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Abstract 

Opioid tolerance and opioid-induced hyperalgesia during repeated opioid administration and 
chronic pain are associated with upregulation of adenylyl cyclase activity. The objective of this 
study was to test the hypothesis that a reduction in adenylyl cyclase 1 (AC1) activity or 
expression would attenuate morphine tolerance and hypersensitivity, and inflammatory pain 
using murine models. To investigate opioid tolerance and opioid-induced hyperalgesia, mice 
were subjected to twice daily treatments of saline or morphine using either a static (15 mg/kg, 5 
days) or an escalating tolerance paradigm (10-40 mg/kg, 4 days). Systemic treatment with an 
AC1 inhibitor, ST03437 (5 mg/kg, ip), reduced morphine tolerance and morphine hyperalgesia 
in mice.  Lumbar intrathecal administration of a vector incorporating adeno-associated virus and 
short-hairpin RNA against Adcy1 reduced morphine induced hypersensitivity compared to 
control vector treated mice.  In contrast, morphine antinociception, along with baseline thermal 
paw withdrawal latencies, motor performance, exploration in an open field test, and burrowing 
behaviors were not affected by intrathecal Adcy1 knockdown.  Knockdown of Adcy1 by 
intrathecal injection also attenuated inflammatory mechanical hyperalgesia after intraplantar 
administration of Complete Freund’s Adjuvant (CFA) after one week post injection.  This Adcy1 
knockdown strategy also increased burrowing and nesting activity after CFA injection when 
compared to controls.  Together, these data indicate targeting AC1 to mitigate opioid-induced 
adverse effects, or as a method to treat chronic pain, are appropriate as a clinical approach and 
further development into generating pharmaceuticals targeting these genes/proteins may prove 
beneficial in the future.   

Introduction 

Opioids are one of the most common analgesics used to alleviate pain clinically by inhibiting 
neuronal signal transmission through the mu opioid receptor (MOR). Individuals with chronic 
pain use opioids on a daily basis for pain management, causing the development of analgesic 
tolerance, leading to dosage escalation. In the clinic, tolerance is defined as a requirement for 
increased opioid doses to maintain analgesia. Opioid-induced hypersensitivity is defined as the 
increased sensitivity to pain as a result of chronic opioid use.  Whether the increased opioid 
requirement is caused by the decreasing analgesic efficacy of the drug, as in tolerance, or by an 
increase in spontaneous pain or lowering the nociceptive threshold, the clinical effect is the same 
[19]. Furthermore, if the patient ceases therapy, there is a possibility for withdrawal and nerve 
hypersensitivity, increasing the likelihood for opioid dependence and abuse situations.    
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Upon agonist binding to the MOR, adenylyl cyclase (AC) is inhibited thereby blocking the 
formation of cyclic adenosine monophosphate (cAMP). However, prolonged agonist stimulation 
of the MOR leads to an inability to inhibit AC, or a phenomenon called heterologous 
sensitization of AC, causing intracellular activity of AC to increase, thereby increasing 
intracellular levels of cAMP [43]. Enhancement of cAMP levels due to prolonged opioid 
exposure has long been connected to opioid tolerance and opioid dependence in both in vitro [7; 
33] and in vivo studies, particularly in the spinal cord and dorsal root ganglia (DRG)[9; 29]. 
More recently, the activation of Ca2+/calmodulin ACs, particularly AC1 and AC8, were 
implicated in the initial stages of morphine tolerance and withdrawal as AC1 and AC8 knockout 
mice have increased latencies during the first few days of morphine tolerance testing as well as 
decreased withdrawal behaviors [25; 47]. AC1 and AC8 have also been linked to the 
development of both acute and chronic persistent inflammatory pain [16; 17; 36; 42] and a global 
loss of either AC1 or AC8, or in combination, appear to have a role in attenuating  morphine 
tolerance and withdrawal [37; 40]. However in an inflammatory pain model in mice, loss of 
AC1, but not AC8, decreased nocifensive responses to formalin[36].  AC isoform-selective 
pharmacological inhibitors have been developed, particularly for AC1, and appear to attenuate 
chronic pain in mice [4; 21; 26; 39]. Of note ST034307, a highly selective inhibitor for AC1, has 
shown effectiveness at providing analgesia in a mouse model of inflammatory pain [4]. To date, 
it is unknown if selectively inhibiting AC1 activity or reducing AC1 expression after chronic 
MOR stimulation alters the development of opioid tolerance and opioid-induced 
hypersensitivity.  

The purpose of this study was to better understand the activity of AC1 during morphine 
tolerance, opioid induced hypersensitivity and chronic inflammatory pain. To accomplish this, 
pharmacological inhibition of AC1 or a short hairpin RNA (shRNA) knockdown strategy using 
adeno associated virus (AAV9) vector was used to decrease activity/expression of Adcy1.  
Systemic treatment with ST03437, reduced morphine tolerance and morphine hyperalgesia in 
mice. Similarly, behavioral measures indicate intrathecal administration of a viral vector 
expressing Adcy1 shRNA in mice attenuates morphine tolerance, opioid-induced 
hypersensitivity, and decreases evoked pain measures in a mouse model of inflammatory pain. 

Materials and Methods 

Animals  

All experimental procedures involving animals were approved and performed in accordance with 
the University of Minnesota Institutional Animal Care and Use Committee guidelines. Adult 
male C57Bl6 mice were obtained via Charles River (5-6 weeks old, Raleigh, NC). Mice were 
acclimated to individual testing apparatuses prior to behavioral testing. Mice were euthanized by 
isoflurane anesthesia (5%) followed by decapitation at the end of the study.  

Tissue Collection and mRNA Isolation  

Tissues harvested from animals were flash frozen in liquid nitrogen and stored at -80 oC.  Total 
mRNA was isolated from tissues using Tri Reagent (T9424, Sigma Aldrich, St. Louis, MO) and 
RNeasy Mini Kit (Qiagen, Germantown, MD) according to manufacturer’s protocol with DNase 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.02.408419doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.02.408419


digestion.  Complimentary DNA synthesis was performed with 50 ng total mRNA using 
Omniscript RT Kit (Qiagen, Germantown, MD) and random nonamers (Integrated DNA 
Technologies, Coralville, Iowa) according to manufacturer’s protocol.   

Quantitative PCR 

Quantitative PCR was performed using SYBR Green I dye with LightCycler 480 technology 
(Roche, Branchburg, NJ, USA). The cDNA copy number was typically quantified against a ≥5 
point, 10-fold serial dilution of a gene specific cDNA standard. Internal controls included 
negative RT-PCR samples and comparative expression versus a housekeeping gene, 18S. Fold 
expression of each gene of interest was determined by: (mean gene concentration/mean 18s 
concentration)/(mean gene concentration in saline/mean 18s concentration in saline). See 
Supplemental Table 1 for gene specific primers used. 

Drugs and Delivery 

Morphine (Sigma Chemical, St. Louis, MO) was administered through a 100 uL subcutaneous 
injection in saline. ST034307 (6271, Tocris Bioscience, Minneapolis, MN) was dissolved in 10% 
β-cyclodextrin with 5% DMSO in saline and administered 5 mg/kg through a 100 uL 
intraperitoneal injection 15 minutes after morphine administration. Morphine efficacy was 
determined using an escalating dose response curve (5-20 mg/kg) waiting 30 minutes after each 
injection [22]. For morphine tolerance experiments, baseline mechanical paw withdrawal testing 
was performed before administration of 15 mg/kg morphine for five days [27].  Escalating 
morphine tolerance was performed similarly, except increasing doses of morphine, starting at 10 
mg/kg and increasing 10mg/kg/day, were administered over the course of four days. In each 
model, morphine was delivered twice per day (~0800 and ~1800 hours). Mechanical threshold 
testing was performed 30 and 60 minutes post morphine administration in the morning. To 
determine the degree of opioid-induced hyperalgesia, paw withdrawal thresholds were assessed 
starting ~18 hours after the last dose of morphine. Complete Freund’s Adjuvant (CFA, F5881, 
Sigma Chemical, St. Louis, MO) was administered through an intraplantar injection (20 uL, 
undiluted) into the left hind paw. [23; 24]. 

Mechanical Paw Withdrawal 

Mice were acclimated to testing environment on at least two separate occasion for 30 to 60 
minutes before formal testing. Testing environment consisted of a mesh floor, allowing access to 
animal hind paws, and individual clear acrylic chambers. Mechanical paw withdrawal (MPW) 
thresholds were determined by use of electronic von Frey testing equipment (Electric von Frey 
Anesthesiometer, 2390, Almemo 2450, IITC Life Science, Woodland Hills, CA). The plantar 
surface of the hind paws were gently pressed with the probe until a nocifensive response (i.e. 
paw lifting, jumping, and licking) was elicted. Baseline measurements (in grams) were collected 
five times from both the right and left hind paw and averaged, with an interstimulus interval of at 
least one minute.   

Thermal Paw Withdrawal 
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Testing environment consisted of a glass floor heated to 30oC with individual clear acrylic 
chambers. The modified Hargreaves method was used to measure thermal paw withdrawal 
(TPW) latency (Plantar Test Analgesia Meter, 400, IITC, Woodland Hills, CA) [5]. TPW 
latencies were determined by the amount of time (in seconds) a heat radiant beam of light 
focused on the plantar surface of the hind paw was required to elicit a nocifensive response (e.g. 
paw lifting, shaking, and licking). A maximum time limit of 20 seconds exposure to the beam 
was used to avoid tissue damage. Baseline measurements were collected five times from both the 
right and left hind paw and averaged, with an interstimulus interval of at least two minutes.   

Adeno-Associated Virus Serotype 9 (AAV9)-Mediated Adcy1 Knockdown 

Gene knockdown of Adcy1 using shRNA was achieved using AAV9-GFP-U6-m-Adcy1-shRNA 
with AAV9-GFP-U6-scramble-shRNA as control viral vector (shAAV-251792 and 7045, titer: 
1.4x1013 GC/mL, in PBS with 5% glycerol, Vector Biolabs, Malvern, PA, United States). 
Vectors were delivered by direct lumbar puncture (10 uL) in awake mice and behavioral 
assessments were performed 4–8 weeks post injection [13; 38]. 

Rotarod Performance Test 

Agility assessment was conducted using Rotamex-5 automated rotarod system (0254-2002L, 
3cm rod, Columbus Instruments, Columbus, OH).  Mice were placed onto a stationary knurled 
PCV rod suspended in the air. The initial rotation speed of 4 rpm was gradually increased by 1 
rpm in 30-second intervals until animals fell off the rod or reached a speed of 14 rpm (300 
seconds). Two tests were administered per animal and averaged.  

Burrowing Testing 

Mice were acclimated to empty burrowing tubes for ~2 hours on at least two separate occasions 
before formal testing. The burrows were made from a 6 cm diameter plastic pipe and 5 cm 
machine screws were used to elevate the open end by 3 cm [11]. During testing, each mouse was 
placed in an individual cage with a burrowing tube containing 500 g of pea gravel.  The amount 
of gravel remaining in the tube after 2 hours was used to calculate the total percent of gravel 
displaced from the burrow.   

Open Field Testing 

The open field testing arena consisted of a 40 x 40 cm box with a white floor and black walls.  
Animals were placed in the open field arena, in a room with controlled adjustable lighting, and 
baseline activity was recorded for 30 minutes (Sony Handycam, HDR-CX405, Sony Corp., 
Tokyo, Japan). The distance traveled, time spent immobile, average velocity, and the change in 
orientation angle were computed by using data output from the Ethowatcher computational tool 
software (Laboratory of Bioengineering of the Institute of Biomedical Engineering and the 
Laboratory of Comparative Neurophysiology of the Federal University of Santa Catarina, UFSC, 
available: http://ethowatcher.paginas.ufsc.br/) [10].   

Nesting  
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Mice were individually housed in clean plastic cages containing cob bedding with food and 
water ad libitum overnight. A single 2” Nestlets™ (Ancare Corp., Bellmore, NY) square was 
weighed and added to each cage. The next morning (~14 hours) untorn pieces of each nesting 
square were weighed and the resulting nests were photographed and scored on a 5-point scale as 
described previously [11]. Briefly the scoring system was: 1 = >90% intact, 2 = partially torn, 3 
= mostly shredded but no identifiable nest, 4 = >90% torn but flat nest site, 5 = >90% torn with 
resulting crater nest.  Scores with 0.5 units were used for nests with scores in between the 
aforementioned intervals.   

Microscopy 

Histological sections were taken in spinal cord, DRG and sciatic nerves in order to verify the 
delivery of the AAV9 vector within the lumbar intrathecal space.  Verification of virus 
inoculation were visible by the presence of green fluorescent protein (GFP). Sections (10 uM, 
Leica CM3050) were mounted onto electrostatically charged slides and images were collected 
using a Nikon TiS Microscope and associated software.   

C-fiber Compound Action Potentials  

Compound action potentials (CAPs) were measured from both left and right desheathed sciatic 
nerves from AAV9-GFP-U6-m-Adcy1-shRNA and AAV9-GFP-U6-scramble-shRNA 8 weeks 
after intrathecal injection. Sciatic nerves were dissected from the hind limbs of mice and 
recordings were performed the day of harvesting. Each nerve was mounted in a chamber filled 
with superficial interstitial fluid composed of 107.7 mM NaCl, 3.5 mM KCl, 0.69 mM MgSO4, 
26.2 mM NaCO3, 1.67 mM NaH2PO4, 1.5 mM CaCl2, 9.64 mM Na+ gluconate, 5.5 mM d-
glucose, and 7.6 mM sucrose, pH 7.4 (bubbled with 95% O2, 5% CO2).  Electrical stimulation 
was performed at a frequency of 0.3 Hz with electric pulses of 100-µs duration at 100-10,000 uA 
delivered by a pulse stimulator (2100, AM Systems, Carlsborg, WA). Evoked CAPs were 
recorded with electrodes placed ~5 mm from the stimulating electrodes. Dapsys software was 
used for data capture and analysis (Brian Turnquist, Bethel University, St. Paul, MN, 
www.dapsys.net). The stimulus with the lowest voltage producing a detectable response in the 
nerve was determined the threshold stimulus. The stimulus voltage where the amplitude of the 
response no longer increased was determined to be the peak amplitude.  The conduction velocity 
was calculated by dividing the latency period, the time from stimulus application to neuronal 
initial response, by the stimulus-to-recording electrode distance.  

Data analysis 

Data were collected by personnel blinded to the animal condition and treatment.  The appropriate 
t-test, one-way, two-way, or repeated measures ANOVA followed by Bonferroni’s post hoc 
analysis was used to determine significance for MPW thresholds and TPW latencies, gene 
expression, burrowing, open field testing, rotarod assessments, and CAP recordings. 
Nonparametric tests were used for nesting behaviors. All statistical analyses were carried out 
using GraphPad Prism versions 7.0 and 8.0 (GraphPad Software, San Diego, CA). All other data 
is presented as mean ± SEM with p < 0.05 considered statistically significant. 
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Results 

Adcy1 mRNA expression is increased in in the peripheral nervous system and spinal cord in mice 
after chronic administration of morphine  

Chronic exposure of the MOR to agonists causes a decreased inhibitory response by the MOR 
and increases the adenylyl cyclase/cyclic-AMP activity[44]. We attempted to confirm these 
findings by analyzing the expression of Adcy1 mRNA in nervous system tissues of morphine 
tolerant mice. The mRNA expression of adenylyl cyclase isoforms and other downstream 
intracellular targets were analyzed in both central and peripheral nervous system tissues 
including brain stem (BS), trigeminal ganglion (TG), spinal cord (SC), dorsal root ganglion 
(DRG) and sciatic nerve (SN) after chronic morphine treatment using qRT-PCR. To induce 
morphine tolerance, morphine was administered twice daily (15 mg/kg, sc in saline) for five 
days.  The overall fold change in gene expression was calculated for morphine tolerant mouse 
tissues compared to control saline treated mice (Supplemental Figure 1). An increased 
expression of Adcy1 is seen in SN, DRG, and TG, and a >2-fold increase was found in in the SC 
(Table 1). A >2-fold increase in mRNA expression was also seen in the SN for Adcy3, Adcy6 and 
Rapgef3 (Table 1). This data suggests AC1 may play a role in morphine tolerance in both the 
central and peripheral nervous systems. To further understand the physiological role of AC1 in 
tolerance and withdrawal during chronic morphine administration, pharmacological and gene 
knock-down strategies were implemented with behavioral assays.  

Gene Tissue Fold 
Change Range Gene Tissue Fold change Range 

Adcy1 SN 1.52 0.91 to 3.45 Adcy8 SN 1.68 0.68 to 2.64 
  DRG 1.19 0.83 to 2.66   DRG 1.31 1.12 to 1.60 
  SC 2.15 1.45 to 3.39   SC 0.67 0.47 to 0.71 
  BS 0.35 0.11 to 0.45   BS 0.44 0.23 to 0.56 
  TG 1.15 1.10 to 1.42   TG 1.71 1.16 to 2.33 
Adcy2 SN 0.71 0.60  to 1.80 Prkaca SN 1.53 1.13 to 2.10 
  DRG 1.56 1.27 to 1.68   DRG 1.52 1.30 to 1.91 
  SC 1.04 0.71 to 1.30   SC 0.91 0.65 to 0.98 
  BS 0.54 0.32 to 0.65   BS 0.5 0.34 to 0.61 
  TG 0.71 0.85 to 2.13   TG 1.08 0.99 to 1.13 
Adcy3 SN 2.22 1.42 to 3.42 Prkacb SN 1.42 1.14 to 1.90 
  DRG 1.45 1.14 to 1.66   DRG 1.4 1.32 to 1.52 
  SC 0.54 0.36 to 0.63   SC 0.68 0.50 to 0.81 
  BS 0.37 0.13 to 0.48   BS 0.53 0.33 to 0.66 
  TG 1.11 1.01 to 1.35   TG 1.17 0.99 to 1.23 
Adcy5 SN 1.81 0.83 to 2.20 Rapgef3 SN 2.34 1.16 to 3.52 
  DRG 0.92 0.79 to 1.13   DRG 1.25 1.07 to 1.76 
  SC 0.94 0.68 to 1.14   SC 1.21 0.73 to 1.48 
  BS 0.58 0.37 to 0.77   BS 0.56 0.42 to 0.68 
  TG 1.29 1.07 to 1.36   TG 1.46 1.37 to 1.78 
Adcy6 SN 2.13 1.09 to 3.16 Rapgef4 SN 1.04 0.80 to 1.83 
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  DRG 1.35 0.70 to 2.25   DRG 1.47 1.22 to 1.56 
  SC 0.09 0.03 to 0.12   SC 0.9 0.75 to 1.19 
  BS 0.64 0.46 to 1.00   BS 0.8 0.75 to 0.83 
  TG 0.93 0.71 to 1.40   TG 1.07 0.91 to 1.28 
 

Table 1. Altered levels of AC isoforms and downstream targets during morphine tolerance. 
Morphine tolerance was induced in mice by twice daily injections of 15 mg/kg morphine in 
saline (100 µL, subcutaneous) for five days. Expression of each gene in sciatic nerve (SN), 
dorsal root ganglion (DRG), spinal cord (SC), brainstem (BS) and trigeminal ganglion (TG) was 
analyzed using qRT-PCR. The mean gene concentration within each tissue was first normalized 
to 18S before being compared to the same tissue from saline treated mice resulting in overall fold 
change. Median fold change and the range of fold change values are reported (n=4/group). 

 

Systemic ST034307 administration attenuates morphine tolerance and withdrawal  

Previous research demonstrated ST034307 acts as an AC1 inhibitor and as an analgesic in a 
mouse chronic inflammatory pain model [4]. The data presented here also confirm the possible 
antinociceptive properties of ST034307.  In both mechanical and thermal nociceptive tests, the 
peak threshold and latency measurements increased after intraperitoneal administration of 
ST034307 (Figure 1A, B). A significant difference in TPW latency was seen between vehicle 
and ST034307 over time (Figure 1B; repeated measures ANOVA with Bonferroni’s post hoc 
test, F (1, 12) = 15.06, p = 0.0022, CI15min = 1.282 to 5.912). This data demonstrates the peak 
antinociceptive action of ST034307 occurring around ~15 minutes post injection, but this effect 
is fairly weak in naïve mice. So, any changes in thresholds seen during morphine tolerance 
testing should be due to AC1 inhibition and not analgesia caused by ST034307 administration. 

Previous research demonstrated ST034307 acts as an AC1 specific inhibitor capable of blocking 
heterologous sensitization of AC1 after chronic MOR activation in vitro[4]. To determine if 
ST034307 attenuates morphine tolerance and opioid-induced hypersensitivity in vivo, mice were 
subjected to twice daily morphine injections (10 mg/kg on day one increasing 10 mg/kg each day 
to a final concentration of 40 mg/kg, sc) in combination with either an injection of vehicle or 
ST034307 (5 mg/kg, ip), 15 minutes post-morphine. MPW thresholds were measured before the 
start of injections (Figure 1C) and 30 minutes post morphine injection (Figure 1D) to measure 
opioid-induced hypersensitivity and morphine tolerance, respectively. Although the 
administration of ST034307 increased paw withdrawal thresholds after morphine administration 
had ceased after Day 4, no significant difference is seen between the two treatment groups pre-
morphine (Figure 1C; two-way ANOVA with Bonferroni’s post hoc test, F (1, 16) = 3.940, p = 
0.0646). Mice treated with ST034307 demonstrated significantly higher MPW thresholds after 
morphine injections compared to vehicle treated mice (Figure 1D; two-way ANOVA 
Bonferroni’s post hoc test, F (1, 16) = 6.512, p = 0.0213),  indicating that  the pharmacological 
inhibition of AC1 can aid in the attenuation of tolerance.     
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Intrathecal knockdown of Adcy1 attenuates morphine tolerance and opioid-induced 
hypersensitivity  

An AAV9 viral vector strategy utilizing shRNA targeting to Adcy1 was used to reduce Adcy1 
expression within the peripheral nervous system and spinal cord via intrathecal injection. To 
ensure the shRNA knockdown strategy of the AAV9-Adcy1 viral vector was successful, animals 
were sacrificed eight weeks post viral vector injections and SC and DRG tissues were collected. 
The mRNA copy numbers of Adcy1 were significantly reduced in AAV9-Adcy1 viral vector 
injected mice in both the SC (Figure 2A, unpaired t-test, p = 0.0201) and DRG (Figure 2A, 
unpaired t-test, p = 0.0370) compared to mice treated with the AAV9-scramble vector.  Changes 
to the expression levels of Adcy5, Adcy8, Oprm1, and other genes involved in the AC/cAMP 
pathway (e.g. PKA, Epac) were also analyzed, but no significant differences were seen for any of 
these genes in either tissue (Figure 2B-F).  

Since continued agonist stimulation of the MOR increases AC1/cAMP activity, the Adcy1 
knockdown model was hypothesized to show an attenuation of morphine tolerance and opioid-
induced hypersensitivity, but not necessarily acute morphine antinociception. An acute dose 
response curve indicated AAV9-Adcy1 and AAV9-scramble treated mice had similar 
antinociceptive effects of morphine (Figure 3A; two-way ANOVA, F (1, 18) = 0.3231, p = 
0.5768).  This suggests that a single administration of morphine remains equally effective after 
knockdown of AC1.  Five weeks post viral vector injections, mice were administered morphine 
twice daily in saline (15 mg/kg, sc) and MPW thresholds were measured twice daily, before the 
morning injections of morphine (Figure 3B) and 30 minutes post injection (Figure 3C). On Day 
6, MPW thresholds were taken ~18 hours after last morphine injection (Figure 3B). AAV9-
Adcy1 injected mice had significantly higher MPW thresholds compared to AAV9-scramble 
injected mice both pre-morphine administration (Figure 3B; two-way ANOVA with Bonferroni’s 
post hoc test, F (1, 18) = 7.323, p = 0.0145, CIDay6 = -1.933 to -0.7565) and post-morphine 
(Figure 3C; two-way ANOVA with Bonferroni’s post hoc test, F (1, 18) = 5.847, p =  0.0264, 
CIDay4 = -2.034 to -0.1778, CIDay5 = -2.211 to -0.3548) indicating the knockdown of Adcy1 not 
only attenuates the development of morphine tolerance but also the development of opioid-
induced hypersensitivity.  

Using an escalating morphine tolerance model, mice were subjected to MPW latency testing 
while given twice daily injections of increasing doses of morphine in saline, starting with 10 
mg/kg on Day 1 and increasing by 10 mg/kg daily until reaching 40 mg/kg on Day 4. The 
escalating morphine tolerance paradigm was used because the development of tolerance or 
opioid-induced hypersensitivity can lead to increased pain in clinic, with the usual consequence 
of escalating doses of opioids, either by prescription or self-medication[19]. MPW thresholds 
were measured every AM before (Figure 3D) and 30 minutes post-morphine administration 
(Figure 3E). On Day 5 and Day 6, MPW thresholds were measured ~18 hours and ~42 hours 
after the last morphine dose, respectfully (Figure 3D). AAV9-Adcy1 injected mice exhibited 
significantly higher MPW thresholds than AAV9-scramble injected mice pre-morphine 
administration on Day 4, and on Days 5 and 6 when no morphine was administered (Figure 3D; 
two-way ANOVA with Bonferroni’s post hoc test, F (1, 18) = 23.51, p = 0.0001, CIDay4 = -0.8649 
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to -0.03292, CIDay5 = -0.8556 to -0.02362, CIDay6 = -1.299 to -0.4668). However, no significant 
difference is seen in MPW thresholds post-morphine administration between AAV9-Adcy1 and 
AAV9-scramble injected mice (Figure 3E). This indicates that knockdown of Adcy1 significantly 
attenuates opioid-induced hypersensitivity as well as opioid withdrawal in the escalating 
morphine tolerance model. 

Intrathecal knockdown of Adcy1 improves mechanical hypersensitivity and non-evoked 
behaviors after CFA injection in mice  

Previous research has demonstrated that pharmacological inhibition of AC1 via ST034307 could 
provide analgesia in a mouse model of chronic inflammatory pain[4]. We devised a similar test 
for analgesic efficacy after Adcy1-shRNA treatment seven weeks after inoculation.  One hind 
paw of each mouse was injected with CFA and MPW thresholds were measured three hours to 
one week after injection on both the injected (ipsilateral, Figure 4A) and non-injected 
(contralateral, Figure 4B) hind paws. AAV9-Adcy1 injected mice had significantly higher MPW 
thresholds than AAV9-scramble treated mice on both the CFA injected paw (Figure 4A; repeated 
measures ANOVA with Bonferroni’s post hoc test, F (1, 18) = 6.157, p = 0.0232, CI168hrs = -
0.8329 to -0.08993) and the uninjected (right) hind paw (Figure 4B; repeated measures ANOVA 
with Bonferroni’s post hoc test, F (1, 18) = 9.148, p = 0.0073, CI48hrs = -1.384 to -0.0513). This 
data indicates gene knockdown of Adcy1 does provide some analgesic efficacy in the chronic 
inflammatory pain model 48 hours to one-week post-CFA administration.  

During this stage of chronic inflammation, non-evoked measures of pain and animal well-being 
including burrowing and nesting were examined to gain a better understanding of the impact of 
AC1 expression on behavioral measures during chronic inflammation. Both AAV9-Adcy1 
knockdown and AAV9-scramble treatment groups were subjected to burrowing testing three 
weeks and seven weeks post viral vector injections. No significant differences in burrowing 
behaviors were seen between the two treatment groups at the three weeks post viral vector 
injections (Figure 4C, Pre-CFA) but a significant difference was seen between the two treatment 
groups four days after CFA injection (Figure 4C, Post-CFA, two way ANOVA with 
Bonferroni’s post hoc test; F (1, 18) = 16.66; p = 0.0007; CIPre-CFA = -16.16 to 39.56, CIPost CFA = 
-55.73 to -0.01139). A significant difference was also seen between the pre-CFA and post-CFA 
burrowing results for the AAV9-Adcy1 viral vector treated group (Figure 4C, two-way ANOVA 
with Bonferroni’s post hoc test; F (1, 18) = 16.66; p = 0.0007; CIAdcy1 = -83.03 to -25.03).  

Nesting behaviors were also conducted seven weeks post viral vector injections.  A significant 
difference in nesting scores was seen between AAV9-Adcy1 and AAV9-scramble injected mice 
(Figure 4D, Mann Whitney U test; p < 0.0001). Altogether, this data indicates the level of 
ongoing pain or discomfort may be decreased after AC1 knockdown and the loss of AC1 
signaling may contribute greater functional motility during chronic pain.    

Knockdown of Adcy1 does not alter mobility or thermal nociception in mice 

Additional behavioral tests were performed in order to see if a reduction of AC1 expression 
would affect other animal behaviors.  Mice were subjected to both rotarod and open field 
assessments and thermal paw withdrawal testing three and four weeks post viral-vector 
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injections, respectively. For rotarod testing, the total time on rotarod (Figure 5A) and maximum 
speed reached (Figure 5B) were not significantly different between AAV9-scramble and AAV9-
Adcy1 mice.  No significant difference was seen between AAV9-scramble and AAV9-Adcy1 
mice during TPW testing (Figure 5C). In open field tests, no significant difference was seen 
between AAV9-Scramble and AAV9-Adcy1 viral vector injected mice in distance traveled 
(Figure 5C), velocity (Figure 5F) and change in orientation angle (Figure 5G;). However, a small 
yet significant difference was seen in time spent immobile (Figure 5E; unpaired t-test, p = 
0.0433) indicating that AAV9-Adcy1 viral vector injected mice spent less time stationary 
compared to AAV9-scramble injected mice. Altogether, this data indicates the AAV9-Adcy1 
shRNA does not cause any major mobility changes in mice.   

AAV9-Adcy1 knockdown does not alter sciatic nerve conduction 

Viral inoculation was confirmed by fluorescence microscopy and the presence of GFP (Figure 
6A). GFP signal was visualized in the sciatic nerves of all inoculated mice.  Both right and left 
sciatic nerves were isolated and C-fiber compound action potentials (CAPs) were performed 
eight weeks post viral vector injection and CAPs were recorded. The downregulation of Adcy1 
did not have any impact on thresholds, amplitude, or conduction velocity of CAPs (Figure 6B-
D.) 

Discussion 

The present study investigated the role of AC1 in a mouse model with regards to opioid 
tolerance, opioid-induced hyperalgesia, and inflammatory pain after CFA injection.  Although all 
of the underlying mechanisms behind tolerance and opioid-induced hyperalgesia are not 
currently known, increased AC1 expression and activity has been suggested to be one of the 
major causative agents [8].  Our results indicate pharmaceutical inhibition of AC1 using 
ST034307 reduced opioid tolerance and attenuated morphine-induced hypersensitivity after 
increasing opioid administration.  Intrathecal knockdown of Adcy1 using a viral strategy was also 
effective at reducing morphine-induced hyperalgesia and withdrawal.  The loss of Adcy1 
expression increased mechanical paw withdrawal thresholds, and improved burrowing and 
nesting behaviors after CFA intraplantar injection.  This data suggests a reduction in the activity 
or function of AC1 may represent a novel analgesic target in addition to improving opioid 
withdrawal in patients taking opioids. 

To date, there are nine membrane-bound AC isoforms, AC1-AC9 characterized in mammals and 
all nine have been confirmed in the nervous system [34].  AC1 is present in the brain, 
particularly in the cortex, hippocampus, and cerebellum, and historically has been thought to 
play a large role in learning and memory [12; 45].  AC1 is also present in the spinal cord [41] 
and in TrkA positive neurons in the DRG of mice [18].  A global loss in AC1 activity results in 
attenuated nocifensive behaviors after formalin hind paw injection and reduces pCREB 
activation in the superficial dorsal horn of the spinal cord [41].  The mechanisms that drive 
chronic pain are thought to be associated with opioid tolerance and both phenomena may arise 
from similar changes in intracellular signaling pathways in the peripheral and/or central nervous 
systems [20].  Along these lines, chronic morphine has been shown to produce a hypertrophied 
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state of AC activity for AC 1, 6 and 8 in vitro [2].  The hypothesis that a selective AC1 inhibitor, 
ST034307, could also attenuate the development of morphine tolerance and hypersensitivity 
using an escalating dose paradigm was tested in our studies.  Data presented here indicate that 
opioid-induced hyperalgesia was significantly attenuated after pharmacological inhibition of 
AC1, suggesting elevated activity of AC1 is responsible for the enhanced mechanical sensitivity 
upon cessation of daily morphine treatment.   

Hypersensitivity and hyperalgesia seen in chronic pain and drug-induced hypersensitivity states 
most likely occur on multiple levels along sensory transmission pathways, from peripheral 
afferents, spinal cord synapses, and connectivity across midbrain and cortical cells.  In chronic 
pain and opioid tolerant states, increased AC activity has been reported across the brain [28; 47] 
in addition to the spinal cord [42] and primary afferents [3; 46] which are thought to contribute 
to enhanced neurotransmission of nociceptive circuits.  In order to determine if a localized 
decrease specifically targeted to AC1 activity in the spinal cord and primary afferent neurons 
could attenuate to opioid tolerance and inflammatory chronic pain, a genetic knockdown 
approach was used instead of a pharmacological one.  Intrathecal delivery of AAV9 serotypes in 
live mice yield a high efficacy of transduction efficiency in DRG and lumbar spinal cord, while 
yielding sporadic labeling in the cortex and other peripheral tissues [32].  Static dosing of 
morphine (15 mg/kg, 2x daily, 5 days) and escalating doses of morphine over four days (10-40 
mg/kg, 2x daily) both resulted in enhanced baseline mechanical sensitivity during the course of 
morphine administration.  After intrathecal administration of AAV9-Adcy1, mice had higher 
mechanical paw withdrawal thresholds before (pre) and 30 minutes after (post) morphine 
administration.  However, the acute morphine antinociception was not changed compared to 
control vector mice suggesting no change in acute pain responses which is similar to data 
obtained from AC1 knockout mice[41]. This important distinction between a lack of 
antinociception after acute morphine delivery and a significant enhancement of paw withdrawal 
thresholds after chronic morphine administration, indicate that adenylyl cyclase hypertrophy 
occurs after repeated stimulation of the MOR, and not after a single dose of an opioid, which has 
been a proposed paradigm for many years[43]. 

Systemic delivery of pharmacological inhibitors of AC1 have reduced hypersensitivity in 
neuropathic and inflammatory pain models in mice [4; 39].  The hypothesis that genetic 
knockdown of AC1 in the spinal cord and DRG could also attenuate inflammatory pain in mice 
was tested in our studies.  Using a CFA model, AAV9-Adcy1 mice had higher mechanical paw 
withdrawal thresholds compared to control mice seven days after CFA injection.  This 
attenuation of mechanical hyperalgesia was also seen on the contralateral (uninjected) hind paws. 
During chronic pain states, it is possible that anatomical sites nearby also become sensitized to 
painful or non-painful stimulation as reported in previous rodent studies[6; 15].  The inhibition 
of AC1 appeared to attenuate mechanical hypersensitivity on either the ipsilateral or contralateral 
hindpaws, which indicate that pharmaceuticals targeting AC1 could also help attenuate pain 
sensitization beyond the primary zone of injury.  The lack of analgesia seen during the initial 
phases after CFA administration (3-24 hrs), could be due to the role of adenylyl cyclases in 
enhanced transcription of pro-inflammatory molecules, which could take several days to 
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manifest[35]. Alternatively, those results may be explained by the tissue specificity or overall 
level of the Adcy1 knockdown when compared to the AC1 knockout mice[41].  

Spontaneous pain and animal wellbeing after initiation of chronic pain is less frequently 
investigated than evoked measures, so our studies incorporated alternative testing measures.  
Studies have shown burrowing and nesting tests can be used to evaluate spontaneous pain or 
tonic pain in rodents [14; 30].  Data presented here indicate no appreciable differences between 
AAV9-Adcy1 and AAV9-scramble mice in burrowing behaviors prior to CFA injection.  
However, four days after CFA induction, there is a significant improvement in burrowing 
behavior in AAV9-Adcy1 treated mice.  A similar difference was also seen in the nesting scores 
after CFA induction, with AAV9-Adcy1 treated mice demonstrating significantly higher nesting 
scores than control mice. In previous studies, burrowing behavior is reduced in CFA 
inflammatory pain models in rats and can be reversed by ibuprofen[1].  Similarly, nesting 
behaviors are attenuated after CFA injection in mice which can be reversed by ketoprofen or low 
doses of morphine[31].  It is notable that no significant differences were detected between 
AAV9-Adcy1 and AAV9-scramble mice in either the rotarod, thermal paw withdrawal latencies, 
or open field testing parameters, indicating intrathecal knockdown of AC1 does not affect acute 
thermal pain thresholds or affect general ambulatory behaviors.  Transcriptional knockdown of 
AC1 in the sciatic nerves of mice was not measured, but significant changes in C-fiber 
compound action potential properties were not observed in this study.  These data indicate 
behavioral changes seen in the AAV9-Adcy1 animals may be restricted to the spinal cord and/or 
DRG, or loss of AC1 function does not impact axonal propagation of C-fiber action potentials.   

In conclusion, small molecule inhibition of AC1 with ST034307 reduced morphine tolerance and 
hyperalgesia in mice. Similarly, knockdown of AC1 in the spinal cord and DRG reduced opioid-
induced hypersensitivity after chronic administration of morphine in mice.  Additionally, 
behavioral differences seen after Adcy1 reduction appear specific to chronic pain-related 
behaviors, as animal locomotion and acute nociception were unaffected compared to controls.  
These studies suggest sensitized AC1 may represent a novel pharmaceutical target for the 
reduction of chronic pain and the attenuation of opioid-mediated adverse effects such as 
hyperalgesia.  Further research into the intracellular targets of AC1 may provide new 
opportunities for new therapeutics in the future.   
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Figures 

 

Figure 1. ST034307 Produces Mechanical and Thermal Antinociception and Attenuates 
Morphine Tolerance. To obtain mechanical thresholds and thermal paw withdrawal latencies , 
mice were given intraperitoneal injections of vehicle (□) or ST034307 (●) following baseline 
measurements (BL). (A) No significant analgesic differences were seen between vehicle and 
ST034307 treated mice. (B) A significant difference in thermal paw withdrawal was seen 
between vehicle and ST034307 treated mice (repeated measures ANOVA with Bonferroni’s post 
hoc test, F (1, 12) = 15.06, p = 0.0022, CI15min = 1.282 to 5.912). To induce morphine tolerance, 
mice received twice daily injections of morphine (10 mg/kg on day 1 increasing to 40 mg/kg by 
day 4, subcutaneous, 100 uL) along with an injection of either vehicle or ST034307 (5 mg/kg, 
intraperitoneal, 100 uL) 15 minutes post-morphine. BL measurements were measured every 
morning before morphine injection (C) and 30 minutes post injection (D) with day 5 and day 6 
thresholds measured ~18 hours and ~42 hours, respectfully, after last morphine injection. MPW 
thresholds pre-morphine were not significantly different between the two treatment groups (C; 
two-way ANOVA with Bonferroni’s post hoc test, F (1, 16) = 3.940, p = 0.0646) but mice given 
ST034307 had significantly higher MPW thresholds compared to vehicle treated post-morphine 
(D; two-way ANOVA Bonferroni’s post hoc test, F (1, 16) = 6.512, p = 0.0213). Asterisk 
indicates statistical significance (p < 0.05). Data presented as mean ± SEM with an n=4-
10/group.  
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 Figure 2. Adcy1 expression is significantly decreased in the spinal cord and dorsal root 
ganglia after shRNA knockdown. Eight weeks after AAV9-GFP-U6-m-Adcy1-shRNA or 
AAV9-GFP-U6-scramble-shRNA intrathecal injection, qRT-PCR analysis was performed for 
Adcy1 (A), Adcy5 (B), Adcy8 (C), Oprm1 (D), Rapgef3 (E), and Rapgef4 (F) within the spinal 
cord (SC) and dorsal root ganglia (DRG).  Adcy1 was significantly decreased in AAV9-Adcy1 (●) 
vector injected mice in both SC (A: unpaired t-test, p = 0.0201) and DRG (unpaired t-test, p = 
0.0370) compared to AAV9-scramble (□) vector injected mice. Asterisk indicates statistical 
significance (p < 0.05).  Data presented as mean ± SEM with an n=8-10/group. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.02.408419doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.02.408419


 

Figure 3. Intrathecal shRNA knockdown of Adcy1 attenuates morphine tolerance and 
morphine induced hypersensitivity in mice. MPW thresholds were measured after intrathecal 
injection of either AAV9-GFP-U6-m-Adcy1-shRNA (●) or AAV9-GFP-U6-scramble-shRNA (□) 
four to six weeks post viral vector injections. During morphine dose response (A), baseline (BL) 
thresholds were measured before mice were given injections of vehicle. Increasing doses of 
morphine in saline were administered and MPW thresholds were measured 30 minutes post 
injection. No significant differences were seen between the two treatment groups. In a morphine 
tolerance paradigm, mice were injected twice daily with 15 mg/kg morphine in saline for five 
days (B-C) or were administered twice daily morphine in saline injections starting with 10 mg/kg 
and increasing by 10 mg/kg every day for four days until reaching 40 mg/kg on day four (D-E). 
Baseline measurements were taken every morning before and 30 minutes after morphine 
administration, with treatment day six (6) measurements taken ~18 hours after last morphine 
administration (B) and with MPW thresholds on days five and six measured ~18 hours and ~42 
hours post morphine injection, respectfully (D). AAV9-Adcy1 viral vector injected mice had 
significantly higher MPW thresholds during morphine tolerance testing compared to AAV9-
scramble injected mice both pre-morphine (B; two-way ANOVA with Bonferroni’s post hoc test, 
F (1, 18) = 7.323, p = 0.0145, CIDay6 = -1.933 to -0.7565) and post-morphine (C; two-way 
ANOVA with Bonferroni’s post hoc test, F (1, 18) = 5.847, p =  0.0264, CIDay4 = -2.034 to -
0.1778, CIDay5 = -2.211 to -0.3548). AAV9-Adcy1 viral vector injected mice had significantly 
higher MPW thresholds during baseline measurements of escalating morphine tolerance 
compared to AAV9-scramble injected mice pre-morphine (D; two-way ANOVA with 
Bonferroni’s post hoc test, F (1, 18) = 23.51, p = 0.0001, CIDay4 = -0.8649 to -0.03292, CIDay5 = -
0.8556 to -0.02362, CIDay6 = -1.299 to -0.4668). (E) No significant difference in morphine 
efficacy is seen during escalating morphine tolerance. Asterisk indicates statistical significance 
(p < 0.05). Data presented as mean ± SEM with an n=10/group.  
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Figure 4. Adcy1 intrathecal knockdown provides analgesia in mice with CFA induced 
inflammatory pain. Seven weeks post AAV9-GFP-U6-m-Adcy1-shRNA (●) or AAV9-GFP-
U6-scramble-shRNA AAV9-scramble (□) injections, baseline MPW thresholds were measured 
before the left hind paw was injected with 20 µL undiluted CFA. MPW thresholds were then 
measured 3 hours, one day, two days, and one week post CFA injection on both the injected 
(ipsilateral) hind paw (A) and the uninjected (contralateral) hind paw (B). AAV9-Adcy1 viral 
vector injected mice had significantly higher MPW thresholds than AAV9-scramble injected 
mice (□) on the injected paw (A; repeated measures ANOVA with Bonferroni’s post hoc test, F 
(1, 18) = 6.157, p = 0.0232, CI168hrs = -0.8329 to -0.08993), and on the CFA uninjected paw (B; 
repeated measures ANOVA with Bonferroni’s post hoc test, F (1, 18) = 9.148, p = 0.0073, CI48hrs 
= -1.384 to -0.0513). (C) AAV9-Adcy1 and AAV9-scramble viral vector injected mice underwent 
burrowing testing three weeks post viral vector injections (Pre-CFA) and again seven weeks post 
viral vector injection (Post-CFA). AAV9-Adcy1 viral vector injected mice had significantly 
higher percent gravel displaced during burrowing testing post-CFA than AAV9-scramble injected 
mice (C; two way ANOVA with Bonferroni’s post hoc test; F (1, 18) = 16.66; p = 0.0007; CIPre-

CFA = -16.16 to 39.56, CIPost CFA = -55.73 to -0.01139) and also significantly higher percent gravel 
displaced than their pre-CFA activity (two-way ANOVA with Bonferroni’s post hoc test; F (1, 
18) = 16.66; p = 0.0007; CIAdcy1 = -83.03 to -25.03). (D) Nesting behavioral measures began 
seven weeks post viral vector injections corresponding to 3 days post CFA injection. AAV9-
Adcy1 viral vector injected mice had significantly higher nesting scores compared to AAV9-
scramble injected mice (Mann Whitney U test; p < 0.0001). Asterisk indicates statistical 
significance (p < 0.05). Data in (D) presented as Median with Range, all others presented as 
mean ± SEM with n=10/group). 
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Figure 5. Animal mobility, thermal sensitivity and open field behaviors are not affected in 
mice with intrathecal knockdown of Adcy1.  Three to four weeks post AAV9-GFP-U6-m-
Adcy1-shRNA (●) or AAV9-GFP-U6-scramble-shRNA (□) intrathecal injections, mice 
underwent behavioral assessments to gauge mobility and the presence of deficits prior to 
morphine testing. For rotarod testing (A, B), mice were placed on the rotarod with an initial 
speed of 4 rpm increasing 1 rpm every 30 seconds to a maximum of 14 rpm. The maximum time 
(A) and revolutions per minute (B) were not significantly different across treatment groups. (C) 
For thermal paw withdrawal latency testing no significant difference is seen between AAV9-
scramble and AAV9-Adcy1 mice. For open field assessment (D-G), mice were placed inside 
arena and activity was recorded for 30 minutes. Distance traveled in cm (D), time spent 
immobile in seconds (unpaired t-test, p = 0.0433) (E), velocity in centimeters per second (F) and 
change in orientation angle in degrees (G) were all calculated for both AAV9-scramble and 
AAV9-Adcy1 vector injected mice. No significant differences were seen between the two 
treatment groups in distance traveled, change in orientation angle and velocity. Data presented as 
mean ± SEM with an n=10/group. 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.02.408419doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.02.408419


 

Figure 6. Knockdown of Adcy1 does not impact sciatic nerve conduction. Eight weeks post 
intrathecal inoculation with either AAV9-GFP-U6-m-Adcy1-shRNA (●) or AAV9-GFP-U6-
scramble-shRNA (□), sciatic nerves were removed and used for compound action potential 
recordings. (A) GFP signal visualized by fluorescence microscopy.  Scale bar = 200 microns. 
The electrical thresholds (B), maximum CAP amplitude (C), and conduction velocity (D), were 
not significantly different between groups. Data presented as mean ± SEM with n=10-15/group. 
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Supplemental Files 
 

 
Supplemental Figure 1.  Heat map of genes expressed in saline-treated mice.  (A) Adenylyl 
cyclases 1, 2, 3, 5, 6, and 8.  (B) Protein kinase A catalytic (Prkaca) and regulatory subunits 
(Prkacb), Epac1 (Rapfgef3), and Epac 2 (Rapgef4).  mRNA expression normalized to 18s 
expression in each tissue.   
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Gene 
NCBI 
Number 

Length 
Forward Reverse 

18s  NR_003278.3 149bp 
5'-
CGCCGCTAGAAGTGAAAT
TCTT-3' 

5'-
CAGTCGGCATCGTTTATG
GTC-3' 

Adcy1 NM_009622.1 115bp 
5'-
TGCAGACATCGTGGGTTT
CA-3' 

5'-
ACAGTGGTTTTCGGCTA-3' 

Adcy2 NM_153534.2 140bp 
5'-
CTAAACCGAGTGCTGCTG
GA-3' 

5'-
TTGAAGTCCGGAATGGAG
GC-3' 

Adcy3 NM_138305.3 199bp 
5'-
TCTGGGGTCCAAGAAGAG
AGA-3' 

5'-
GACCCGGAATTTGGGATT
GTC-3' 

Adcy5 NM_0010127
65.4 151bp 

5'-
TGATCGAGGCCATCTCGT
TG-3' 

5'-
TGGTTGGCCAGAGTGACA
TC-3' 

Adcy6 NM_007405.2 162bp 
5'-
TGCGGTGAGGGAGAATC
ACT-3' 

5'- 
ACACCTGTTACCTCACGC
AC-3' 

Adcy8 NM_0012919
03.1 191bp 

5'-
CCGCATCTACATCCATCG
CT-3' 

5'-
AGTAGTAGCAGTCCCCCA
GG-3' 

Prkaca NM_008854.5 96bp 
5'-
TTTGCCAAGCGTGTGAAA
GG-3' 

5'-
AGCCTTGTTGTAGCCTTT
GCT-3' 

Prkacb NM_011100.4 122bp 
5'-
TGCAGCCCAGATTGTGCT
AA-3' 

5'-
ACCCGAAATCTGTGACCT
GG-3' 

Rapgef
3 

NM_0011778
10.1 145bp 

5'-
GGAAGTGCATGAGCTGAC
CC-3' 

5'-
CACCTGGTGGATCCTGTT
GAAG-3' 

Rapgef
4 

NM_0012041
65.1 96bp 

5'-
TCCAAGAGCTGCCTCCAT
TG-3' 

5'-
GAATCAACGTCCCTCAGA
AT-3' 

Gapdh NM_0012897
26.1 85bp 

5’-
TGACCTCAACTACATGGT
CTACA-3’ 

5’-
CTTCCCATTCTCGGCCTT
G-3’ 

 
Supplemental Table 1. Gene Specific Primers Used for qRT-PCR. The NCBI gene accession 
number, resulting base pair length, and both the forward and reverse primers for each gene for 
qRT-PCR analysis.  
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	In conclusion, small molecule inhibition of AC1 with ST034307 reduced morphine tolerance and hyperalgesia in mice. Similarly, knockdown of AC1 in the spinal cord and DRG reduced opioid-induced hypersensitivity after chronic administration of morphine ...

