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Abstract 

Background 
Lack of reproducibility in gene expression studies has recently attracted much attention in and              
beyond the biomedical research community. Previous efforts have identified many underlying           
factors, such as batch effects and incorrect sample annotations. Recently, tissue heterogeneity,            
a consequence of unintended profiling of cells of other origins than the tissue of interest, was                
proposed as a source of variance that exacerbates irreproducibility and is commonly ignored. 

Results 
Here, we systematically analyzed 2,692 publicly available gene expression datasets including           
78,332 samples for tissue heterogeneity. We found a prevalence of tissue heterogeneity in gene              
expression data that affects on average 5-15% of the samples, depending on the tissue type.               
We distinguish cases of severe heterogeneity, which may be caused by mistakes in annotation              
or sample handling, from cases of moderate heterogeneity, which are more likely caused by              
tissue infiltration or sample contamination.  

Conclusions 
Tissue heterogeneity is a widespread issue in publicly available gene expression datasets and             
thus an important source of variance that should not be ignored. We advocate the application of                
quality control methods such as BioQC to detect tissue heterogeneity prior to mining or              
analysing gene expression data. 
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Figure 1 (A-B) Selection of gene expression studies from (A) GEO and (B) ARCHS4. (C) We                
defined two sets of tissue signatures for the experiment: (1) we obtained 120 tissue query               
signatures from the BioQC package and (2) generated 9 high-quality reference signatures from             
the GTEx and GNF Mouse GeneAtlas V3 datasets. (D) Schematic illustration of the two-step              
approach to call heterogeneous samples. Since query signatures may be imperfect and            
correlated with the sample’s tissue of origin, we use a linear model to compare the query                
against a robust reference signature. Abbreviations: CV, controlled vocabulary. 
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Figure 2: Tissue heterogeneity in gene expression studies from GEO and ARCHS4. (A)             
Fraction of heterogeneous samples per tissue. Error-bars show 95%-confidence intervals          
derived by bootstrapping. (B) Tissue confusion matrix with absolute counts. Reference tissue            
refers to the annotated tissue, detected signature to other tissue signatures that were detected              
in these samples by BioQC.  
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Background 
The genome-research community has witnessed the exponential growth of gene expression           
studies in the last two decades, first with microarray1 and nowadays with RNA-seq datasets2.              
Both the huge volume of data and wide coverage of biological samples in diverse contexts, such                
as genetic perturbation, disease progression, pharmaceutical intervention, etc., make publicly          
available gene expression studies an important resource for drug-discovery research.          
Systematic mining of of existing data and interrogation of new data can reveal molecular              
foundations of pathology and disease 3, identify novel therapeutic targets4, enable preclinical           
screening tools for preclinical drug safety5,6, highlight mode-of-action of drug candidates 7, allow             
data-driven prioritisation of drug screening hits8, and predict response and stratify patients9. In             
short, drug discovery benefits from both consuming and contributing to gene expression studies. 
 
However, the power of gene expression studies in translating molecular biology into medicine is              
impeded by a lack of reproducibility10,11. Well known causes of irreproducibility include batch             
effects, variation of biological samples, profiling protocols, or data analysis procedures, as well             
as mistakes in sample handling or annotation, and in rare cases intentional data manipulation.              
While several studies have scrutinized publicly available gene expression datasets, and           
demonstrated the prevalence of e.g. batch effects12, and sample mishandling or           
misannotation 13, few studies address the prevalence of tissue heterogeneity, i.e. the unintended            
profiling of cells of other origins than the tissue of interest14,15. Tissue heterogeneity can be               
caused by intrinsic characteristics of the sample to be profiled, such as the tumor              
microenvironment or immune cell infiltration into solid organs, or by extrinsic factors such as              
imperfect dissection or contamination of samples. Ignoring tissue heterogeneity reduces          
statistical power of data analysis and can, in the worst case, invalidate the conclusions of a                
study. In particular in oncology, this is a well recognized problem that is commonly addressed               
by estimating tumor purity16. Alternatively, cell type heterogeneity can be leveraged as a source              
of information in immune cell deconvolution to inform about the state of the tumor              
microenvironment and to guide immunotherapy17. Beyond tumor samples, Nieuwenhuis et al.           
identified a cluster of prostate-specific genes that were expressed in tissues other than prostate              
in GTEx, but also in other datasets, highlighting that tissue contamination is an important issue               
found in important reference datasets commonly used by the community15. To our knowledge, a              
systematic analysis of cross-tissue contamination in which data sets are systematically tested            
for contamination with other tissues than the tissue of interest is missing. Here, we              
systematically screened 2,692 datasets from the two largest public microarray and RNA-seq            
gene expression repositories, Gene Expression Omnibus (GEO)18 and ARCHS4 19, respectively,          
for tissue heterogeneity using the R package BioQC14. We found that, independent of the              
technological platform but depending on the tissue type, between 5-15% of samples suffered             
were affected by tissue heterogeneity with on average 1.6% suffering from severe heterogeneity             
issues (FDR threshold=0.01). Our results, thus, highlight the importance of considering tissue            
heterogeneity as a confounder in transcriptome data analysis.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.02.407809doi: bioRxiv preprint 

https://paperpile.com/c/abXO4w/tY0i
https://paperpile.com/c/abXO4w/ktHK
https://paperpile.com/c/abXO4w/iLgW
https://paperpile.com/c/abXO4w/p14Z
https://paperpile.com/c/abXO4w/QjkR+y06O
https://paperpile.com/c/abXO4w/AHkv
https://paperpile.com/c/abXO4w/Li6x
https://paperpile.com/c/abXO4w/atxt
https://paperpile.com/c/abXO4w/PXxT+A9oW
https://paperpile.com/c/abXO4w/1xQ0
https://paperpile.com/c/abXO4w/fwqL
https://paperpile.com/c/abXO4w/JUux+IFmD
https://paperpile.com/c/abXO4w/KVpq
https://paperpile.com/c/abXO4w/NHu1
https://paperpile.com/c/abXO4w/IFmD
https://paperpile.com/c/abXO4w/NZ49
https://paperpile.com/c/abXO4w/JR93
https://paperpile.com/c/abXO4w/JUux
https://doi.org/10.1101/2020.12.02.407809
http://creativecommons.org/licenses/by/4.0/


Results and Discussion 
We evaluated the enrichment of 120 different query signatures from the R package BioQC in a                
selection of well annotated microarray studies in the GEO18 and ARCHS4 19 repositories (2,692             
studies, 78,332 samples, Figure 1A-B). These query signatures are tissue-sensitive, i.e. they            
recognize their target tissue with few false negatives, but often not tissue-specific, i.e. they              
report false positives due to the expression of the signature genes in other, physiologically              
similar tissues. To account for this, we created a set of nine reference signatures using GTEx                
data 20 and validated them using the GNF MouseAtlas V3 dataset21 to show that they are robust                
even across species (Figure 1C). To identify samples affected by heterogeneity, we apply a              
two-step approach (Figure 1D): (1) the enrichment score of the query signature needs to exceed               
an absolute cutoff; (2) for each query signature, we fit a linear model of the query signature                 
score against the reference signature score, where the reference signature matches the            
sample’s tissue. If the query signature score cannot be explained by the linear model, we               
consider the sample heterogeneous. The cutoffs were chosen such that the overall FDR of the               
two-step testing procedure is 0.01.  
 
We further distinguish between severe and moderate tissue heterogeneity. Empirically, we           
define moderate heterogeneity as samples that are significantly enriched for a signature that we              
do not expect to be present, and severe heterogeneity as samples in which, in addition, the                
expected signature of the annotated tissue is not detected. While severe heterogeneity often             
suggests mistakes in sample handling and annotation, moderate heterogeneity suggests          
contamination or infiltration of cells of the blood and immune system. 
 
We found moderate tissue heterogeneity in about 6.6% of all samples and severe heterogeneity              
in 1.6% of samples. The proportion of samples affected by moderate heterogeneity varies by              
the organ and tissue being profiled, with skin (14%) and pancreas (14%) samples affected most               
frequently and brain samples affected least frequently (<5%) (Figure 2A). Results were            
comparable for RNA-sequencing and microarray, corroborating that the issue of sample           
heterogeneity is not platform-dependent.  
 
A closer investigation of the source of tissue heterogeneity reveals additional insights (Figure             
2B). For instance, enrichment of blood signatures in other tissues and organs is one of the most                 
frequent forms of severe heterogeneity which can be caused by an increased inflow and/or              
decreased outflow of blood which sums as a net increase of blood volume, or the activation and                 
proliferation of tissue-resident leukocytes, for instance. Tissue heterogeneity of proximal tissues           
could be explained by imperfect separation of nearby organs. For example, the liver and              
pancreas are proximal organs connected by the common bile duct, which may explain why              
many cases of tissue heterogeneity in pancreatic tissue are caused by liver-specific tissue             
signatures. However, tissue heterogeneity involving distal solid tissues also occurs and           
highlights possible issues with contamination during sample preparation. Considering that the           
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latter two aspects represent technical biases, such samples should be excluded in analysis to              
increase statistical robustness and to avoid arriving at erroneous conclusions. 
 
A limitation we encountered in this study were normalized expression profiles in the GEO              
repository. As BioQC depends on the ranking of genes within a sample, studies that performed               
a per-gene normalization could not be evaluated. We, therefore, advocate the upload of the raw               
data to gene expression repositories as only the unmodified gene expression data can be used               
with BioQC or other quality control tools. 
 
We also note that the issue of tissue heterogeneity is specific to bulk RNA-sequencing data and                
does not affect single-cell RNA-seq studies, as contaminating cells form an independent cluster             
of cells which can either be ignored or incorporated in data analysis. In fact, single-cell RNA-seq                
offers the chance to study biological sources of tissue heterogeneity at a previously             
unimaginable depth. However, due to its lower cost, the majority of expression profiles will still               
be sequenced in bulk in the foreseeable future. Hence, identifying samples affected by tissue              
heterogeneity with tools such as BioQC will remain an important aspect of data analysis and               
should be incorporated in standard gene expression analysis pipelines. 

Conclusions 
Tissue heterogeneity is prevalent in publicly available gene expression data and occurs            
independent of the technological platform. Tissue heterogeneity affects on average 6.6% of            
samples with differences between tissues ranging from 5% (brain) to 14% (skin, pancreas).             
While most cases of moderate heterogeneity are caused by blood cells, enrichment with             
signatures from proximal and distal solid tissues highlights contaminated samples that should            
be excluded from analysis. Similarly, samples with severe heterogeneity (on average 1.6%)            
should be excluded. This is of particular importance in systems medicine studies, where             
tissue-specific signals can mask disease-specific signals, thus preventing the successful          
detection of disease mechanisms, patient stratification, or drug target identification and           
validation. To avoid this, we advocate the routine use of methods such as BioQC that assess                
tissue heterogeneity in transcriptome analysis. 

Methods 

Compilation and cross-validation of tissue signatures 
BioQC provides 155 sets of tissue-enriched genes (tissue signatures hereafter) from four            
large-scale tissue gene expression datasets14. Even though the authors have shown that the             
signatures are biologically meaningful, they did not validate them using an independent dataset.             
Since the reliability of signatures is crucial for this study, we developed an open-source software               
package, pygenesig, which facilitates the creation and validation of tissue signatures. We            
applied pygenesig to transcriptomics data from the GTEx project20 (v6) which contains 11,984             
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samples from 32 tissues and validated the resulting signatures on the GNF Mouse Gene Atlas               
V3 21. We identified a set of 9 “reference” tissue signatures, that reliably identify their tissue of                
origin, regardless of experimental platform and species. The process of signature generation            
and validation is outlined in Figure 1C and detailed in supplementary section 2.  
 

Gene expression data corpus 
We retrieved annotation and gene expression data from GEO on 2016-12-07 using 
GEOmetadb22 and GEOquery23. We downloaded consistently processed RNA-seq gene 
expression data including annotations as RData objects from the ARCHS4 project website 
(version 8.0)19. Data filtering and quality control is summarised in Figure 1A-B and described in 
detail in supplementary section 3. 
 
Tissue annotations in GEO and ARCHS4 are inconsistent. We, therefore, manually mapped            
tissue descriptions to a controlled vocabulary, and assigned 120 of the 155 signatures provided              
by BioQC and the 9 reference signatures to their corresponding tissues (supplementary table 1).  

D etecting tissue heterogeneity with BioQC in the corpus 
BioQC performs a Wilcoxon-Mann-Whitney statistical test for enrichment of a certain signature            
on a per-sample basis. We ran BioQC on all samples from GEO and ARCHS4 using both the                 
nine reference signatures and 120 signatures provided by BioQC, which yielded 10,031,456            
(sample, signature, p-value) pairs. As signatures can be correlated (e.g. because they describe             
physiologically related tissues), we apply the following procedure to identify heterogeneous           
samples: A given sample s annotated as tissue t is tested for enrichment with the               
query-signature kquery resulting in a p-value pquery. Let kref be the reference signature associated              
with tissue t and pref the p-value of testing s for enrichment of kref. Let be the               τ   
false-discovery-rate (FDR) threshold. (1) If the Benjamini-Hochberg (BH)-adjusted pquery we         ,≥ τ   
label s as not heterogeneous, else continue. (2) We fit a robust linear model using rlm from the                  
R package MASS of |log 10(pquery)| against |log 10(pref)| for all samples annotated as t. We assume               
that the residuals R of the linear model follow a normal distribution R , where is the             (0, σ )~ N  2   σ   
standard deviation of the residuals. (3) We extract the residual r corresponding to sample s. We                
calculate the p-value pcorr = 1 - CDFR(r), where CDFR is the cumulative density function of                

. (4) If the BH-adjusted pcorr < , we reject the hypothesis that kquery is enriched only due(0, σ )N  2        τ            
to correlation and label the sample as heterogeneous. We choose such that the overall FDR          τ       
of the two-step testing procedure equals 0.01. This process is illustrated in figure 1D and               
supplementary section 4. 
 
Finally, we computed the fraction of heterogeneous samples by dividing the number of samples              
that have at least one signature passing the above criteria by the total number of samples per                 
tissue. Confidence intervals have been derived by bootstrapping using the R package boot.  
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Other software 
We implemented and documented the analysis using R bookdown 24. The analysis is wrapped 
into a reproducible pipeline built on Snakemake 25.  
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