IEEE Trans Biomed Eng 42, 87–32 
101. 33 

Kuo, A. D. (1999). Stabilization of lateral motion in passive dynamic walking. International Journal of Robotics Re-34 
search 18, 917–930. 35 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.407023doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.407023
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

16 
 

Kuo, A. D. (2001). A simple model of bipedal walking predicts the preferred speed-step length relationship. Journal 1 
of Biomechanical Engineering 123, 264–9. 2 

Kuo, A. D. (2002). Energetics of actively powered locomotion using the simplest walking model. Journal of Biome-3 
chanical Engineering 124, 113–20. 4 

Kuo, A. D., Donelan, J. M. and Ruina, A. (2005). Energetic consequences of walking like an inverted pendulum: step-5 
to-step transitions. Exercise and sport sciences reviews 33, 88. 6 

Matthis, J. S. and Fajen, B. R. (2013). Humans exploit the biomechanics of bipedal gait during visually guided walking 7 
over complex terrain. Proc. Biol. Sci. 280, 20130700. 8 

McGeer, T. (1990). Passive dynamic walking. International Journal of Robotics Research 9, 62–82. 9 

Müller, R., Ernst, M. and Blickhan, R. (2012). Leg adjustments during running across visible and camouflaged inci-10 
dental changes in ground level. Journal of Experimental Biology 215, 3072–3079. 11 

O’Connor, S. M. and Kuo, A. D. (2009). Direction-dependent control of balance during walking and standing. J. Neu-12 
rophysiol 102, 1411–1419. 13 

Ojeda, L. V., Rebula, J. R., Kuo, A. D. and Adamczyk, P. G. (2015). Influence of contextual task constraints on pre-14 
ferred stride parameters and their variabilities during human walking. Medical Engineering & Physics 37, 15 
929–936. 16 

Park, S., Horak, F. B. and Kuo, A. D. (2004). Postural feedback responses scale with biomechanical constraints in 17 
human standing. Exp Brain Res 154, 417–427. 18 

Patla, A. E. (1998). How is human gait controlled by vision. Ecological Psychology 10, 287–302. 19 

Rebula, J. R., Ojeda, L. V., Adamczyk, P. G. and Kuo, A. D. (2013). Measurement of foot placement and its variability 20 
with inertial sensors. Gait Posture 38, 974–980. 21 

Sharp, I., Huang, F. and Patton, J. (2011). Visual error augmentation enhances learning in three dimensions. J Neu-22 
roEngineering Rehabil 8, 52. 23 

Wang, Y. and Srinivasan, M. (2014). Stepping in the direction of the fall: the next foot placement can be predicted 24 
from current upper body state in steady-state walking. Biology Letters 10, 20140405. 25 

Wu, A. R. and Kuo, A. D. (2016). Determinants of preferred ground clearance during swing phase of human walking. 26 
Journal of Experimental Biology jeb.137356. 27 

Zelik, K. E., Huang, T.-W. P., Adamczyk, P. G. and Kuo, A. D. (2014). The role of series ankle elasticity in bipedal 28 
walking. Journal of Theoretical Biology 346, 75–85. 29 

 30 
 31 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.407023doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.407023
http://creativecommons.org/licenses/by-nc-nd/4.0/

