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Figure S4. Contextual embedding significantly improves the modeling of neural signals. A) Map of  
!"#$#%#&!'()#*$+,$!"#$%#-!$"#.+*/"#'#$0+!"$*+1,+-+&2,!$#,&()+,1$-('$34$2%%$!"'##$!5/#*$(-$#.6#))+,1*$789:;<$

=$8%(>#$=$2'6+!'2'5?$'#)4@$<4$-('$*!2!+&$2,)$&(,!#A!B2%$#.6#))+,1*$789:;<$=$8%(>#?$6B!$,(!$2'6+!'2'5?$

5#%%(04@$C4$2,)$&(,!#A!B2%$(,%5$789:;<?$/B'/%#4$#.6#))+,1*D$E(!#$!"#$!"'##$1'(B/*$)($,(!$(F#'%2/D$G$

*2./%+,1$(-$#,&()+,1$/#'-('.2,&#$-('$*#%#&!#)$+,)+F+)B2%$#%#&!'()#*$2&'(**$)+--#'#,!$6'2+,$2'#2*H$+,-#'+('$

-'(,!2%$15'B*$7IJ84?$!#./('2%$/(%#$7:94?$.+))%#$*B/#'+('$&#,!'2%$15'B*$7.K:84?$*B/#'+('$!#./('2%$*B%&B*$

7K:K4?$%2!#'2%$*B%&B*$7LK4?$.+))%#$!#./('2%$15'B*$7M:84?$/(*!#'+('$*B/#'+('$!#./('2%$15'B*$7/K:84?$

2,1B%2'$15'B*$7G84?$post central gyrus (postCG), precentral gyrus (PreCG), and middle frontal sulcus 
(MFS). (Green - encoding for the arbitrary embeddings, blue - encoding for static (GloVe) embeddings; 
purple - encoding for contextual (GPT-2) embeddings).  
 
 
 
 
 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2020.12.02.403477doi: bioRxiv preprint 



 
 

38 

 
 
 

 

Figure S5. Comparison of GloVe- and word2vec-based static embeddings. The encoding 
procedure was repeated for two additional static embeddings using the electrodes that were 
found significant for GloVe-50 encoding on the left hemisphere (Fig. 3B). Each line indicates the 
encoding model performance averaged across electrodes for a given type of static embedding 
at lags from -2000 to 2000 ms relative to word onset. The error bars indicate the standard error 
of the mean across the electrodes at each lag. 100-dimensional word2vec and GloVe 
embeddings resulted in similar encoding results to the initial 50-dimensional GloVe embeddings. 
This suggests that results obtained with static embeddings are robust to the specific type of 
static embeddings used. 
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Figure S6. Controlling for correlations among adjacent GloVe embeddings. To ensure that 
the signal predicted before word-onset is not a result of a correlation among adjacent GloVe 
embeddings we ran the following additional control analyses: A) We projected (by inner product) 
and then subtracted the GloVe embedding of the previous word from each word and re-ran the 
encoding analysis. The analysis demonstrates that the significant encoding before word onset 
holds even after removing local contextual dependencies in the GloVe embedding of 
consecutive words. The horizontal line indicates the significance threshold calculated using a 
permutation test and FDR corrected for multiple comparisons (q<.01). B) We trained an 
encoding model using arbitrary embeddings on our dataset after removing the first word from all 
bi-grams that repeated more than once. The encoding before word onset remained significant 
after the removal of the bi-grams. The horizontal line indicates the significance threshold 
calculated using a permutation test and FDR corrected for multiple comparisons (q<.01). C) We 
compared an encoding model based on arbitrary embeddings using the previous word 
embedding (blue line), to an encoding model where we concatenated previous and current word 
embeddings (red line). Red asterisks mark significant differences using a permutation test and 
FDR correction (q<.01). The significant difference between these two models before word onset 
is another evidence that there is predictive information in the neural activity as to the upcoming 
word, above and beyond the contextual information embedded in the previous word. The 
horizontal line indicates the significance threshold calculated using permutation test and FDR 
corrected for multiple comparisons (q<.01).  
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Figure S7. GloVe’s space embedding attributes. It can be argued that GloVe based encoding 
outperforms arbitrary-based encoding due to a general property of the space that GloVe 
embeddings induce (for example, they are closer / further away from each other). To control for 
this possible confound, we consistently mismatched the labels of the embeddings of GloVe and 
used the mismatched version for encoding. This means that each unique word was consistently 
matched with a specific vector that is actually an embedding of a different label (for example, 
matching each instance of the word ‘David’ with the embedding of the word ‘court’). This 
manipulation uses the same embedding space that GloVe uses and also induces a consistent 
mapping of words to embeddings (as in the arbitrary-based encoding). The matched GloVe 
(blue) outperformed the mismatched GloVe (black), supporting the claim that GloVe embedding 
carries information about word statistics that is useful for predicting the brain signal. 
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Figure S8. Encoding for correct / incorrect predictions. This is a variation of Fig. 4B where: 
A. We classify words as correctly predicted if they are the most predictable words by humans’ 
ratings. B. We classify words as correctly predicted if they are the most predictable by GPT-2 
(instead of top-5).  
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Figure S9. Comparison of GPT-2 and concatenation of static embeddings. The increased 
performance of GPT-2 based contextual embeddings encoding may be attributed to the fact that 
it consists of information about the previous words’ identity. To examine this possibility, we 
concatenated the GloVe embeddings of the 10 previous words and current word, and reduced 
their dimensionality to 50 features. GPT-2 based encoding outperformed mere concatenation 
before word onset, suggesting that GPT-2’s ability to compress the contextual information 
improves the ability to model the neural signals before word onset.  
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Figure S10. Preprocessing procedure applied to an impulse response. The plot 
demonstrates the temporal uncertainty introduced by the preprocessing procedure (especially 
by the wavelet and smoothing procedures). At sample 45 after onset (dashed line) the value is 
back to zero, considering the 512 HZ sampling rate this means that the leak from the future is 
bounded by 93 ms.  
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Appendix I - Decoding Model Details 
*The size of the layer is dependent on the number of electrons included in the fold (5 folds over all). The 
number of electrodes ranged from 114-132, and the total number of parameters ranged from 219,670-
228,790. 

Layer (type) Output Shape Param # 

input_1 (InputLayer) 
[(None, 10, *114-
132X)] 0 

conv1d (Conv1D) 
(None, 8, *114-
132) 

55680-
64800 

activation (Activation) 
(None, 8, *114-
132) 0 

batch_normalization (BatchNorn) 
(None, 8, *114-
132) 640 

dropout (Dropout) 
(None, 8, *114-
132) 0 

max_pooling1d (MaxPooling1D) 
(None, 4, *114-
132) 0 

conv1d_1 (Conv1D) 
(None, 3, *114-
132) 51200 

activation_1 (Activation) 
(None, 3, *114-
132) 0 

batch_normalization_1 (Batch 
(None, 3, *114-
132) 640 

dropout_1 (Dropout) 
(None, 3, *114-
132) 0 

locally_connected1d (Locally 
(None, 2, *114-
132) 102720 
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batch_normalization_2 (Batch 
(None, 2, *114-
132) 640 

activation_2 (Activation) 
(None, 2, *114-
132) 0 

global_max_pooling1d (Global (None, *114-132) 0 

dense (Dense) (None, 50) 8050 

layer_normalization (LayerNo (None, 50) 100 

Total parameters  
*219,670
-228,790 

Trainable parameters  
*218,710
-227,830 

Non-trainable parameters  960 
● Learning rate: 0.00025 
● Batch size: 256 
● Convolutional layers L2 regularization alpha: 0.003 
● Dense layer L2 regularization alpha: 0.0005 
● Dropout probability is 21% 
● Weights averaged over last 20 epochs before early stopping 
● Trained for a maximum of 1500 epochs with patience of 150 epochs 

We used a hyperparameter search to choose depth, batch size, learning rate, patience, and 
convolutional filter. 96 
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Appendix II - Word List 
       

a called have make very think who 

about camera he me public this wikipedia 

after case him monkey really thought with 

all copyright his my right to would 

an could how next said twenty yeah 

and court human no saw two year 

andrew david i not say uh you 

animal day if now see um your 

are did in of should up  

argument do into on so very  

around domain is one sued wa  

at even it or take wales  

attorney first judge other that way  

be for just out the we  

because friend know over their well  

been from law own them were  

before get lawyer people then what  

being got legal photo there when  

but ha like photograph these where  
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by had look picture they which  
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