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ABSTRACT 

 

Antibody-mediated rejection (AMR) causes >50% of late kidney graft losses. Although donor-

specific antibodies (DSA) against HLA cause AMR, antibodies against non-HLA antigens are also 

linked to rejection. Identifying key non-HLA antibodies will improve our understanding of antibody-

mediated injury.  

We analyzed non-HLA antibodies using protein microarrays in sera from 91 kidney transplant 

patients with AMR, mixed rejection, acute cellular rejection (ACR), or acute tubular necrosis 

(ATN). IgM and IgG antibodies against 134 non-HLA antigens were measured pre-transplant, at 

the time of biopsy-proven diagnosis, and post-diagnosis. Findings were validated in 60 kidney 

transplant patients from an independent cohort.  

Seventeen non-HLA antibodies were significantly increased (p<0.05) in AMR and mixed rejection 

compared to ACR or ATN pre-transplant, nine at diagnosis and six post-diagnosis. AMR and 

mixed cases showed significantly increased pre-transplant levels of IgG anti-Ro/SS-A and anti-

CENP-B, compared to ACR. Together with IgM anti-CENP-B and anti-La/SS-B, these antibodies 

were also significantly increased in AMR/mixed rejection at diagnosis. Increased IgG anti-Ro/SS-

A and anti-CENP-B pre-transplant and at diagnosis, and IgM anti-La/SS-B at diagnosis, were 

associated with the presence of microvascular lesions, but not with tubulitis or interstitial/total 

inflammation. All three antibodies were associated with the presence of class-II DSA (p<0.05). 

Significantly increased IgG anti-Ro/SS-A in AMR/mixed compared to ACR (p=0.01), and 

numerically increased IgM anti-CENP-B (p=0.05) and anti-La/SS-B (p=0.06), were validated in 

the independent cohort. 

 

This is the first study that implicates autoantibodies against Ro/SS-A and CENP-B in AMR. These 

non-HLA antibodies may participate in the crosstalk between autoimmunity and alloimmunity in 

kidney AMR.  
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SIGNIFICANCE STATEMENT 

 

Antibody-mediated rejection (AMR) causes >50% of kidney graft losses. Although donor-specific 

antibodies against HLA cause AMR, antibodies against non-HLA antigens are also linked to 

rejection. Serum samples of 91 kidney transplant patients were analyzed using protein arrays 

against 134 non-HLA antigens. AMR and mixed rejection cases showed significantly increased 

pre-transplant levels of IgG anti-Ro/SS-A and anti-CENP-B, compared to acute cellular rejection. 

Together with IgM anti-CENP-B and anti-La/SS-B, these antibodies were significantly increased 

in AMR/mixed rejection at diagnosis and were validated in a second, independent cohort. 

Increased IgG anti-Ro/SS-A, IgG anti-CENP-B and IgM anti-La/SS-B were associated with the 

presence of microvascular lesions and anti-HLA class-II antibodies. This is the first study to 

implicate anti-Ro/SS-A, anti-La/SS-B and anti-CENP-B autoantibodies in AMR.  
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INTRODUCTION 

 

Antibody-mediated rejection (AMR) causes >50% of late graft failures in kidney transplantation.1 

AMR is usually caused by antibodies against human leukocyte antigens (HLA). Although 

histologic findings suggestive of AMR (i.e., microvascular inflammation) are linked to anti-HLA–

mediated injury, some patients develop these lesions in the absence of anti-HLA donor-specific 

antibodies (DSA).2–6 In turn, not all transplant patients with anti-HLA DSA develop rejection,7 

suggesting the involvement of other mechanisms in AMR.  

 

Non-HLA allo- or autoantibodies may contribute to the pathogenesis of AMR. Antibodies against 

vimentin,8,9angiotensin-II type-1 receptor (AT1R),2,10–15collagen,16,17fibronectin,16perlecan/LG3,18–

21and agrin,5 as well as anti-apoptotic cell autoantibodies,22–25 are associated with reduced 

survival and allograft rejection.2,18,20,26 Non-HLA antibodies are not routinely monitored and their 

contribution to kidney allograft injury is unclear. Moreover, their dynamic levels and their 

relationship with cellular rejection or other forms of graft injury remain unknown. 

 

Production of autoantibodies may relate to viral infections, molecular mimicry, cryptic antigen 

exposure,27–32 or as yet unrecognized mechanisms. Autoantibodies produced post-transplant 

could result from immunotherapy-induced loss of regulatory T-cell proliferation and loss of 

tolerance to self-antigens.33,34,35 While several non-HLA autoantibodies recognized in systemic 

lupus erythematosus (SLE) and connective tissue disease have been extensively studied in 

autoimmunity,36–39 their role in alloimmunity has not been examined. Yet, autoimmune and 

alloimmune kidney injury share similarities, especially with regards to vascular injury.40,41 

Furthermore, both SLE and allograft rejection42 are characterized by Th17 responses.43,44 There 

is increasing recognition of the interplay between allo- and autoimmunity,17,23,45 and this crosstalk 

may perpetuate injury.46  

 

Our aim was to identify non-HLA antibodies associated with AMR, and to determine their evolution 

over time and their link to DSA and histopathology lesions. We describe herein a retrospective 

cohort of 91 kidney transplant patients with 134 non-HLA antibodies measured pre-transplant, at 

the time of indication biopsy-based diagnosis, and post-diagnosis. Antibodies previously 

implicated in solid organ transplant injury or autoimmunity were measured using protein arrays. 

We identified anti-Ro/SS-A(52KDa), anti-CENP-B, and anti-La/SS-B antibodies as significantly 

increased in kidney transplant recipients with AMR, compared to patients with acute cellular 
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rejection (ACR) or acute tubular necrosis (ATN). These antibodies were associated with class-II 

DSA and microvascular lesions. We validated these antibodies in an external, independent 

cohort. This is the first study, to our knowledge, that links autoimmunity-related antibodies to 

humoral alloimmunity. 
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METHODS 
 
Study Design and Patient Population 

 
We studied two groups of patients, one for discovery and one for validation. For the discovery 

phase, we identified kidney transplant recipients at the University Health Network (UHN) in 

Toronto, with rejection diagnosed between 2008 and 2016, by searching the CoReTRIS registry.47 

We selected cases with a histological diagnosis of rejection on a for-cause biopsy, and at least 

one serum sample available in the HLA laboratory. Samples with insufficient volume and/or 

retrieved within 21 days after the patient received plasmapheresis (PLEX) and/or intravenous 

immunoglobulin infusion (IVIG) were excluded from further study. Patient exclusion criteria were 

1) no serum sample available post-transplant; and 2) all serum samples affected by PLEX and/or 

IVIG. Finally, we selected cases with ATN that were graft-age matched to AMR and to ACR cases. 

A renal pathologist (R.J.) scored the biopsies according to the Banff classification (2017).3 

Twenty-eight of these 91 patients were described in our recent study.48 This study was approved 

by the UHN institutional research ethics board (CAPCR identifier 13-7261). 

Serum samples were collected pre-transplant, ‘at diagnosis’ (within 30 days of the indication 

biopsy date), and ‘post-diagnosis’ (collected >30 days after the indication biopsy). The time 

intervals between the indication biopsy and the post-diagnosis serum collection ranged from 37 

days to 2,193 days. The presence of anti-HLA class-I and class-II antibodies in the sera was 

assessed using Luminex single-antigen bead assays, as part of standard clinical practice. To 

assess non-HLA antibody levels, we quantified IgG and IgM antibodies against 134 non-HLA 

antigens, using a VersArray Chipwriter Pro antigen microarray platform (Virtek, Canada). Antigen 

characteristics are described in Table S1.  

 

For external validation, sera from 60 kidney transplant patients from Center Hospitalier de 

l'Université de Montréal (CHUM, Montreal) were retrieved ‘at diagnosis’ (median time of ≤4 days 

from the indication biopsy). In these samples, IgG and IgM levels against the key non-HLA 

antibodies identified in the discovery study, were measured using the same microarray platform. 

The validation cohort was part of a previous study of LG3-related antibodies, and consisted of 29 

stable non-rejecting cases, 16 cases with ACR, and 15 cases with acute vascular rejection (AVR), 

as described previously.49 Upon review of the AVR cases, we were able to assign a diagnosis of 

AMR or mixed rejection (n=5), ACR grade 2-3 (n=3), and AVR with insufficient information to 

delineate between AMR and ACR (n=7). The study was approved by the clinical research ethics 

committee at CHUM (Research Ethics Board number 2008-2545, HD.07.034).   
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Histopathology 
 

Each indication biopsy was embedded in paraffin and 3µm sections were obtained in a microtome 

(Leica). Sections were then deparaffinized through graded alcohols and subjected to 

hematoxylin/eosin, trichrome, periodic acid–Schiff, and periodic Schiff-methenamine stains; and 

examined under a light microscope. Staining of C4d was also performed on additional 4µm frozen 

sections by immunofluorescence. Morphologic features were diagnosed and given a 

semiquantitative score (0-3) by R.J., according to the updated Banff classification.3,48 

 
Non-HLA Antigen Microarrays 
 

Antigen Library and Microarray Generation 

 

The 134 antigens including proteins, peptides, and cell lysates were diluted to 0.2 mg/ml in PBS 

and stored in aliquots at -80°C. These antigens were selected because of their importance in 

autoimmune diseases,50,51 or because they were linked to humoral rejection of several organs 

including kidney,52 lung53 or heart.54 To generate the protein microarrays, the 134 antigens 

screened in this study were spotted in duplicate onto two-pad FAST nitrocellulose coated slides 

(Maine Manufacturing, Sanford, ME) using a VersArray Chipwriter Pro microarrayer (Virtek, 

Toronto, Canada) as previously described.54–56 Slides were arrayed using solid pins (Arrayit, 

Sunnyvale, CA), which generated antigen spots with a diameter of approximately 500µm. This 

process was conducted at 55% relative humidity and room temperature. Two microarrays were 

generated on each slide. Nine additional empty spots were measured as blank, to determine the 

background fluorescence. In both sets of microarrays (discovery and validation), PBS was spotted 

as negative control, while human IgG (whole molecule and Fc fragment) and human IgM (whole 

molecule) were spotted to confirm specificity of the anti-IgG and anti-IgM secondary antibodies, 

respectively.  

 

Sample processing 
 

The antigen microarray platform was used to screen for IgG and IgM against the 134 non-HLA 

antigens as previously described.54 Slides were first dried at room temperature and placed in 

FAST frames (Maine Manufacturing). Each frame supported a total of 4 slides (8 protein arrays). 

Microarrays were then incubated overnight with 700µL of blocking buffer (PBS, 5% FBS, 0.1% 

Tween) at 4°C. The following day, blocking buffer was removed and each microarray was 
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incubated for 1 hour at 4°C with 600µL of a different serum sample at a dilution of 1:100 in blocking 

buffer. A serum sample from a patient with SLE with known pronounced IgG reactivity against 

Ribo P0, Ribo P1 and Ribo P2, as well as high IgM reactivity against ssDNA and dsDNA, was 

arrayed as a quality control. Blocking buffer alone was used as a negative control. Microarrays 

were then washed 3 times for 10 minutes with PBST (PBS and 0.1% Tween) at room temperature, 

and subsequently probed with secondary antibodies for 45 minutes at 4°C. Slides were probed 

with a mixture of secondary antibodies consisting of Cy3-labeled goat anti-human IgG (Jackson 

ImmunoResearch, West Grove, PA) at a dilution of 1:2,000 and Cy5-labeled goat anti-human IgM 

(Jackson ImmunoResearch) at a dilution of 1:1,000. Microarrays were washed again 3 times for 

10 minutes with PBST, and slides were dried by centrifugation at 220G for 5 minutes at room 

temperature. Slides were kept at room temperature and protected from the light until scanning.  

 

To minimize the potential effect of frame-to-frame or day-to-day variability when comparing 

different study groups, all groups were proportionally represented in each processing day. 

Samples from the same patient collected at different time points were analyzed in the same frame, 

to avoid potential batch effects when generating time-course data. Toronto (discovery) and 

Montreal (validation) cohorts could not be directly compared, since samples were analyzed on 

different days, and arrays are subject to batch effects. 

 

 
Quantification of fluorescence intensity 
 

The fluorescent signals of Cy3 (ʎ=532 nm) and Cy5 (ʎ=635 nm) were measured on an Axon 

4200A microarray scanner (Molecular Devices, Sunnyvale, CA) using a Genepix 6.1 software 

(Molecular Devices). For each spot, the software calculated the median fluorescent intensity (MFI) 

minus the local background on the Cy3 and Cy5 channels. To confirm adequate background 

correction, nine blank spots were also measured in each array. The MFI of each antigen was then 

determined by averaging the intensity of the duplicate spots. Values of MFI ≥200 in at least one 

sample were set as detection threshold to further study the antibody signal against a particular 

antigen. A signal with MFI ≥200 was >2 SD from the average MFI of the blanks. As expected, the 

highest IgG signal across all samples was found at the antigen spots with human IgG (average 

MFI = 58,212.59) or human IgG Fc (average MFI = 64,363.63), while the highest IgM signal 

belonged to the spots with human IgM (average MFI = 51,100.25).  
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Data Analysis and Bioinformatics 
 
Assessment of data distribution 
 

We evaluated the distributions of all IgG and IgM MFI values in the different diagnoses, and 

between the sexes. In each patient, a value of zero was given to all antibodies with MFI <200. 

The log2-transformed MFI values of each antibody in each study group were then used to create 

density plots using ggplot2 3.3.257 in R 4.0.2.58 Log2-transformed values have been used in 

subsequent analyses. 

 

Differential antibody levels between types of rejection 
 

Differential antibody levels analysis of both data sets (discovery and validation) was performed in 

R. The Wilcoxon–Mann–Whitney nonparametric test was used to assess differences in non-HLA 

antibody levels between groups. By definition, both AMR and mixed cases show DSA and/or 

histological signs of antibody-mediated injury. In addition, the distributions of the IgG and IgM 

intensity values were comparable between these two forms of rejection. We thus combined the 

AMR and the mixed cases in one single ‘AMR/mixed’ group in the differential antibody MFI 

analysis, and compared this group to ACR and ATN. This enabled us to enhance the statistical 

power of the comparative analysis. Data are presented as medians ± SEM. P<0.05 was 

considered significant. 

 
Antibody changes over time and hierarchical clustering analysis 
 
Log2-transformed MFI values of the non-HLA antibodies with significantly different levels in 

AMR/mixed patients compared to ACR or ATN were used to generate violin plots of MFI 

distribution, to visualize antibody changes among groups at different time points. Scatter plots 

were used to compare MFI trends between the “pre-transplant” and “at diagnosis” time points. 

Plots were created using ggplot2. Values were then normalized using the formula (x-

min(x))/(max(x)-min(x)) and used to build heatmaps with pheatmap 1.0.1259.  Unsupervised 

hierarchical clustering of antibodies and samples was performed using pheatmap with default 

settings. 

 
 
Association between non-HLA antibody levels and clinical variables 
 
Associations between the MFI of non-HLA antibodies (continuous variable) and ordinal 

histopathology variables based on a semiquantitative 0-3 score (namely vascular fibrous intimal 
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thickening, tubulitis, total inflammation, peritubular capillaritis, intimal arteritis, interstitial 

inflammation, glomerulitis, chronic glomerulopathy, and C4d deposition), were analyzed. Each 

histopathology variable was split into low (0 or 0-1) and high (1-3 or 2-3) categories, and 

Wilcoxon–Mann–Whitney nonparametric tests were used to assess differences in non-HLA 

antibody expression between these two categories. Associations between the MFI of non-HLA 

antibodies and categorical variables (namely presence=1 versus absence=0 of anti-HLA DSA, 

anti-HLA class-I DSA and anti-HLA class-II DSA), were also assessed by Wilcoxon–Mann–

Whitney nonparametric tests. All analyses were conducted in R. P<0.05 was considered 

significant. The most significant associations between all clinical variables and non-HLA 

antibodies were represented using bubble plots (R and ggplot2).  

 
Protein-protein interaction and network analysis 
 
Physical protein-protein interactions of key non-HLA antibody targets were collected using the 

Integrated Interactions Database (version 05-2020, http://iid20.ophid.utoronto.ca, 

https://doi.org/10.1093/nar/gky1037)60. Interactions experimentally validated or predicted were 

retained and visualized using NAViGaTOR 3.0.13 (http://ophid.utoronto.ca/navigator). The gene 

names of the antibody targets that we previously found to be differentially expressed at the protein 

level in the AMR glomeruli or tubulointerstitium48  are also shown in the network.  
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RESULTS 
 
Study Population 
 
We studied sera from 43 patients with AMR, 20 patients with mixed rejection, 16 patients with 

ACR, and 12 patients with ATN (Table 1, Fig. 1A). Most patients were males, except for AMR 

cases, who had ˜50% males. Patients with ATN were significantly older than other groups. The 

median time between transplantation and diagnostic biopsy was similar in patients with AMR, 

ACR, and ATN (9.5-15.5 days), but higher among mixed cases (174 days). Most patients with 

AMR (86%) or mixed rejection (80%) had class-I and/or class-II DSA (Table 1). None of the ACR 

cases had DSA. Although 4/12 ATN patients had DSA, their biopsies did not show signs of 

rejection (Table 2). Glomerulitis and C4d deposition were detected exclusively among AMR and 

mixed cases. These two groups showed the highest scores for peritubular capillaritis. The highest 

interstitial inflammation, tubulitis, and total inflammation were observed in mixed rejection and 

ACR. Chronic glomerulopathy was found in one mixed and two AMR cases (Table 2). 

 
 
The Distribution of IgG Antibodies is Conserved Across Time and Diagnoses  
 
The workflow is shown in Fig. 1B. We analysed 166 serum samples using protein arrays against 

134 non-HLA antigens (Table S1). We focused on 119 IgG and 120 IgM antibodies against non-

HLA antigens detected with MFI≥200 in ≥1 sample. We examined the distributions of antibody 

levels in each group. The distribution of IgG antibodies was remarkably similar among groups and 

stable across time (Fig. 2A-C). Conversely, IgM antibody levels displayed a shift toward higher 

levels only in AMR and mixed rejection, at diagnosis (Fig. 2B). Male sex was associated with 

increased pre-transplant levels of IgG and IgM antibodies (Fig. S1). 

 

Antibodies Against Ro/SS-A, CENP-B, and La/SS-B are Increased in Kidney AMR and 

Mixed Rejection 

 
We were predominantly interested in non-HLA antibodies associated with antibody-mediated 

injury. Interestingly, AMR and mixed rejection groups had analogous IgG and IgM antibody 

distributions, emphasizing their similarity (Fig. 2). Among the studied non-HLA antibodies, 36 

were significantly altered (P<0.05) in AMR/mixed rejection compared to ACR and/or ATN, at one 

or more time points (Table 3), being 80% of them were increased in AMR/mixed rejection. IgG 

anti-Ro/SS-A(52KDa) and IgG anti-CENP-B were significantly increased in AMR/mixed patients 
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compared to ACR, both pre-transplant and at diagnosis. Together with these 2 antibodies, IgM 

anti-CENP-B, IgM anti-La/SS-B, IgM anti-Ribo P1, and IgM anti-PDH were significantly increased 

at diagnosis in AMR/mixed patients, compared to ACR. Furthermore, the distributions of IgG anti-

Ro/SS-A(52KDa), IgG and IgM anti-CENP-B, and IgM anti-La/SS-B, were remarkably similar 

between patients with AMR and mixed rejection, but different from ACR and ATN, and remained 

consistent across time (Fig. 3A). Hierarchical clustering showed that levels of IgG anti-Ro/SS-

A(52KDa) pre-transplant and at diagnosis clustered with IgG and IgM anti-CENP-B, respectively, 

and were highest in patients with class-II DSA (Fig.S2A,C). Anti-mitochondrial antibodies against 

components of the pyruvate dehydrogenase complex, namely IgM anti-PDH and IgG anti-M2 

(PCD-E2, OGDC-E2, BCOADC-E2 antigens), were also increased in AMR/mixed compared to 

ACR and ATN, at diagnosis (Fig. 3A-B, Table 3). 

 

In addition to IgG anti-Ro/SS-A and anti-CENP-B, we found 17 non-HLA antibodies significantly 

altered before transplant. Fifteen of them were increased in AMR/mixed rejection (Fig. S3, Table 

3). Pre-transplant levels of 7 IgG antibodies were significantly higher in AMR/mixed rejection than 

in ACR, including IgG against ribonucleoprotein SNRPD3, Histidine-tRNA ligase, and Desmin. 

Compared to ATN, AMR and mixed cases displayed significantly increased pre-transplant levels 

of 9 non-HLA antibodies, including anti-mitochondrial antibodies IgM anti-OGDC-E2 and IgG anti-

PDH61,62. AMR/mixed patients also displayed higher pre-existing levels of IgM anti-LG349, and 

increased antibodies against lysates of human glomerular microvascular endothelial cells 

(HGMEC) and cardiac endothelial cells (Fig. S3, Table 3). The distributions of these antibodies 

were similar between AMR and mixed cases (Fig. S3). Pre-transplant levels of 8 antibodies 

differed between sexes. While IgM against 3 ssDNA/dsDNA antigens were increased in women, 

men showed increased levels of IgG against Grp78/BiP, HGMEC lysate, and Asparaginyl-tRNA 

Synthetase (Table S2). 

 

Intraindividual Variability of Non-HLA Antibodies Over Time 
 
We next evaluated antibody changes over time. We examined intraindividual changes in the 

levels of the 14 IgG and 11 IgM antibodies altered in AMR/mixed rejection pre-transplant and/or 

at diagnosis. For each antibody, we examined levels at diagnosis compared to pre-transplant. 

Most IgG antibodies did not fluctuate over time (Fig. S4A). This trend was also observed among 

IgM antibodies, although their intraindividual fluctuations were greater compared to IgG (Fig. 

S4B). Nonetheless, several AMR and mixed rejection patients displayed an increase in some 
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antibodies at diagnosis, including IgG against Ro/SS-A(52KDa), human IgA, and M2, and IgM 

against La/SS-B, PDH, and Ribo P1 (Fig. 3C). 

We next determined intergroup differences in antibody levels post-diagnosis. Twelve antibodies 

were significantly altered between groups. IgG against Troponin I, Thyroglobulin, dsDNA, and 

IgM anti-ADRB2 were significantly increased in AMR/mixed rejection, compared to ATN (Table 

3, Fig. S5). Overall, non-HLA antibodies showed marked intraindividual consistency over time, 

but some antibodies increased specifically in AMR/mixed rejection at diagnosis. 

 
Non-HLA Antibodies Are Associated with Histopathology Features and DSA 
 
We examined whether levels of non-HLA antibodies were associated with the presence of 

histopathological lesions and/or anti-HLA DSA. We focused on 26 non-HLA antibodies pre-

transplant and 34 antibodies at diagnosis that were significantly and more strongly associated 

with at least one feature (P<0.05) (Fig. 4, Table S3). 

 

Increased levels of IgG anti-Ro/SS-A(52KDa) and anti-CENP-B, both pre-transplant and at 

diagnosis, were significantly associated with the presence of peritubular capillaritis, glomerulitis, 

intimal arteritis, C4d deposition, and chronic glomerulopathy, but not with tubulitis or 

interstitial/total inflammation (Fig. 4). Increased pre-transplant levels of IgG and IgM anti-CENP-

B were significantly associated with the presence of class-I and, more strongly, class-II DSA, 

while elevated IgG anti-Ro/SS-A(52KDa) was associated predominantly with the presence of 

class-II DSA (Fig. 4A). At diagnosis, increased levels of IgG anti-Ro/SS-A(52KDa) and IgG anti-

CENP-B were significantly associated with the presence of class-I/II DSA (Fig. 4B). Accordingly, 

higher levels of antibodies pre-transplant and/or at diagnosis, but not post-diagnosis, tended to 

co-cluster with the presence of class-II DSA (Fig. S2). Two other antibodies increased in 

AMR/mixed rejection at diagnosis, namely IgM anti-La/SS-B and IgG anti-M2, were significantly 

associated with the presence of glomerulitis, C4d deposition, chronic glomerulopathy, and DSA 

(Fig. 4B). Interestingly, we found relevant clinical features were significantly associated with IgG 

against molecular chaperones: while higher IgG anti-HSP90 was linked to the presence of chronic 

glomerulopathy, increased IgG anti-HSP27 and anti-HSP60 levels were associated with C4d 

deposition and DSA (Fig. 4B). Few antibodies (6/26 pre-transplant and 13/34 at diagnosis), 

including IgG anti-dsDNA, IgG anti-HSP60, and IgG anti-Tropomyosin, were significantly and 

positively associated with tubulitis and/or total inflammation (Fig. 4A).  
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External Validation of Antibodies against Ro/SS-A, CENP-B, and La/SS-B in AMR and 

Mixed Rejection 

 
We next investigated if the observed increases in non-HLA antibodies in AMR/mixed rejection 

identified in the discovery group (Toronto) could be reproduced in an independent cohort.  We 

conducted external validation of 6 antibodies significantly increased in AMR/mixed cases at 

diagnosis, namely IgG anti-Ro/SS-A(52 KDa), IgG and IgM anti-CENP-B, IgM anti-La/SS-B, IgM 

anti-PDH, and IgM anti-Ribo P1. We also interrogated their corresponding IgG or IgM levels 

(Table S4). We analysed serum samples from a previously described cohort of 60 kidney 

transplant patients (Montreal)49, including patients with AVR, ACR and stable recipients. We were 

able to reclassify a subgroup of AVR cases as having AMR or mixed rejection, or ACR grade 2-

3. Concordantly with the discovery study, we observed significantly increased levels of IgG anti-

Ro/SS-A(52 KDa, P=0.008) and IgG anti-PDH (P=0.02), and higher levels of IgG anti-La/SS-B 

(P=0.06), in AMR/mixed compared to ACR patients. When compared to stable controls, 

AMR/mixed patients still showed significantly increased levels of IgG anti-Ro/SS-A(52KDa, 

P=0.004) and IgG anti-La/SS-B (P=0.02), and higher levels of IgG anti-PDH (P=0.13) (Fig. 5A-

C, Table S4A). The AMR/mixed group also displayed higher levels of IgM anti-CENP-B compared 

to ACR (P=0.06) and stable controls (P=0.05) (Fig. 5D). Reassuringly, IgG anti-Ro/SS-A(52KDa) 

and IgM anti-CENP-B were significantly increased when comparing all cases with AVR with stable 

controls (P=0.02 and P=0.01, respectively), and remained elevated when compared to ACR 

(Table S4B).  

 

Network Analysis Identifies Interactions Between Antibody Targets and Differentially 

Expressed Proteins in AMR 

 
Antibodies against HLA and non-HLA antigens interact with proteins expressed by parenchymal 

cells, including endothelial and epithelial cells.63–67 We leveraged our recent proteomics study of 

glomeruli and tubulointerstitium in grafts with AMR compared to ACR and ATN,48 and built a 

protein-protein interaction network to study the connections between proteins significantly 

dysregulated in AMR kidneys, and protein targets of key antibodies identified in this study. We 

focused on targets of antibodies increased in AMR/mixed rejection and externally validated: 

TRIM21 (target of anti-Ro/SS-A(52KDa)), CENPB (target of anti-CENP-B), SSB (target of anti-

La/SS-B), and PDHA1/PDHB (targets of anti-PDH) (Fig. 6). We found direct interactions between 

TRIM21, HSP90AB1 (increased in AMR glomeruli) and HLADRB1 (increased in AMR 

tubulointerstitium).48 The molecular chaperone HSP90AA1 and the proliferation marker PCNA 
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connected with HLA class-I antigens (increased in AMR),48 and with antibody targets including 

centromeric proteins (CENPA, CENPB), metabolic enzymes (PDHA1, PDHB, DLAT, DBST, 

DBT), and ribosome-related proteins (SSB, RPLP1). The high connectivity between these 

proteins suggests biological relevance of both the proteins and antibodies directed against them 

in antibody-mediated injury. 

 

DISCUSSION 

 

While autoantibodies against Ro/SS-A(52KDa), CENP-B and La/SS-B are elevated and 

pathogenic in several autoimmune diseases,37,68–70 their role in kidney allograft rejection has never 

been reported. Here, we show that 1) autoantibodies against Ro/SS-A(52KDa), CENP-B and 

La/SS-B were significantly higher in patients with AMR/mixed rejection compared to ACR at 

diagnosis; 2) antibodies anti-Ro/SS-A(52KDa) and anti-CENP-B preceded transplantation and 

increased at the time of AMR/mixed diagnosis, in both early and late rejections; 3) these 

antibodies were associated with class-II DSA and microvascular lesions (Fig. 7). Our findings 

suggest that autoantibodies could participate in kidney allograft injury in AMR.  

 

Despite similar distribution of total IgG and IgM levels between groups, our approach pinpointed 

specific antibodies significantly altered among different forms of allograft injury. In two 

independent cohorts, we demonstrated that autoantibodies against Ro/SS-A(52KDa), CENP-B 

and La/SS-B were increased in patients with AMR/mixed rejection compared to ACR, at 

diagnosis. Ro/SS-A(52KDa) antigen, also known as Ro52 or Tripartite motif-containing protein 21 

(TRIM21), is recognized as the Sjögren’s syndrome-antigen A(SS-A)71, together with Ro60. Anti-

Ro/SS-A antibodies have been described in autoimmune conditions including Sjögren’s 

syndrome, SLE, and systemic sclerosis, and proposed as markers of disease activity.72 TRIM21 

is an Fc receptor that neutralizes opsonized viral particles entering cells73. TRIM21 can be 

upregulated and translocated to the nucleus under proinflammatory conditions, and modulate 

type-I interferon expression74. TRIM21 can also be expressed on the surface of apoptotic cells  

and become an immune target75. Monocyte surface TRIM21 expression was increased in patients 

with Sjögren’s syndrome, and upregulated by interferon-gamma71. Anti-TRIM21 antibodies 

specifically suppress the anti-inflammatory functions of this protein, while leaving type-I interferon 

production uncontrolled76. Anti-Ro antibodies could thus facilitate and enhance cytokine- and 

antibody-induced inflammation in AMR.  
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Anti-La/SS-B antibodies were elevated at diagnosis in AMR/mixed rejection. La/SS-B regulates 

cell cycle and binds to RNA polymerase-III transcripts, protecting them from exonucleases.77 Like 

TRIM21, La can be exposed on the surface of apoptotic cells, although it typically resides in the 

nucleus75. Positivity for both anti-Ro/SS-A and anti-La/SS-B antibodies has been observed in SLE 

and Sjögren's syndrome.37,68,78,79 How these autoantibodies are generated is unknown. In mice, 

immunization with recombinant TRIM21 or La/SS-B resulted in loss of T-cell tolerance towards 

these antigens, and subsequent activation of B-cells to produce anti-Ro/SS-A and anti-La/SS-B 

antibodies68. The concomitant increase in anti-Ro/SS-A and anti-La/SS-B antibodies in our 

patients with AMR/mixed rejection is consistent with their similarities and associated phenotypes. 

 

We also found significantly increased antibodies against major centromere autoantigen-B (CENP-

B) in AMR/mixed rejection, compared to ACR. At diagnosis, both IgG and IgM anti-CENP-B were 

elevated in these patients. CENP-B is key to maintain chromosome segregation during mitosis80. 

CENP-B also binds to vascular cells stimulating proliferation, migration, and cytokine release.81,82 

Anti-centromere antibodies have been described in several autoimmune and inflammatory 

diseases39,70,83–85. Senecal et al. demonstrated that anti-CENP-B antibodies inhibited proliferation 

and IL-8 production in vascular cells. Aberrant vascular repair and progressive arterial occlusion 

was observed in the presence of these antibodies81. We speculate that these antibodies may have 

similar effects in AMR. 

 

Antibodies against Ro/SS-A(52KDa) and CENP-B preceded transplantation and increased at the 

time of AMR/mixed diagnosis, in both early and late rejections. Of note, only three patients in the 

AMR/Mixed rejection groups had SLE; thus, our observations are not related to pre-transplant 

autoimmune disease. While these antibodies were virtually absent in ACR, they were detectable 

in AMR/mixed cases, even before transplantation. Longitudinal sera enabled us to note that while 

all antibodies showed little variability between pre-transplant and at-diagnosis measurements, 

several antibodies including anti-Ro/SS-A(52KDa), anti-CENP-B and anti-La/SS-B increased at 

diagnosis compared to pre-transplant. This suggests that these antibodies, similar to anti-AT1R 

antibodies11, predated transplant and were formed by yet unrecognized mechanisms.  

 

AMR and mixed rejection cases were diagnosed after distinct time intervals post-transplant. While 

pure AMR cases were biopsied within a month post-transplant, mixed rejection cases were 

diagnosed after a median of 174 days post-transplant. Despite this large difference in the time of 

diagnosis, the distribution of the anti-Ro/SS-A(52KDa), anti-CENP-B and anti-La/SS-B antibodies 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.02.408922doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.02.408922
http://creativecommons.org/licenses/by-nd/4.0/


17 

 

was remarkably similar in the two groups. This suggests that similar mechanisms are at play in 

AMR and mixed rejection, regarding the formation of these antibodies and their plausible influence 

on graft pathology. 

 

Our third major observation was that increased levels of IgG anti-Ro/SS-A(52KDa), anti-CENP-B 

and IgM anti-La/SS-B were strongly associated with the presence of microvascular lesions and 

anti-HLA class-II DSA. Class-II DSA are more strongly associated with transplant glomerulopathy, 

and are considered to be more pathogenic than class-I86–88. However, we cannot rule out a 

stronger association with class-II DSA due to the higher prevalence of these antibodies compared 

to class-I in the AMR/mixed cohort. Along these lines, levels of IgG anti-Ro/SS-A(52KDa), anti-

CENP-B and IgM anti-La/SS-B were associated with glomerulitis, C4d deposition and chronic 

glomerulopathy. Anti-CENP-B and anti-La/SS-B were also associated with intimal arteritis, linking 

the action of these antibodies in autoimmune diseases to lesions characteristic of AMR. As 

proposed for other non-HLA antibodies,12,23 these antibodies may act in synergy with anti-HLA 

DSA, enhancing allograft injury. 

 

The targets of these non-HLA and HLA antibodies are highly interconnected in a protein-protein 

interaction network (Fig. 6). Furthermore, integration with our recent kidney tissue proteomics 

dataset48 highlighted that proteins perturbed in the AMR tissue are directly connected with the 

targets of the immune response. The key hubs in this network are chaperones HSP90, which 

participate in renal immunity89. HSP90 was previously elevated in the serum of patients with 

kidney AMR90. We demonstrated that anti-HSP90 antibodies were strongly associated with the 

presence of chronic glomerulopathy. PCNA is another hub in the network, connecting CENP, 

PDH and HSP90 proteins. Upon injury, increased PCNA expression indicates increased cell cycle 

entry, which may lead to adverse events such as hypertrophy or mitotic catastrophe.91,92 In turn, 

antigen presentation and HLA-ligation can trigger proliferation in endothelial cells.87,93 Proliferative 

stress in kidney AMR may result in abnormal centromere function and affect the turnover of 

centromere-related proteins, such as CENP-B. In conclusion, proteins disrupted in kidney tissue 

during AMR interact directly with the targets of anti-HLA and non-HLA antibodies. Further studies 

aimed at deciphering the biology of these antibodies and their target proteins is warranted. 

 

Our study has several strengths. We investigated a sizeable group of well-characterized kidney 

transplant recipients, with longitudinally-collected serum samples. Using an innovative protein 

microarray, we studied non-HLA antibody changes in different subgroups and over time. We 
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integrated the findings from this study with clinical/histopathologic data and with our prior 

proteomics-based study.48 The key findings were externally validated. Our study also has 

limitations. After excluding sera affected by PLEX and/or IVIG, the study of antibody dynamics 

was limited to a smaller subset of patients. In addition, the time intervals between the indication 

biopsy date and the post-diagnosis serum were extremely variable, preventing us from including 

this time point in the study of dynamic changes in antibody levels. Finally, the current study 

pinpoints novel and interesting associations, but further work is required to establish their causal 

relationship with AMR.  

 

In conclusion, our approach revealed a novel link between increased pre-transplant levels of IgG 

anti-Ro/SS-A(52KDa) and anti-CENP-B and the development of AMR after kidney 

transplantation. Together with IgM anti-La/SS-B, these antibodies were increased in AMR early 

and late after transplant. All 3 antibodies were associated with the presence of microvascular 

lesions and anti-HLA class-II DSA, suggesting that they may synergize with class-II DSA and 

induce endothelial injury in AMR. This is the first effort to date that links specific pre-transplant 

non-HLA autoantibodies with the diagnosis of AMR after kidney transplantation. 
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FIGURE LEGENDS 
 
Figure 1. Experimental design and study workflow. In the discovery phase, we identified 

kidney transplant recipients with rejection diagnosed between 2008 and 2016 (A). Patient 

exclusion criteria were: 1) no serum sample available post-transplant; or 2) all serum samples 

collected within 21 days after PLEX and/or IVIG administration. Graft-age matched cases with 

acute tubular necrosis (ATN) were also included. A total of 166 sera were selected from 91 kidney 

transplant patients, with antibody-mediated rejection (AMR, n=43), ‘mixed’ antibody-mediated and 

cellular rejection (n=20), acute cellular rejection (ACR, n=16), or ATN (n=12). Our study workflow 

is shown in panel B. We first evaluated the MFI values of all the detected IgG and IgM, by 

comparing their distributions across different diagnoses. We then subjected all non-HLA 

antibodies to statistical analyses to assess differences between groups. We also performed 

clustering analyses to assess how the antibodies clustered in relation to the diagnoses and the 

anti-HLA DSA. Changes over time of key non-HLA antibodies were studied by plotting the MFI at 

diagnosis compared to MFI pre-transplant, in patients who had both samples available for the 

analysis. We next studied the association between the levels of each non-HLA antibody and the 

presence of histopathology lesions and/or anti-HLA DSA. We also interrogated our top antibodies 

of interest in an independent validation cohort. Finally, we built a protein-protein interaction 

network that integrates our top non-HLA antibody targets with our previous proteomics data sets 

of the AMR glomeruli and tubulointerstitium. DSA, donor-specific antibodies; Ig, immunoglobulin; 

MFI, median fluorescence intensity; PLEX, plasmapheresis; IVIG, intravenous immunoglobulin. 

 

Figure 2. Distribution of antibody levels according to diagnosis. The density plots depict the 

distributions of IgG and IgM MFI values in AMR (orange), mixed rejection (purple), ACR (green), 

and ATN (teal) before transplant (A), at diagnosis (B), and post-diagnosis (C). In each patient, a 

value of zero was given to all antibodies with MFI < 200. Log2-transformed MFI values were used 

to create the plots using ggplot2 3.3.2 in R. The x-axis encompasses the range of all MFI values 

among the detected antibodies, while the y-axis represents the frequency (density) of each of 

these values. AMR, antibody-mediated rejection; ACR, acute cellular rejection; ATN, acute tubular 

necrosis; Ig, immunoglobulin; MFI, median fluorescence intensity. 

 

Figure 3. The evolution of top non-HLA antibodies increased in AMR and mixed rejection 

over time. The violin plots depict the distributions of the MFI values of the 6 antibodies 

significantly increased in AMR/mixed vs ACR (A) and the 3 antibodies significantly increased in 
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AMR/Mixed vs ATN (B) at the time of diagnosis. Changes in the levels of these 9 antibodies over 

time were assessed by visualizing scatter plots of antibody MFI at diagnosis (y-axis) versus 

antibody MFI before transplant (x-axis), in patients who had both serum samples (C). AMR, 

antibody-mediated rejection; ACR, acute cellular rejection; ATN, acute tubular necrosis; Ig, 

immunoglobulin; MFI, median fluorescence intensity. 

 

Figure 4. Association between levels of non-HLA antibodies and relevant histologic and 

clinical parameters. The bubble plot represents an association matrix between the presence of 

histopathology and serology features important in AMR and the MFI values of non-HLA antibodies 

before transplant (A) and at the time of diagnosis (B). The non-HLA antibodies that were more 

strongly associated with at least one clinical variable (according to p-value) are represented. The 

size of the nodes is inversely proportional to the p-value of the association. In turn, the color of 

the nodes indicates the direction of the association: increased antibody levels with the presence 

of histopathology lesions and/or presence of DSA are colored in red, while decreased antibody 

levels with the presence of histopathology lesions and/or presence of DSA are colored in beige. 

AMR, antibody-mediated rejection; ACR, acute cellular rejection; ATN, acute tubular necrosis; Ig, 

immunoglobulin; DSA, donor-specific antibodies; MFI, median fluorescence intensity. 

 

Figure 5. External validation of non-HLA antibodies increased in AMR and mixed rejection 

at the time of diagnosis. Differences between groups in the levels of four antibodies that were 

significantly increased in AMR/Mixed rejection at the time of diagnosis in the discovery cohort 

(Toronto), and were significantly associated with the presence of microvascular lesions, were 

interrogated in an external cohort (Montreal) for validation. For each antibody, levels from kidney 

transplant patients with AMR/Mixed rejection were compared to the levels from patients with ACR 

or stable non-rejecting kidney grafts (Control) and plotted next to their corresponding levels in the 

Toronto cohort. Levels of IgG and IgM against Ro/SS−A(52 KDa) (A), PDH (B), La/SS−B (C), and 

CENP-B (D) are shown. Data are represented as median ± interquartile range (IQR, box). *P<0.05 

vs ACR or vs Control. AMR, antibody-mediated rejection; ACR, acute cellular rejection; MFI, 

median fluorescence intensity. 

 

Figure 6. Network analysis of key antibody targets and proteins differentially expressed in 

kidney AMR. Physical protein-protein interactions of key non-HLA and HLA antibody targets were 

identified using the Integrated Interactions Database and visualized using NAViGaTOR 3.0.13. 

The selected targets were of relevance because their corresponding antibody was significantly 
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increased in AMR/mixed patients at diagnosis, and/or significantly associated with the presence 

of AMR-related histopathology lesions or anti-HLA DSA. Turquoise and orange nodes represent 

the targets of non-HLA antibodies differentially increased in AMR/mixed patients compared to 

ACR and ATN, respectively. The nodes with purple highlight reflect targets of antibodies that were 

significantly associated with the presence of histopathology features and/or anti-HLA DSA. The 

gene names corresponding to the targets of antibodies validated in the external cohort (Montreal) 

are highlighted in turquoise. The nodes with a triangle shape represent targets of non-HLA 

antibodies increased in AMR/mixed rejection in both discovery and validation cohorts. The gene 

names of the non-HLA as well as HLA antibody targets that we previously found to be differentially 

expressed at the protein level in the AMR glomeruli or tubulointerstitium48 are colored in red. 

Purple edges connect proteins that are correlated to histopathological features, orange and 

turquoise edges connect proteins deregulated in AMR and mixed samples compared to ATN and 

ACR, respectively. Red edges connect proteins identified as deregulated in Clotet-Freixas et al., 

JASN, 2020. AMR, antibody-mediated rejection; ACR, acute cellular rejection; ATN, acute tubular 

necrosis. 

 
 
Figure 7. Summary of the key non-HLA antibodies associated with kidney AMR.  

Summary of relevant non-HLA antibodies increased in AMR/mixed rejection before transplant and 

at the time of diagnosis. IgG antibodies are depicted in green, while IgM antibodies are illustrated 

in red. The green ticks indicate that increased levels of IgG anti-Ro/SS-A(52KDa), IgG and IgM 

anti-CENP-B, and IgM anti-La/SS-B in AMR/Mixed rejection patients were validated in a second, 

independent cohort. ESKD, end-stage kidney disease; AMR, antibody-mediated rejection; Ig, 

immunoglobulin; DSA, donor-specific antibodies. 

 

Figure S1. Distribution of antibody levels according to patient sex. The density plots depict 

the distributions of IgG and IgM MFI values before transplant in male (M, purple) and female (F, 

orange) patients. In each patient, a value of zero was given to all antibodies with MFI < 200. Log2-

transformed MFI values were used to create the plots using ggplot2 3.3.2 in R. The x-axis 

encompasses the range of all MFI values among the detected antibodies, while the y-axis 

represents the frequency (density) of each of these values. AMR, antibody-mediated rejection; 

ACR, acute cellular rejection; ATN, acute tubular necrosis; Ig, immunoglobulin; MFI, median 

fluorescence intensity. 
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Figure S2. Clustering analysis of non-HLA antibodies significantly altered in AMR and 

mixed rejection. The heatmaps illustrate the hierarchical clustering analyses of the non-HLA 

antibodies significantly differentially increased or decreased in AMR and mixed rejection before 

transplant (A,B), at the time of diagnosis (C,D), and post-transplant (E,F), compared to ACR or 

ATN (P<0.05). Log2-transformed MFI values of each antibody were used to build the heatmaps. 

For each antibody, a value of zero was given to the samples with MFI < 200 (below the limit of 

detection). Patient clustering was evaluated according to their diagnosis and the 

presence/absence of anti-HLA class-I and/or anti-HLA class-II DSA. AMR, antibody-mediated 

rejection; ACR, acute cellular rejection; ATN, acute tubular necrosis; Ig, immunoglobulin; DSA, 

donor-specific antibodies; MFI, median fluorescence intensity. 

 

Figure S3. The evolution over time of 17 non-HLA antibodies increased in AMR and mixed 

rejection before transplant. The violin plots depict the distributions of the MFI values of 17 

antibodies significantly altered before transplant in AMR/Mixed patients compared to ACR and/or 

ATN. AMR, antibody-mediated rejection; ACR, acute cellular rejection; ATN, acute tubular 

necrosis; Ig, immunoglobulin; MFI, median fluorescence intensity. 

 

Figure S4. The changes in the levels of relevant non-HLA antibodies over time, among 

patients who had both pre-transplant and at-diagnosis sera. Changes over time in the levels 

of the 14 IgG antibodies (A) and 11 IgM antibodies (B) altered in AMR/mixed rejection before 

transplant and/or at the time of diagnosis were studied. Antibody fluctuations were assessed by 

visualizing antibody MFI at diagnosis (y-axis) versus antibody MFI before transplant (x-axis) using 

scatter dots. Overall, most antibodies did not appear to fluctuate in individuals over time. AMR, 

antibody-mediated rejection; Ig, immunoglobulin; MFI, median fluorescence intensity. 

 

 
Figure S5. The evolution over time of 11 non-HLA antibodies increased in AMR and mixed 

rejection after diagnosis. The violin plots depict the distributions of the MFI values of 11 

antibodies significantly altered after diagnosis in AMR/mixed patients compared to ACR and/or 

ATN. AMR, antibody-mediated rejection; ACR, acute cellular rejection; ATN, acute tubular 

necrosis; Ig, immunoglobulin; MFI, median fluorescence intensity. 
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Table 1. Clinical parameters of the patient cohort. *Autoimmune conditions included: primary sclerosing 
cholangitis (n=1), ANCA-vasculitis (n=4), SLE (n=2), and diabetes mellitus type I (n=2). ESKD, end stage 
kidney disease; FSGS, focal and segmental glomerulosclerosis; IQR, interquartile range; PCKD, polycystic 
kidney disease; SLE, systemic lupus erythematosus; TMA, thrombotic microangiopathy 

 

 Antibody mediated 
rejection 

Mixed rejection 
Acute cellular 

rejection 
Acute tubular 

necrosis 

Number of patients 43 20 16 12 

Sex - number of males, n (%) 22 (51) 13 (65) 12 (75) 9 (75) 

Patient age at biopsy, median 

years (IQR) 

 50 (39, 58) 48 (36.7, 56) 44 (36.2, 51.5) 64.5 (62.2, 69.7) 

Time post-transplant, median 

days (IQR) 

12 (8, 22) 174 (72, 737) 15.5 (12, 29.2) 9.5 (7.7, 12.2) 

Cause of ESKD   

Diabetic Nephropathy, n (%) 9 (21) 3 (15) 1 (6.2) 4 (33.3) 

IgA Nephropathy, n (%) 2 (4.6) 2 (10) 5 (31.2) 1 (8.3) 

PCKD, n (%) 4 (9.3) 5 (25) 3 (18.7) 2 (16.6) 

Vasculitis, n (%) 3 (7) 0 (0) 1 (6.2) 0 (0) 

FSGS, n (%) 4 (9.3) 2 (10) 1 (6.2) 1 (8.3) 

Reflux, n (%) 3 (7) 0 (0) 0 (0) 0 (0) 

Hypertension, n (%) 3 (7) 1 (5) 0 (0) 1 (8.3) 

SLE, n (%) 2 (4.6) 1 (5) 0 (0) 0 (0) 

TMA, n (%) 2 (4.6) 0 (0) 0 (0) 0 (0) 

Unknown, n (%) 3 (7) 4 (20) 0 (0) 2 (16.6) 

Other, n (%) 8 (18.6) 3 (15) 5 (31.2) 1 (8.3) 

Pre-existing autoimmune 

conditions*, n (%) 

7 (16.3) 1 (5) 1 (6.2) 0 (0) 

Renal replacement therapy 40 (93) 16 (80) 14 (87.5) 12 (100) 

Intermittent hemodialysis, n (%) 35 (81.3) 11 (55) 10 (62.5) 11 (91.6) 

Peritoneal dialysis, n (%) 5 (11.6) 5 (25) 4 (25) 1 (8.3) 

Preemptive, n (%) 3 (7) 4 (20) 2 (12.5) 0 (0) 

Prior desensitization, n (%) 21 (48.8) 3 (15) 0 (0) 0 (0) 

Eculizumab, n (%)  1 (2.3) 0 (0) 0 (0) 0 (0) 

Rituximab, n (%)  3 (7) 2 (10) 0 (0) 0 (0) 

Kidney transplant, donor type     

Living donor, n (%) 21 (49) 9 (45) 9 (56.2)  3 (25) 

Deceased donor, n (%) 22 (51) 11 (55) 7 (43.7)  9 (75) 

Induction therapy     

Thymoglobulin, n (%) 38 (88.3) 16 (80) 11 (68.8) 12 (100) 

Basiliximab, n (%) 3 (7) 3 (15) 5 (31.2) 0 (0) 

Unknown, n (%) 2 (4.6) 1 (5) 0 (0) 0 (0) 

Maintenance therapy, number 
(%) 

    

Prednisone  43 (100) 20 (100) 16 (100) 12 (100) 

Anti-proliferative 42 (97.6) 20 (100) 16 (100) 12 (100) 

Calcineurin Inhibitor 43 (100) 20 (100) 16 (100) 12 (100) 

ABO incompatible, n (%) 5 (11.6) 0 (0) 0 (0) 0 (0) 

Delayed graft function, n (%) 17 (39.5) 3 (15) 4 (25) 2 (16.6) 

Primary non-function, n (%) 2 (4.6) 1 (5) 0 (0) 0 (0) 

DSA, current or historic     

Any DSA 37 (86) 16 (80) 0 (0) 4 (33.3) 

Class I, n (%) 23 (53.4) 7 (35) 0 (0) 4 (33.3) 

Class II, n (%) 31 (72) 16 (80) 0 (0) 0 (0) 

Unknown, n (%) 2 (4.6) 1 (5) 1 (6.2) 1 (8.3) 
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Table 2. Biopsy findings of the patient cohort. Histopathology lesions were evaluated 
according to the most updated Banff classification. IQR, interquartile range; ah, arteriolar 
hyalinosis; c4d, c4 deposition; cg, chronic glomerulopathy; ci, interstitial fibrosis; ct, tubular 
atrophy; cv, vascular fibrous intimal thickening;  g, glomerulitis; i, interstitial inflammation; 
mm, mesangial matrix expansion; ptc, peritubular capillaritis; ti, total inflammation; t, tubulitis; 
v, intimal arteritis. 

 

Median (IQR) AMR (43) MIXED (20) ACR (16) ATN (12) 

i 0 (0, 0) 2 (1.7, 3) 2 (1.7,2) 0 (0, 0) 

t 0 (0, 0) 2 (2, 3) 3 (2.7, 3) 0 (0, 0) 

ti 0 (0, 1) 2 (2, 3) 2 (2, 3) 0 (0, 0) 

g 2 (0, 2) 0 (0, 2) 0 (0, 0) 0 (0, 0) 

ptc 1 (0, 2) 2 (1, 2) 1 (0, 1) 0 (0, 0) 

cg 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 

mm 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 

v 0 (0, 0) 1 (0, 1) 0 (0, 0) 0 (0, 0) 

ci 0 (0, 0) 1 (0, 1) 1(0, 1) 0 (0, 0) 

ct 0 (0, 0) 1 (0, 1) 1 (0.7, 1) 0 (0, 1) 

ah 0 (0, 1) 1 (0, 1) 0 (0, 1) 0 (0, 0) 

cv 0 (0, 1) 1 (0, 1.5) 1 (0, 1.7) 1 (0, 1) 

C4d 3 (3, 3) 3 (2, 3) 0 (0, 0) 0 (0, 0) 

Globally sclerosed glomeruli, % (IQR) 4 (0, 7) 5 (0, 11.7) 4 (0, 11.5) 4 (0, 8.2) 
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Table 3. Antibodies against non-HLA antigens significantly altered in AMR/Mixed rejection, compared to ACR and/or ATN. 

Significantly altered (P value < 0.05) IgG and IgM antibodies before transplant, at diagnosis, and post-diagnosis are shown. Ig, 

immunoglobulin; AMR, antibody-mediated rejection; ACR, acute cellular rejection; ATN, acute tubular necrosis; SEM, standard error of the 

median; B, bovine; R, recombinant; NR, non-recombinant; hp, high purity. 

Antibody class Antibody name Antigen specificity 

Antibody levels 

BEFORE TRANSPLANT 

AMR/MIXED (Median ± SEM) ACR (Median ± SEM) P value 

IgG IgG M2 
M2 (PDC-E2 + OGDC-E2 

+ BCOADC-E2) 
267.0 ± 143.6 0 ± 105.6 0.0051 

IgG IgG CENP-B 
Major centromere 

autoantigen B 
312.5 ± 144.2 0 ± 223.5 0.0097 

IgG IgG Ro / SS-A (52 KDa) Ro / SS-A (52 KDa) 315.0 ± 1732.5 0 ± 98.3 0.0112 

IgG IgG Gliadin Gliadin 3209.0 ± 961.8 1618.5 ± 495.8 0.0157 

IgG IgG Desmin Desmin 0.0 ± 207.0 0 ± 125.9 0.0223 

IgG IgG PDH Pyruvate dehydrogenase 238.0 ± 103.5 0 ± 87.4 0.0232 

IgG IgG SmD3 Sm D3 0 ± 21.8 0 ± 0 0.0368 

IgG IgG smooth muscle Smooth muscle actin 382.5 ± 40.5 310.7 ± 52.2 0.0457 

IgG IgG Jo-1 His-tRNA Synthase 0 ± 81.2 0 ± 34.9 0.0471 

   AMR/MIXED (Median ± SEM) ATN (Median ± SEM) P value 

IgM IgM PL-12 Alanyl-tRNA synthetase 1049.5 ± 232.7 352.0 ± 390.6 0.0074 

IgM IgM HGMEC Lysate 
Glomerular endothelial 

cells 
1393.5 ± 265.3 752 ± 244.7 0.0224 

IgM IgM PM / Scl 100 PM / Scl-100 317.5 ± 65.8 0 ± 38.1 0.0234 

IgM IgM OGDC-E2 M2 (OGDC) 426 ± 200.2 0 ± 81.1 0.0298 

IgG IgG HCEC Cytoplasm Cardiac endothelial cells 380.5 ± 54.7 222 ± 124.9 0.0309 

IgM IgM LG3 
Basement membrane-

specific heparan sulfate 
proteoglycan core protein 

402.5 ± 120.6 0 ± 54.1 0.0365 

IgM IgM LKM 1 hp 
LKM 1 hp antigen of 

Cytochrome P450 2D6 
210.5 ± 42.2 0 ± 878.7 0.0393 

IgG 
IgG Ro / SS-A (60KDa, 

R) 
Ro / SS-A (60 KDa) 0 ± 59.2 296 ± 79.1 0.0403 

IgM IgM Sm (NR, B) 
Small nuclear 

ribonucleoprotein Sm 
311 ± 62.3 0 ± 274.7 0.0470 

IgG IgG tTG Tissue Transglutaminase 0 ± 36.0 0 ± 192.7 0.0484 

IgG IgG PDH Pyruvate dehydrogenase 238 ± 103.6 0 ± 192.7 0.0494 

Antibody class Antibody name Antigen specificity 

Antibody levels 

AT DIAGNOSIS 

AMR/MIXED (Median ± SEM) ACR (Median ± SEM) P value 

IgG IgG CENP-B 
Major centromere 

autoantigen B 
510.0 ± 159.3 0 ± 59.1 0.0126 

IgG IgG Ro / SS-A (52 KDa) Ro / SS-A (52 KDa) 353.5 ± 2301.6 0 ± 191.8 0.0325 

IgM IgM La / SS-B La / SS-B 735.5 ± 479.1 296.0 ± 104.6 0.0261 

IgM IgM Ribo P1 
Ribosomal 

Phosphoprotein P1 
0 ± 86.7 0 ± 0 0.0284 

IgM IgM CENP-B 
Major centromere 

autoantigen B 
666.5 ± 260.1 262.0 ± 112.7 0.0447 

IgM IgM PDH PDH 251.0 ± 130.9 0 ± 55.8 0.0472 

   AMR/MIXED (Median ± SEM) ATN (Median ± SEM) P value 

IgG IgG M2 
M2 (PDC-E2 + OGDC-E2 

+ BCOADC-E2) 
219 ± 202.0 0 ± 0 0.0313 

IgG IgG Sm (NR,B) Bovine Sm proteins 0 ± 179.0 0 ± 0 0.0416 

IgG IgG Human IgA Human IgA 750.5 ± 643.1 0 ± 226.4 0.0495 

Antibody class Antibody name Antigen specificity 

Antibody levels 

POST-DIAGNOSIS 

AMR/MIXED (Median ± SEM) ACR (Median ± SEM) P value 

IgG IgG Beta 2-Glyc β2-Glycoprotein 1 0 ± 12.7 0 ± 70.6 0.0033 

IgG IgG TPO Thyroid peroxidase 0 ± 80.4 357 ± 394.2 0.0128 

IgG IgG tTG Tissue Transglutaminase 0 ± 22.3 0 ± 71.3 0.0234 

IgG IgG Tropomyosin Tropomyosin 234 ± 101.6 380.75 ± 366.3 0.0431 

IgG IgG Gliadin Gliadin 2306 ± 917.0 1081.25 ± 812.7 0.0446 

IgG IgG human IgG F(ab)2 
F(ab)2 fragment of Human 

IgG 
8029 ± 2413.3 3101.75 ± 2826.0 0.0475 

   AMR/MIXED (Median ± SEM) ATN (Median ± SEM) P value 

IgG IgG alphaB-crystallin Alpha-crystallin B chain 0 ± 502.5 693.5 ± 370.6 0.0060 

IgG IgG Troponin I Troponin I 272.5 0 ± 0 0.0208 

IgG IgG Grp78/BiP 
Heat shock 70 kDa protein 

5 
303.0 ± 106.0 811.5 ± 262.9 0.0336 

IgG IgG Thyrogobulin Thyroglobulin 212.5 ± 36.4 0 ± 0 0.0378 

IgG IgG dsDNA (plasmid) dsDNA 206.5 ± 100.1 0 ± 0 0.0378 

IgM IgM ADRB2 Beta-2 adrenergic receptor 265 ± 79.8 0 ± 57.1 0.0423 
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